EP3408015B1 - Procédé de production d'émulsions - Google Patents
Procédé de production d'émulsions Download PDFInfo
- Publication number
- EP3408015B1 EP3408015B1 EP17706142.1A EP17706142A EP3408015B1 EP 3408015 B1 EP3408015 B1 EP 3408015B1 EP 17706142 A EP17706142 A EP 17706142A EP 3408015 B1 EP3408015 B1 EP 3408015B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- emulsion
- bar
- space
- gas
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000839 emulsion Substances 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title description 6
- 239000007788 liquid Substances 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 35
- 239000002904 solvent Substances 0.000 claims description 18
- 230000004048 modification Effects 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims description 5
- 239000003921 oil Substances 0.000 description 39
- 239000007789 gas Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 19
- 239000012071 phase Substances 0.000 description 15
- 238000005538 encapsulation Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 239000002245 particle Substances 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 239000002775 capsule Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000003094 microcapsule Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000003995 emulsifying agent Substances 0.000 description 5
- 239000013543 active substance Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004945 emulsification Methods 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 239000000341 volatile oil Substances 0.000 description 3
- 238000001016 Ostwald ripening Methods 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- LTPSRQRIPCVMKQ-UHFFFAOYSA-N 2-amino-5-methylbenzenesulfonic acid Chemical compound CC1=CC=C(N)C(S(O)(=O)=O)=C1 LTPSRQRIPCVMKQ-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 241000694440 Colpidium aqueous Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 102100027370 Parathymosin Human genes 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000012296 anti-solvent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229940080237 sodium caseinate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 235000021119 whey protein Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
- B01F23/4105—Methods of emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
- B01F23/413—Homogenising a raw emulsion or making monodisperse or fine emulsions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/70—Pre-treatment of the materials to be mixed
- B01F23/702—Cooling materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/70—Pre-treatment of the materials to be mixed
- B01F23/711—Heating materials, e.g. melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/80—After-treatment of the mixture
- B01F23/802—Cooling the mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/80—After-treatment of the mixture
- B01F23/811—Heating the mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
- B01F25/23—Mixing by intersecting jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0427—Numerical distance values, e.g. separation, position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/0468—Numerical pressure values
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/0481—Numerical speed values
Definitions
- the invention relates to a method for producing emulsions.
- emulsions are understood as meaning both colloidal emulsions and technical emulsions, the latter differing from colloidal emulsions in that they have considerably larger particle dimensions in the micrometer range.
- a large number of branches of industry for example the food industry, the pharmaceutical industry and the cosmetics industry, have a high demand for encapsulation, protection or targeted release of hydrophobic substances such as bioactive lipids, odorous substances, antioxidants and pharmaceuticals.
- Emulsions are formed when two or more immiscible liquids are mixed together.
- One of these liquids is usually water soluble and the other is a lipophilic liquid that is immiscible with water.
- either water-in-oil emulsions or oil-in-water emulsions can be produced.
- a disadvantage of emulsions is their instability, which is based on physicochemical mechanisms such as gravity separation, flocculation, coalescence and Ostwald ripening. In oil-in-water emulsions, the most common reason for instability is the gravitational separation in the form of "creaming", which occurs due to the lower density of the oil particles.
- Emulsions with an oil droplet size of more than 10 ⁇ m tend to change into two separate phases within a short time, while for an oil droplet size of less than 1 ⁇ m the stability of the emulsion increases with decreasing oil droplet size.
- an oil droplet size of less than 1 ⁇ m a four times larger energy input is necessary to reduce the oil droplet size by 50%, which limits the minimum oil droplet size that can be achieved.
- due to the energy input there is a risk of the temperature rising to temperatures above 70 ° C, at which the emulsifiers can be destroyed.
- the limiting factors are the pore size of the membranes used and the pressure resulting from the viscosity of the oil phase.
- a microjet reactor according to the EP 1 165 224 B1 is used.
- Such a microjet reactor has at least two opposing nozzles, each with an associated pump and feed line for spraying a liquid medium in each case into a reactor space enclosed by a reactor housing at a common collision point, a first opening being provided in the reactor housing through which a gas, a evaporating liquid, a cooling liquid or a cooling gas can be introduced to maintain the gas atmosphere inside the reactor, in particular at the point of collision of the liquid jets, or to cool the resulting products, and a further opening is provided for removing the resulting products and excess gas from the reactor housing is.
- a gas, an evaporating liquid or a cooling gas is therefore introduced into the reactor space via an opening in order to maintain a gas atmosphere in the interior of the reactor, in particular at the point of collision the liquid jets or to cool the resulting products and the resulting products and excess gas are removed through an opening from the reactor housing by overpressure on the gas inlet side or by negative pressure on the product and gas outlet side.
- a solvent / non-solvent precipitation in such a microjet reactor for example as in the EP 2 550 092 A1 is carried out, a dispersion of the precipitated particles is obtained. With such a reactor it is possible to generate particularly small particles.
- a solvent / non-solvent precipitation is understood to mean that a substance is dissolved in a solvent and collides as a liquid jet with a second liquid jet, the dissolved substance being precipitated again.
- a disadvantage of solvent / non-solvent precipitations is the fact that the dissolved and reprecipitated substance is in particulate form in the solvent-non-solvent mixture after the precipitation.
- the solvent content has the effect that, in many particles, an Ostwald ripening occurs in a time-dependent manner, which causes the particles to grow.
- a device for emulsifying at least two liquids which comprises an emulsion reactor which has an outlet for removing the emulsion resulting from the mixing of the liquids and in which a plurality of nozzles are provided for injection at a substantially common collision point, each Nozzle is assigned a feed line and a pump, each of which pumps a liquid from an assigned tank through the feed line into the emulsion reactor.
- the WO 99/28020 A1 describes a method of making heat sensitive emulsions or dispersions in which the components are pressurized, passed through a first high pressure mixing zone, then cooled in a heat exchanger and then passed through a second high pressure mixing zone.
- the DE 26 04 610 A1 describes a process in which oil and water are sucked in from separate containers in the desired volume ratio and, as a mixture under high pressure in a pipe-nozzle system, is accelerated and decelerated several times at short intervals from a constant low base speed to about ten to twenty times the flow speed and then sprayed directly into the combustion chamber for burning.
- the pressure at the basic flow rate is 130 to 180 bar.
- the GB 331 928 A describes an apparatus for the production of emulsions or dispersions by spraying the components against one another. The pressure of the liquid jets is not specified here.
- the object of the invention is therefore to create a new process for the production of emulsions which also enables the production of asymmetrical emulsions.
- This object is achieved according to the invention in that in a first step at least one pre-emulsion is generated from at least two immiscible liquids and then in a second step at least two liquid streams of the at least one pre-emulsion are pumped through separate nozzles with a defined diameter in a microjet reactor, whereby the pressure of the liquid jets is between 5 and 500 bar in order to achieve the flow velocity of the liquid flows of more than 10 m / s and that the liquid flows meet at a collision point in a room, the room being filled or acted upon with gas and the gas pressure in the space is 0.05 to 30 bar, preferably 0.2 to 10 bar and particularly preferably 0.5 to 5 bar.
- Gas in particular inert gas or inert gas mixtures, but also reactive gas, can be fed into the space through a gas inlet.
- Such a microjet reactor is from EP 1 165 224 B1 famous.
- the droplet size of the emulsion depends on the system and operating parameters, in particular the nozzle size in the microjet reactor and the pump pressure of the conveying pumps for the two liquid flows.
- the collision energy in the microjet reactor does not cause any precipitation reactions, but rather emulsions are formed.
- a homogeneous emulsion with an oil droplet size of less than 1 ⁇ m is achieved due to the kinetic energy, which is also very stable. No additional energy input, such as shear forces, is required for this. It can be carried out in the aqueous phase at temperatures between 0.degree. C. and 100.degree. C., preferably at temperatures between room temperature and 70.degree. C., particularly preferably at temperatures between room temperature and 50.degree.
- the pressure of the liquid jets is between 5 and 5,000 bar, preferably between 10 and 1,000 bar and particularly preferably between 20 and 500 bar.
- the flow rate of the liquid streams and the temperature, the oil droplet size in the emulsion can be influenced.
- the resulting emulsion is discharged from the room through the outlet. There is thus a continuously operating process.
- the diameter of the nozzles is identical or different and is 10 to 5,000 ⁇ m, preferably 50 to 3,000 ⁇ m and particularly preferably 100 to 2,000 ⁇ m. It is possible to work with nozzles of different diameters, for example on one side of a nozzle with a diameter of 100 ⁇ m and on the other side of a nozzle with a diameter of 300 ⁇ m. Of course, the diameters of the nozzles can also be the same on both sides.
- the flow velocities of the liquid streams after the nozzle are identical or different and are more than 20 m / s, preferably more than 50 m / s and particularly preferably more than 100 m / s.
- one of the liquid flows can have a higher flow velocity than the other liquid flow, for example on the one hand 50 m / s and on the other hand 100 m / s.
- the flow speed of the liquid streams after the nozzle can reach 500 m / s or 1,000 m / s.
- the distance between the nozzles is preferably less than 5 cm, preferably less than 3 cm and particularly preferably less than 1 cm.
- the gas pressure in the space is 0.2 to 10 bar and preferably 0.5 to 5 bar.
- the droplet size can also be influenced via the gas pressure.
- a solvent is introduced into the space through a further inlet.
- propylene glycol can be introduced into the room as a further solvent through the further inlet.
- One embodiment of the invention consists in the fact that during the collision there is a pressure of less than 100 bar, preferably less than 50 bar and particularly preferably less than 20 bar in the space.
- the emulsion produced is encapsulated in a further step.
- Examples 1 to 4 show the effects of varying individual parameters, while Examples 5 to 21 contain examples of possible encapsulation processes.
- Oil flow rate (ml / min) Water flow rate (ml / min) Oil droplet size (nm) 10 50 596 20th 100 427 30th 150 348 50 250 294 100 500 257
- the oil droplet size within the emulsion formed thus decreases with increasing flow rates.
- the influence of the diameter of the nozzles was determined by testing various nozzle diameters while using an oil flow rate of 50 ml / min and a water flow rate of 250 ml / min and the gas pressure was 2 bar.
- Nozzle diameter ( ⁇ m) Oil droplet size (nm) 200 294 300 318 400 567 500 785
- Oil and water phases were pre-emulsified and pumped through the two inlets in a closed cycle in order to determine the influence of the number of cycles on the oil droplet size within the emulsion.
- a flow rate of 250 ml / min and a gas pressure of 2 bar prevailed in the room.
- Number of cycles Oil droplet size (nm) 1 650 2 540 3 420 4th 355
- the oil droplet size within the emulsion therefore also decreases with the number of cycles.
- An essential oil to be encapsulated is emulsified at a flow rate of 67 g / min in the microjet reactor with an aqueous sodium caseinate solution (22.4 mg / ml) at a flow rate of 200 g / min in the microjet reactor.
- this emulsion is processed at a flow rate of 200 g / min against an aqueous xanthan solution (0.25%) at 25 g / min.
- the oppositely charged side groups of the protein and the polysaccharide attach to each other. This interaction is strengthened by lowering the pH to pH 4 with 10% citric acid, whereby microcapsules are formed.
- the microcapsules are 50-100 ⁇ m in size.
- An essential oil to be encapsulated is emulsified at a flow rate of 50 g / min in the microjet reactor in an aqueous whey protein isolate solution at a flow rate of 200 g / min. After adding 20% maltodextrin as a carrier material, the emulsion is spray-dried. Drying creates a powder that contains microencapsulated essential oil.
- Example 7 Melt dispersion / matrix encapsulation
- a fragrance to be encapsulated (15-30%) is dissolved in melted Compritol AO 888 at 85 ° C.
- This oil phase is emulsified at 68 ml / min in a 20 ° C. aqueous Tween 20 solution (0.5-1.5%) at 200 ml / min.
- the rapid cooling of the fat results in the formation of particles and thus matrix encapsulation of the fragrance when the emulsion is formed.
- the microcapsules are on average 5 ⁇ m (0.5% Tween 20) or 2 ⁇ m (1.5% Tween 20).
- Example 8 Melt dispersion with modified surface
- a fragrance to be encapsulated (15-30%) is dissolved in melted Compritol AO 888 at 85 ° C.
- This oil phase is emulsified at 68 ml / min in a 20 ° C. cold gum arabic solution (2.5%; 200 ml / min). Due to the rapid cooling of the fat, particles form immediately after the emulsion has formed.
- microcapsules are modified by processing this melt dispersion (200 ml / min) in the microjet reactor against a gelatin solution (2.5%; 150 g / min) at 50 ° C. By lowering the pH to pH 4 with 10% citric acid, the ionic interactions are strengthened and gelled by cooling.
- a hydrophilic polyalcohol to be encapsulated (active ingredient) is added to an aqueous ammonia solution (1%) (water phase) and in the MJR reactor against an emulsifier-containing (polyetheralkyl-polymethylsiloxane) 1% encapsulation solution (TEOS) in Isoparaffin (oil phase) processed.
- a process pressure of 40 bar is set upstream of the nozzles.
- the result is a stable emulsion, at whose phase boundary the encapsulation material is formed by hydrolysis of the precursors.
- the capsules can be separated by simple sedimentation or centrifugation and are between 5 and 10 ⁇ m in size.
- the method indicated in FIG. 1 is applied to the encapsulation substances OTMS, PTMS. With a constant flow rate, the microcapsules obtained have approximately the same properties with a reduced reaction time.
- the method given in FIG. 1 is applied to variable flow rates. By varying the flow rate, ratios of the disperse phase (active substance) to the oil phase of 30:70, 40:60 and 60:40 can be achieved. The size of the microcapsules obtained increases as the proportion of disperse phase (active substance solution) increases.
- the method indicated in FIG. 1 is applied to an encapsulation solution containing TEOS with the modification that the concentration of the emulsifier used was reduced to 50% or 25% of the original concentration.
- the microcapsules obtained are larger than those obtained according to Example 1.
- Example 17 The method given in Example 17 is used with the modification that the capsule hardening by means of trimesoyl chloride solution takes place in situ by continuously introducing the solution into the reactor chamber via the fifth opening of the MJR reactor.
- the capsules obtained have approximately the same properties as those obtained according to Example 9.
- Oil-soluble actives Examples 19-20
- Example 5 The procedure given in Example 5 is applied to oil-soluble encapsulants.
- An oil-soluble active substance to be encapsulated is added to a 20% solution of the encapsulation material (OTMS) in isoparaffin and mixed by stirring at room temperature for 5 min.
- the solution obtained in this way is processed in the MJR reactor at a process pressure of 40 bar against a 2% aqueous emulsifier solution.
- the result is a stable, homogeneous emulsion which, by adding the catalyst dibutyltin laurate (0.5%), hardens the capsules, which can be separated after hardening by means of centrifugation or sedimentation.
- Example 19 The method given in Example 19 is used with the modification that the capsule hardening takes place in situ by means of dibutyltin laurate by continuously introducing the solution into the reactor chamber via the fifth opening of the MJR reactor.
- the capsules obtained have approximately the same properties as those obtained according to Example 19.
- Step 2b (as an alternative to step 2a):
- Step 3b (as an alternative to step 3a):
- pre-emulsion a warm non-solvent
- This pre-emulsion is introduced into the MJR on the right and left with a flow rate ratio of 1: 1.
- the loaded polymer is precipitated on a microscale.
- Step 3c (as an alternative to step 3a or step 3b):
- the modified melt is mixed with part of the heated non-solvent to reduce the melt viscosity.
- the mixture is precipitated with the cold residual non-solvent in the MJR process with precipitation of the polymer beads.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Colloid Chemistry (AREA)
Claims (11)
- Procédé de fabrication d'émulsions, dans lequel, lors d'une première étape, au moins une pré-émulsion est produite à partir d'au moins deux liquides non miscibles entre eux, puis, lors d'une deuxième étape, au moins deux flux de liquide de ladite au moins une pré-émulsion sont pompés dans un réacteur à micro-jets à travers des buses séparées de diamètre défini, caractérisé en ce que la pression des jets de liquide est comprise entre 5 et 500 bars afin d'atteindre des vitesses d'écoulement des flux de liquide de plus de 10 m/s, et en ce que les flux de liquide se rencontrent en un point de collision dans une chambre, la chambre étant remplie ou soumise à du gaz, et la pression du gaz dans la chambre étant comprise entre 0,05 et 30 bars.
- Procédé selon la revendication 1, caractérisé en ce que le diamètre des buses est identique ou différent, et est compris entre 10 et 5 000 µm, de préférence entre 50 et 3 000 µm, et de manière particulièrement préférée entre 100 et 2 000 µm.
- Procédé selon la revendication 1 ou 2, caractérisé en ce que la vitesse d'écoulement des flux de liquide est identique ou différente, et est supérieure à 20 m/s, de préférence supérieure à 50 m/s, et de manière particulièrement préférée supérieure à 100 m/s.
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la distance entre les buses est inférieure à 5 cm, de préférence inférieure à 3 cm, et de manière particulièrement préférée inférieure à 1 cm.
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la pression du gaz dans la chambre est comprise entre 0,2 et 10 bars, et de préférence entre 0,5 et 5 bars.
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le gaz est chauffé ou refroidi avant son entrée dans la chambre afin d'influencer la température dans la chambre.
- Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'un solvant est introduit dans la chambre par une autre entrée.
- Procédé selon l'une des revendications 1 à 7, caractérisé en ce que, pendant la collision, il règne dans la chambre une pression inférieure à 100 bars, de préférence inférieure à 50 bars, et de manière particulièrement préférée inférieure à 20 bars.
- Procédé selon l'une des revendications 1 à 8, caractérisé en ce que les flux de liquide et/ou l'émulsion formée sont passés à travers un échangeur de chaleur afin de contrôler la température des flux de liquide avant la collision ou celle de l'émulsion après la collision.
- Procédé selon l'une des revendications 1 à 9, caractérisé en ce que, dans une étape supplémentaire, l'émulsion produite est encapsulée.
- Procédé selon l'une des revendications 1 à 10, caractérisé en ce que, dans une étape supplémentaire, l'émulsion produite et éventuellement encapsulée est dotée d'une modification de surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016101232.7A DE102016101232A1 (de) | 2016-01-25 | 2016-01-25 | Verfahren zum Herstellen von Emulsionen |
PCT/DE2017/100046 WO2017129177A1 (fr) | 2016-01-25 | 2017-01-25 | Procédé de production d'émulsions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3408015A1 EP3408015A1 (fr) | 2018-12-05 |
EP3408015B1 true EP3408015B1 (fr) | 2021-08-11 |
Family
ID=58094095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17706142.1A Active EP3408015B1 (fr) | 2016-01-25 | 2017-01-25 | Procédé de production d'émulsions |
Country Status (9)
Country | Link |
---|---|
US (1) | US20190030497A1 (fr) |
EP (1) | EP3408015B1 (fr) |
JP (1) | JP7031103B2 (fr) |
KR (1) | KR20180101573A (fr) |
CN (1) | CN108495708B (fr) |
DE (1) | DE102016101232A1 (fr) |
DK (1) | DK3408015T3 (fr) |
ES (1) | ES2893124T3 (fr) |
WO (1) | WO2017129177A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10912326B2 (en) | 2018-08-22 | 2021-02-09 | Rachelle MACSWEENEY | Nanoformulations containing encapsulted omega-3 fatty acids |
CA3063417C (fr) | 2018-12-04 | 2023-01-03 | Leon-Nanodrugs Gmbh | Nanoparticules comprenant du tacrolimus |
DE102019112382A1 (de) * | 2019-05-13 | 2020-11-19 | MyBiotech GmbH | Verwendung eines MikroJet-Reaktors zum Zellaufschluss |
CA3141534A1 (fr) | 2019-05-23 | 2020-11-26 | Helm Ag | Nanoparticules a base d'enzalutamide |
EP3915544A1 (fr) | 2020-05-25 | 2021-12-01 | Leon-Nanodrugs GmbH | Procédé de production d'une dispersion de liposomes |
CN114010541B (zh) * | 2021-11-03 | 2022-08-30 | 江苏久膜高科技股份有限公司 | 一种薰衣草精油乳液的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009036537B3 (de) * | 2009-08-07 | 2011-02-17 | Cannon Deutschland Gmbh | Vorrichtung und Verfahren zur Emulgierung von Flüssigkeiten |
DE102011113413A1 (de) * | 2010-09-17 | 2012-08-09 | Synthesechemie Dr. Penth Gmbh | Dispersionen von Halbleitermaterialien |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB331928A (en) * | 1929-04-13 | 1930-07-14 | Ici Ltd | Apparatus for the manufacture of emulsions or dispersions |
DE2604610C3 (de) * | 1976-02-06 | 1978-07-13 | Hans 7209 Aldingen Messner | Vorrichtung zur Erzeugung eines unmittelbar verbrennbaren, emulgieren Öl-Wassergemisches |
US5927852A (en) * | 1997-12-01 | 1999-07-27 | Minnesota Mining And Manfacturing Company | Process for production of heat sensitive dispersions or emulsions |
JP2002540930A (ja) | 1999-04-08 | 2002-12-03 | ペント ベルント | 化学的プロセスおよび物理的プロセスを実施するための方法および装置 |
DE10123092B4 (de) * | 2001-05-07 | 2005-02-10 | INSTITUT FüR MIKROTECHNIK MAINZ GMBH | Verfahren und statischer Mischer zum Mischen mindestens zweier Fluide |
DE20306915U1 (de) * | 2003-05-05 | 2003-08-07 | HAAGEN & RINAU Mischtechnik GmbH, 28307 Bremen | Dispergiervorrichtung |
US20060133955A1 (en) * | 2004-12-17 | 2006-06-22 | Peters David W | Apparatus and method for delivering vapor phase reagent to a deposition chamber |
KR20100034008A (ko) * | 2007-07-23 | 2010-03-31 | 야마토 에콜로지 코오포레이션 | 물 에멀션 제조장치 |
JP2010043212A (ja) | 2008-08-15 | 2010-02-25 | Karasawa Fine Ltd | 油中水滴型エマルションの製造方法、油中水滴型エマルションの製造装置、および油中水滴型エマルション燃料の製造装置 |
CN101513595B (zh) * | 2009-01-15 | 2012-01-25 | 中国纺织工业设计院 | 多级、多向y型射流撞击混合器 |
DE102009008478A1 (de) * | 2009-02-11 | 2010-08-19 | PHAST Gesellschaft für pharmazeutische Qualitätsstandards mbH | Vorrichtung und Verfahren zur Herstellung pharmazeutisch hochfeiner Partikel sowie zur Beschichtung solcher Partikel in Mikroreaktoren |
ES2692651T3 (es) | 2010-03-22 | 2018-12-04 | Instillo Gmbh | Procedimiento para la fabricación de micro o nanopartículas |
DE102010056345B4 (de) | 2010-12-29 | 2017-01-19 | Siegfried Zech | Verfahren zur Herstellung einer Öl-Wasser-Emulsion |
CN103349937B (zh) * | 2013-07-05 | 2015-09-30 | 江南大学 | 一种连续乳化装置 |
CN103495356A (zh) * | 2013-09-22 | 2014-01-08 | 黄光智 | 一种快速溶氧的射流器的标准化加工方法及其装置 |
CN103990406B (zh) * | 2014-05-16 | 2018-04-24 | 江苏大学 | 基于形状记忆聚合物的流体混合器 |
-
2016
- 2016-01-25 DE DE102016101232.7A patent/DE102016101232A1/de not_active Ceased
-
2017
- 2017-01-25 DK DK17706142.1T patent/DK3408015T3/da active
- 2017-01-25 ES ES17706142T patent/ES2893124T3/es active Active
- 2017-01-25 JP JP2018538631A patent/JP7031103B2/ja active Active
- 2017-01-25 CN CN201780007945.8A patent/CN108495708B/zh active Active
- 2017-01-25 EP EP17706142.1A patent/EP3408015B1/fr active Active
- 2017-01-25 WO PCT/DE2017/100046 patent/WO2017129177A1/fr active Application Filing
- 2017-01-25 KR KR1020187024004A patent/KR20180101573A/ko unknown
- 2017-01-25 US US16/072,208 patent/US20190030497A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009036537B3 (de) * | 2009-08-07 | 2011-02-17 | Cannon Deutschland Gmbh | Vorrichtung und Verfahren zur Emulgierung von Flüssigkeiten |
DE102011113413A1 (de) * | 2010-09-17 | 2012-08-09 | Synthesechemie Dr. Penth Gmbh | Dispersionen von Halbleitermaterialien |
Also Published As
Publication number | Publication date |
---|---|
CN108495708B (zh) | 2021-07-30 |
CN108495708A (zh) | 2018-09-04 |
DK3408015T3 (da) | 2021-11-01 |
JP7031103B2 (ja) | 2022-03-08 |
EP3408015A1 (fr) | 2018-12-05 |
DE102016101232A1 (de) | 2017-07-27 |
ES2893124T3 (es) | 2022-02-08 |
WO2017129177A1 (fr) | 2017-08-03 |
JP2019508233A (ja) | 2019-03-28 |
US20190030497A1 (en) | 2019-01-31 |
KR20180101573A (ko) | 2018-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3408015B1 (fr) | Procédé de production d'émulsions | |
EP2978515B1 (fr) | Dispositif et méthode pour produire des dispersions et des matières solides | |
EP2550092B1 (fr) | Procede pour la production de micro- ou nanoparticules | |
DE60132094T3 (de) | Verfahren zur Herstellung von gereinigten Partikeln | |
DE69528062T2 (de) | Verfahren zum herstellen von emulsionen aus einem emulgator | |
EP2432580A2 (fr) | Procédé de préparation de nanoparticules par utilisation de mini-émulsions | |
EP0570335B1 (fr) | Dispositif et procédé pour mélanger un composant pulvérulent solide dans un matériau liquide | |
DE10206083B4 (de) | Verfahren zum Erzeugen monodisperser Nanotropfen sowie mikrofluidischer Reaktor zum Durchführen des Verfahrens | |
DE1900865A1 (de) | Verfahren zur Herstellung von Mikrokapseln | |
DE102017110292A1 (de) | Verfahren und Vorrichtung zum Herstellen von Reaktionsprodukten | |
EP1728814B1 (fr) | Procédé de préparation des nanoparticules à base de membranes poreuses | |
DE2010110A1 (de) | Verfahren zur Herstellung von Mikrokapseln mit Hilfe von synthetischen Koazervaten | |
EP4431176A2 (fr) | Procédé et dispositif de fabrication de granulés de cannabinoïde solubles essentiellement dans un milieu aqueux | |
DE69419707T2 (de) | Verfahren zur Herstellung von nicht-zerstäubenden Kunststoffhohlkugeln | |
WO2003027170A1 (fr) | Procede de fabrication de particules fines a partir de solides fusibles | |
DE102017110293A1 (de) | Verfahren zur Oberflächenmodifikation von verkapselten Stoffen | |
WO2023148405A1 (fr) | Procédé et dispositif de précipitation de polymère | |
DE10065068A1 (de) | Mehrstufen-Verfahren zur Herstellung von gasgefüllten Mikrokapseln mit definiert enger Größenverteilung durch definierte Fremdbegasung während des Mikrokapselaufbaus | |
DE102009009060B3 (de) | Verfahren zur Herstellung einer Dispersion und Vorrichtung hierzu | |
DE3041555C2 (de) | Verfahren zur aerodynamischen Gewinnung von flüssigen oder festen dispersen Aerosolen | |
EP1722885A1 (fr) | Procede et dispositif pour produire des multi-microcapsules stables au stockage comportant des composants fonctionnels synergiquement actifs a liberation controlee | |
DE102017119569A1 (de) | Rotierender Ring Reaktor | |
DE102004049850A1 (de) | Verfahren und Anlage zur Herstellung von Mikropartikeln oder Nanopartikeln, Verwendung der Nanopartikel und damit hergestellte Suspension oder Emulsion | |
DE10357564A1 (de) | Verfahren und Vorrichtung zur Erzeugung monodisperser Emulsionen | |
DE10241305A1 (de) | Verfahren zur Herstellung feinster Partikel aus schmelzbaren Feststoffen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180705 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHIRRA, HERMANN Inventor name: BAUMSTUEMMLER, BERND Inventor name: TUERELI, AKIF EMRE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191203 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210316 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017011162 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: AT Ref legal event code: REF Ref document number: 1418812 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20211026 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502017011162 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B01F0013000000 Ipc: B01F0033000000 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211213 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2893124 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211112 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017011162 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240123 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240122 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240118 Year of fee payment: 8 Ref country code: ES Payment date: 20240216 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240118 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 8 Ref country code: GB Payment date: 20240124 Year of fee payment: 8 Ref country code: CH Payment date: 20240202 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240131 Year of fee payment: 8 Ref country code: FR Payment date: 20240123 Year of fee payment: 8 Ref country code: DK Payment date: 20240123 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |