Nothing Special   »   [go: up one dir, main page]

EP3109946A1 - Mqs stecker - Google Patents

Mqs stecker Download PDF

Info

Publication number
EP3109946A1
EP3109946A1 EP16001405.6A EP16001405A EP3109946A1 EP 3109946 A1 EP3109946 A1 EP 3109946A1 EP 16001405 A EP16001405 A EP 16001405A EP 3109946 A1 EP3109946 A1 EP 3109946A1
Authority
EP
European Patent Office
Prior art keywords
contact
contact pins
plug
mqs
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16001405.6A
Other languages
English (en)
French (fr)
Other versions
EP3109946B1 (de
Inventor
Jaime Fernandez Serrano
Michael Quiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaichi Electronics Deutschland GmbH
Original Assignee
Yamaichi Electronics Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaichi Electronics Deutschland GmbH filed Critical Yamaichi Electronics Deutschland GmbH
Publication of EP3109946A1 publication Critical patent/EP3109946A1/de
Application granted granted Critical
Publication of EP3109946B1 publication Critical patent/EP3109946B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0256Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections for soldering or welding connectors to a printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/722Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits
    • H01R12/724Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits containing contact members forming a right angle

Definitions

  • the invention relates to an MQS plug and a method for producing an MQS plug.
  • MQS stands for "Micro-Quadlock System” and refers to a particular type of connector with a variety of electrical contacts. MQS connectors are characterized by high resistance to mechanical stress. Several MQS plugs are waterproof and relatively compact in construction.
  • MQS connectors are mainly used in the automotive field, namely as junction boxes for car radios, car navigation systems, etc.
  • a plurality of contact pins is soldered to a circuit board.
  • the invention has for its object to provide a compact MQS connector of the type mentioned.
  • a first aspect relates to an MQS plug having a plurality of contact pins configured and arranged for contacting and soldering to a circuit board.
  • the contact pins protrude in a contact direction out of the MQS plug.
  • the contact pins project homogeneously out of the MQS connector.
  • the contact pins can protrude so homogeneously ordered from the MQS plug, that the circuit board heats up substantially homogeneously when soldering the contact pins to the circuit board.
  • the MQS plug can be designed as a connection box.
  • the contact pins are designed as electrical contact pins and are used for electrical and mechanical contacting of the circuit board on which they are soldered.
  • the contact pins serve to be soldered to a PCB circuit board, where PCB stands for "Printed Circuit Board".
  • the contact pins can be inserted into provided and formed receptacles and / or holes of the printed circuit board, where they are soldered to the circuit board, whereby an electrical contact is made.
  • the contact pins are at least partially formed so that they are all aligned parallel to a contact direction in which they point away from the MQS connector.
  • the contact pins are at least partially substantially parallel to each other and formed parallel to the contact direction.
  • the MQS plug is designed and intended to be moved in the direction of contact with the printed circuit board, first with the contact pins protruding from the MQS plug.
  • the contact pins can be moved and / or arranged on the printed circuit board and / or through associated receptacles and / or holes of the printed circuit board, where the contact pins are soldered to the printed circuit board.
  • the contact direction away from the MQS plug approximately in the solder on a MQS connector facing the flat side of the circuit board.
  • the MQS plug has at least ten contact pins as "plurality of contact pins", preferably at least twenty contact pins, more preferably at least forty contact pins. All of these contact pins have at least one end out of the MQS plug, essentially in the contact direction.
  • the contact pins are designed and intended to be soldered to a printed circuit board, the contact pins in conventional MQS plugs of this type initially protrude randomly and out of the MQS plug.
  • the contact pins are arranged so homogeneously before soldering to the circuit board that they are homogeneously distributed in Contact direction protrude from the MQS connector.
  • the contact pins are upstream and preceded. This pre-order and pre-alignment remains at the first mechanical contacting the circuit board obtained, just as when soldering to the circuit board.
  • the arrangement of the contact pins is designed in such a way that the printed circuit board heats up substantially homogeneously when soldering the plurality of contact pins to the printed circuit board.
  • Heat substantially homogeneously means that the temperature gradient measured over the surface area of the circuit board, with which the contact pins are soldered, is as low as possible and can assume a local and / or absolute minimum.
  • Substantially homogeneous means, in particular, that there is no local temperature maximum on the printed circuit board during soldering due to contact pins arranged very close to one another, that is to say due to clusters of contact pins. Thus, only at each contact pin results in a low local temperature maximum, but no longer an extreme temperature maximum due to a cluster of contact pins.
  • the individual contact pins are so homogeneously spaced from each other that results in a substantially uniform temperature distribution over the entire region of the circuit board, are soldered to the contact pins on her.
  • the field is no longer homogeneous, because there the temperature decreases in the direction away from this soldering area, since no further soldering operations take place outside this area.
  • the contact pins can even be arranged closer to one another than in the case of conventional MQS plugs. Due to this homogeneous distribution, the total area required for soldering on the circuit board is reduced and a particularly compact design of the MQS connector is made possible.
  • contact pins no contact pins for Produce a connector, but contact pins for making a solder joint.
  • the homogeneously ordered contact pins require less space than before on the circuit board, as they protrude more uniformly and narrower than previously known from the MQS plug.
  • the contact pins protrude out of the MQS plug substantially evenly distributed, such that each contact end has at least two adjacent contact ends substantially the same distance perpendicular to the contact direction.
  • the two adjacent contact ends are nearest neighbors.
  • each contact end has at least two nearest neighbors.
  • a contact end can also have three, four or more nearest neighbors, depending on the arrangement of the contact ends of the contact pins.
  • the contact pins are at least arranged so that no contact pin has only one nearest neighbor. As a result, a clear and fixed order of all contact pins of the plurality of contact pins is provided, which results in a particularly homogeneous solder image.
  • the contact pins each protrude out of the MQS plug with one contact end, wherein the contact ends are at least partially arranged in rows and / or columns.
  • the contact pins may be divided into groups and / or subgroups, each forming a row and / or column. The arrangement in rows and / or columns leads to a particularly favorable homogeneous distribution of the contact ends of the contact pins, which therefore leads to a particularly homogeneous heating during soldering to the printed circuit board.
  • the MQS plug has at least one plug-in surface, into which in each case one plug-in end of the contact pins are plugged in substantially perpendicular to the at least one plug-in surface and parallel to a plug-in direction.
  • the at least one mating surface is arranged in a plane parallel to the direction vector of the contact direction and the contact pins are bent by about 90 °, that in each case a contact end of the contact pins is arranged parallel to the contact direction.
  • the at least one mating surface can be multi-part be formed and thus consist of several mating surfaces. It serves for inserting the plug ends of the contact pins.
  • the contact pins each have a plug-in end which is plugged into the at least one mating surface on the MQS plug, and a contact end, which protrudes homogeneously from the MQS plug.
  • the contact end is the end of the respective contact pin, which is designed for soldering and contacting the circuit board.
  • the at least one plug-in surface can be multi-part, in particular have at least two parts, which are formed in a plane parallel to the contact direction.
  • the individual contact pins have a 90 ° bend and are essentially L-shaped. They are each plugged with their mating end as the first arm of the "L" in the at least one mating surface. With the contact end as the second arm of the "L", they point out of the MQS connector in the contact direction.
  • the use of substantially L-shaped contact pins and the plug-in surface arranged as described enables a particularly homogeneous and ordered arrangement of the contact pins in and on the MQS plug.
  • a front side group of the plurality of contact pins is inserted into a front side of the at least one plug-in surface
  • a rear side group of the plurality of contact pins is inserted into a rear side of the at least one plug-in surface.
  • the plurality of contact pins is divided into at least two groups in this embodiment, namely the front side group and the rear side group.
  • the front side group is inserted with the plug in advance in the front of at least one mating surface, while the rear side group is plugged with the mating end ahead in the back of at least one mating surface.
  • the mating ends of the contact pins of the rear side group have exactly the opposite direction as the mating ends of the contact pins of the front side group.
  • the mating ends of both of these groups are, however, arranged parallel to the direction of insertion.
  • the choice of the terms front and back is here arbitrary and refers to a first and second side of the mating surface, both sides, so the front and the back lie in a plane which is arranged parallel to the direction vector of the contact direction.
  • the front can eg as a housing outside of the MQS connector may be formed, while the back may be formed as a housing inner side of the MQS connector.
  • the contact ends of the contact pins of the front side group are arranged offset to the contact pins of the rear side group, offset in one direction, e.g. an offset direction, perpendicular to the contact direction and perpendicular to the direction of insertion.
  • This offset so this arrangement of contact pins front side group "gap" to the contact pins of the rear side group, makes it possible to insert the mating ends of the contact pins of the different groups (ie the front side group and the rear side group) particularly compact to about the same height in the mating surface.
  • the contact pins of the front side group and the contact pins of the rear side group can be inserted without an offset to each other in the direction of propagation of the mating surface in the mating surface.
  • the contact pins and thus also the mating ends of the contact pins, are arranged offset in relation to one another in this offset direction such that the individual contact pins make contact neither physically nor electrically.
  • This "gap-to-gap" arrangement allows (a) a compact design of the MQS connector, and also (b) the formation of multiple rows of contact pins of the front group and multiple rows of contact pins of the back group.
  • the contact pins of the front side group are subdivided into at least two front side subgroups, and the contact pins of each front side subgroup are plugged into the front side of the at least one slot each in a row.
  • the rows of each front side sub-group on the front side of the at least one mating surface in the contact direction are spaced from each other.
  • the plurality of contact pins is thus not only divided into a front side group and a rear side group, but also the front side group is further divided into at least two Front subgroups.
  • the contact pins of each front sub-group are arranged in a row, ie the mating ends of the contact pins of a front sub-group are arranged in a row, which is arranged for example perpendicular to the direction vector of the contact direction on the front of the at least one mating surface and plugged into this.
  • the rows are spaced apart in the contact direction. This means that the plug-in ends of the contact pins in an operating position have a distance from the printed circuit board, which depends on the affiliation to the respective front side sub-group.
  • the subdivision into front subgroups further increases the order of the contact pins, further increasing the degree of order of the contact pins.
  • the contact pins of the backside group can also be subdivided into at least two backside subgroups.
  • the contact pins of each rear sub-group are respectively inserted in a row in the back of the at least one mating surface, wherein the rows of each rear sub-group on the back of the at least one mating surface in the contact direction are spaced from each other.
  • the rows of backside subgroups may be spaced apart in front of the rows of the front subgroups in the contact direction.
  • the rows of the respective subgroups in this case relate to arrangement forms of the plug ends of the respective contact pins in or on the front or rear side of the at least one plug-in surface.
  • the degree of order of the contact pins is also increased by the division of the contact pins of the back subgroup into at least two back subgroups.
  • each front sub-group and / or each rear-side sub-group can have between 10 and 20 contact pins.
  • the front-side sub-groups may have a different number of contact pins than the rear-side sub-groups.
  • the front subgroups can all have the same number of contact pins, or different numbers of contact pins.
  • the back subgroups may all have the same number of contact pins or different lots.
  • the contact ends of the contact pins of the front subgroups and / or the rear subgroups may each protrude from the MQS connector in each row, with the rows of the contact ends of each front subgroup and / or each back subgroup in the plugging direction are spaced.
  • the rows of mating ends on the at least one mating surface are associated with a series of contact ends of the same contact pins which are designed and intended to be soldered to the circuit board.
  • the arrangement of the contact pins in front subgroups and / or back subgroups allows for an orderly division and arrangement of the contact ends of the contact pins in rows. These individual rows may be formed spaced apart in the insertion direction. This allows a particularly efficient order of contact pins. In addition, this training a particularly simple and orderly production of the MQS connector with a high degree of order of the contact pins possible.
  • the contact pins of the rear side group are inserted with their contact end approximately parallel to the contact direction in slots in the at least one mating surface. It may be a part of the at least one mating surface, are plugged into the mating ends of the front side group approximately parallel to the insertion direction, and the contact ends of the rear side group approximately parallel to the contact direction K.
  • corresponding inserts can be formed in this part of the at least one mating surface be for the respective plug and contact ends of the contact pins.
  • the mating ends of the front side group are plugged "gap" to the contact ends of the back page group.
  • the plurality of contact pins is a number from 20 to 120, preferably from 30 to 80. This is a typical number of Contact pins for MQS connectors, which are designed as terminal boxes. The number of contact pins is already so high that a non-homogeneous and non-upstream arrangement of the contact pins leads to an extremely inhomogeneous soldering on the guide plate, which can lead to stress and damage to the circuit board.
  • the contact pins are formed as stamped contacts and / or as thermally broken wires. This type of electrical contact pins can be bent particularly favorable and / or install particularly stable as pre-bent contacts in an MQS plug or insert.
  • a second aspect relates to a method of manufacturing an MQS plug having a plurality of contact pins configured and arranged for contacting and soldering to a printed circuit board, the contact pins projecting out of the MQS plug in a contact direction.
  • the contact pins are so homogeneously arranged on the MQS plug that they protrude so homogeneously ordered from the MQS connector, that the circuit board heats up substantially homogeneously when soldering the contact pins to the circuit board.
  • After arranging the contact pins on the MQS connector it can be soldered to the PCB.
  • the method is used in particular for producing an MQS plug according to the first aspect. Therefore, all embodiments and in particular all embodiments of the first aspect also relate to the method according to the second aspect.
  • the contact pins are each plugged into at least one mating surface of MQS plug so that they are arranged with the plug end substantially in the solder on the at least one plug face and parallel to a plug-in direction, wherein the plug surface in a Level is arranged parallel to the direction vector of the contact direction.
  • Inserting the plug-in ends can be done, for example, in the plug-in direction with the plug in advance. However, the insertion can also take place such that the contact pins, for example, with their contact end in slots, for example in the form of grooves, be inserted so that the mating end of the respective contact pin is arranged at a predetermined target position, in which the mating end is arranged parallel to the insertion direction. In this position, the plug-in end in the MQS plug can be electrically contacted while the contact end in the contact direction protrudes from the MQS plug for soldering to the printed circuit board.
  • a portion of the contact pins is bent by about 90 ° after insertion into the at least one mating surface such that in each case a contact end of this portion of the contact pins is arranged parallel to the contact direction.
  • This proportion of contact pins can thus be plugged into the at least one plug-in area substantially in an elongated form.
  • the initially elongated contact pins are bent by 90 ° so that the contact end of the contact pins facing in the contact direction.
  • the mating end of the contact pins remains plugged into the mating surface in the insertion direction.
  • a portion of the contact pins when plugged into the at least one mating surface can be bent so by about 90 °, that after insertion into the at least one mating surface in each case a contact end of this portion of the contact pins is arranged parallel to the contact direction. In other words, this portion of the contact pins is already pre-bent when it is plugged into the mating surface.
  • the two types described can be combined.
  • a group or subset of elongate contact pins can be re-inserted with the plug and then bent as described while one or more other groups or sub-sets of pre-bent contact pins are inserted into the at least one plug-in surface.
  • the invention also relates to an MQS plug system with an MQS plug according to the first aspect and a printed circuit board with which the contact pins are soldered homogeneously ordered.
  • FIG. 1 shows a perspective view of a first MQS connector 1.
  • the MQS connector 1 has a housing 5 and is designed as a connection box. From one side of the MQS connector 1, in the in FIG. 1 shown embodiment of the bottom of the MQS connector 1, projects a plurality of contact pins 10 from the MQS plug 1 out.
  • the MQS plug 1 is designed and intended to be soldered to a circuit board (not shown). In particular, the MQS plug 1 can be plugged onto the circuit board, wherein the contact pins 10 are inserted in the contact direction K in openings provided for this purpose of the circuit board and soldered there.
  • the contact direction K has essentially in the solder from an outer side of the housing 5 of the MQS connector 1, in the in FIG. 1 shown embodiment in the solder from the bottom of the MQS connector. 1
  • FIG. 2 shows a cross section through the MQS connector 1, which in FIG. 1 is shown.
  • the contact pins 10 have a contact end 11 in the contact direction K. All of the contact pins 10 are formed substantially L-shaped. In this case, an arm of this "L" is formed as a plug-in end 11 and extends from the 90 ° bend in the contact direction K to the end of the contact pin 10.
  • the second L-arm is formed as a plug-in end 12 and extending from the 90 ° Bend to the other end of the respective contact pin 10th
  • the MQS plug 1 has a first plug-in surface 6, which can be designed as a circuit board and / or printed circuit board, for example as a PCB. This first mating surface 6 is also in, for example FIG. 1 shown.
  • the first plug-in surface 6 may be formed substantially as large as a housing wall of the MQS plug 1.
  • the first mating surface 6 is formed in the form of a plate which is arranged in a plane parallel to the direction vector of the contact direction K. By this arrangement, the first mating surface 6, the mating ends 12 of all L-shaped contact pins 10 are aligned substantially in the solder on that plane in which the mating surface 6 is arranged.
  • the mating surface 6 may also be formed as a housing wall of the housing 5.
  • a second mating surface 7 of the MQS connector 1 is shown, which is arranged in a plane which is arranged parallel to the plane of the first mating plane 6.
  • the first mating surface 6 may together with the second mating surface 7 form a single mating surface, or, as in the embodiment shown in the figures, be formed in two parts.
  • the two mating surfaces together form a two-part mating surface, the individual mating surfaces 6 and 7 are offset from each other in parallel, perpendicular to the contact direction K and in the solder on the two mating surfaces.
  • the contact pins 10 are arranged so efficiently and homogeneously that the in FIG. 3 shown plug-in image of the contact pins 10 results.
  • FIG. 3 only the arrangement of the contact ends 11 of the contact pins 10 is shown.
  • each contact end 11 to at least two adjacent contact ends 11 has substantially the same distance perpendicular to the contact direction K.
  • the two adjacent contact ends 11 are nearest neighbors.
  • each contact end 11 has at least two nearest neighbors, such as the contact ends in the corners of the plug-in image.
  • Contact ends 11 further inside the plug-in image can also have, for example, three or more nearest neighbors.
  • the contact pins 10 are not only divided into the front side group 15 and the rear side group 17, but they are further divided into subgroups.
  • the front side group 15 has contact pins 10 of a first front side subgroup 15a and a second front side subgroup 15b.
  • the rear side group 17 also has contact pins 10 of a first rear side subgroup 17a and a second rear side subgroup 17b.
  • Each of the rear side subgroups 17a and 17b has in each case 18 contact pins 10.
  • the contact pins of each of the subgroups 15a, 15b, 17a and 17b are arranged in a row. This series arrangement applies to both in FIG.
  • FIGS. 4a to 4d It is shown in which order the contact pins 10 are inserted or inserted or installed in the two mating surfaces 6 and 7 of the MQS connector 1.
  • the FIGS. 4a to 4d show four successive manufacturing steps of the MQS connector 1, in particular the four manufacturing steps in which the contact pins 10 of one of the four subgroups are respectively arranged on the MQS connector 1.
  • the contact pins 10 of a subgroup are arranged on the MQS plug 1 in a respective production step.
  • FIG. 4a It is shown that initially only the contact pins of the first front side subgroup 15a are inserted into the second slot 7.
  • the contact pins can be inserted with the plug-in end 12 first into corresponding slots in the first plug-in surface. Subsequently, the contact end 11 of each contact pins 10 can be bent by 90 ° relative to the mating end 12, so that the in Fig. 4a shown L-shape results.
  • the contact pins 10 may also be bent before they are inserted into the second slot 7. All sockets 12 of the contact pins of the first Front sub-group 15a are arranged substantially in a row and / or a line. This row and / or line runs on the surface of the second plug-in surface 7 and is substantially perpendicular to both the contact direction K and the plug-in direction S. Also, the contact ends 11 of all contact pins 10 of the first front-side sub-group 15a are in a row and / or on one Arranged straight. Thus arranged, the contact ends 11 of the first front side sub-group 15a are formed and provided to be soldered to the circuit board (not shown).
  • FIG. 4b shows the same section of the MQS connector 1, which is also in FIG. 4a is shown.
  • the contact pins of the first front side subgroup 15a in the FIG. 4b shown manufacturing step, the contact pins of the second front side subgroup 15b inserted into the second mating surface 7 of the MQS connector 1.
  • a contact pin of the second front side subgroup 15b is arranged above a contact pin of the first front side subgroup 15a.
  • the first front-side sub-group 15a and the second front-side sub-group 15b have exactly the same number of contact pins 10, in the example shown in the figures, 12 contact pins each.
  • the contact pins of the second front side subgroup 15b are inserted into the second slot 7 after the contact pins of the first front side subgroup 15a. Conversely, access to bays in the second mating surface 7 for the contact pins of the first front side subset 15a would be blocked by the contact pins of the second front side subset 15b.
  • FIG. 4d is in the last manufacturing step, the contact pins of the second Rear subset 17b inserted into the MQS connector 1. Also, the contact pins of the second rear side subgroup 17b are installed via the contact pins of the first rear side subgroup 17a, similarly to the contact pins of the first and second front side subgroups 15a and 15b.
  • the contact pins of the second rear side subgroup 17b have longer plug ends 12 and longer contact ends 11 than the contact pins of the first rear side subgroup 17a.
  • the contact pins of the second front side subgroup 15b have longer mating ends 12 and longer contact ends 11 than the contact pins of the first front side subgroup 15a. It is thereby achieved that the contact ends 11 of all subgroups terminate in approximately the same length in the direction of the contact direction K (cf. FIG. 1 ).
  • the results in FIG. 3 shown arrangement of the contact ends 11 of the contact pins in rows and columns.
  • the contact ends 11 of the first front side subgroup 15a, the second front side subgroup 15b, the first rear side subgroup 17a and the second rear side subgroup 17b are arranged in mutually parallel rows, which are arranged spaced apart in the insertion direction S. In particular, these rows are spaced from one another in a direction perpendicular to the contact direction K.
  • FIG. 5 shows a second MQS connector 2, which is largely identical to the first MQS connector 1 constructed. The differences between the two MQS plugs 1 and 2 are shown in the following figures.
  • FIG. 6 shows a perspective view of a section of the first MQS connector 1.
  • the first mating surface 6 not shown but omitted.
  • some of the contact pins from each subgroup are omitted.
  • the inserts 25a and 25b are substantially formed as holes in the solder through the second plug-in surface 7, through which the plug ends 12 of the contact pins of the respective subgroup 25a and 25b can be inserted.
  • FIG. 6 Slots 27a of the first rear sub-group 17a and slots 27b of the second rear-side sub-group 17b are shown. These inserts 27a and 27b are formed as grooves and / or rails are inserted into the already pre-bent contact pins with their contact end 11, except for a desired position in which the mating ends 12 are all arranged parallel to each other and at a predetermined distance from each other.
  • the contact pins 10 of the rear side group 17 can hereby be inserted from below, ie counter to the contact direction K, into the slot-shaped inserts 27a and 27b until they encounter a widening of a stop 18.
  • the stop 18 limits the insertion movement against the contact direction K.
  • the stop 18 prevents a deeper penetration of the contact pins 10 of the rear side group 17 in the Slots 27a and 27b.
  • the contact pins 10 of the rear side group 17 have widened contact ends 11. By grooves in the stop 18 only the narrower plug ends 12 of these contact pins 10 can happen, but not the widened contact ends 11.
  • the contact pins of the second rear sub-group 17b are first inserted into the slots 27b, and then only the contact pins of the first rear sub-group 17a.
  • FIG. 7 shows a perspective view of a section of the MQS connector 2, which is essentially the in FIG. 6 shown section of the MQS connector 1 corresponds. Also in FIG. 7 the first plug-in board 6 is omitted, as well as some of the contact pins 10 of each of the front-side sub-groups and each of the rear-side sub-groups. Shown are each slots 25a 'of the first front side subgroup 15a, slots 25b' of the second front side subgroup 15b. In these slots 25a 'and 25b', the contact pins of the associated front sub-group 15a and 15b are plugged with their mating end 12. Furthermore, in Fig.
  • the contact pins can be inserted in a substantially straight line into the respective slots and then bent by 90 °.
  • the first MQS connector 1 (see. Fig. 6 ) at least the contact pins of the rear side sub-groups 17a and 17b already pre-bent and are inserted in this pre-bent shape in the slots 27a and 27b.
  • the inserts 27a and 27b and 27a 'and 27b' for the contact ends 11 of the Contact pins of the rear subgroups 17a and 17b are also formed in the second slot 7.
  • These inserts 27a and 27b and 27a 'and 27b' are formed parallel to the contact direction K and at a gap to the inserts 25a and 25b and 25a 'and 25b' for the mating ends 12 of the contact pins of the front side sub-groups 15a and 15b.
  • the first mating surface 6 can be arranged on the MQS plug 1 or 2. Plug-in ends 12 of the contact pins 10 of the first and second rear sub-groups 17a and 17b are plugged into corresponding slots of the first slot 6, see also Fig. 1 and Fig. 5 ,
  • the arrangement shown in the figures provides an efficient and easy-to-implement arrangement of contact pins, especially when the MQS connector is of a high number, such as, e.g. between 20 and 120 contact pins.
  • the division into at least one front side group and one rear side group, in particular in a total of at least four sub-groups, provides a sufficient and good pre-sorting and ordering of the contact pins, which is very compact and leads to the most homogeneous possible heating of the circuit board during soldering of the printed circuit board with the contact pins 10 ,
  • pre-bent contact pins in particular punched contacts can be used which (as in the FIGS. 4a to 4d shown) overlapping mounted.
  • Such die-cut contacts are as in FIG. 6 shown, in particular used and installed at the contact pins of the rear side group 17 of the first MQS connector 1.
  • thermally cracked wires can be used as contact pins, which can be bent particularly well when it is already plugged into one end with one end (such as the male end or the contact end). Such thermally cracked wires form the contact pins of the second MQS connector 2, as they are particularly in FIG. 7 are shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

Ein MQS-Stecker (1; 2) weist eine Mehrzahl von Kontaktpins (10) auf, die zum Kontaktieren und Verlöten mit einer Leiterplatte ausgebildet und angeordnet sind. Dabei ragen die Kontaktpins (10) in einer Kontaktrichtung (K) aus dem MQS-Stecker (1; 2) heraus. Die Kontaktpins (10) ragen so homogen geordnet aus dem MQS-Stecker (1; 2) heraus, dass sich die Leiterplatte beim Verlöten der Kontaktpins (10) mit der Leiterplatte im Wesentlichen homogen erwärmt.

Description

  • Die Erfindung betrifft einen MQS-Stecker und ein Verfahren zur Herstellung eines MQS-Steckers.
  • MQS steht für "Micro-Quadlock System" und betrifft eine bestimmte Art von Steckern mit einer Vielzahl von elektrischen Kontakten. MQS-Stecker zeichnen sich durch eine hohe Widerstandsfähigkeit bei mechanischen Belastungen aus. Mehrere MQS-Stecker sind wasserdicht und relativ kompakt gebaut.
  • Deswegen werden MQS-Stecker vornehmlich im Automobilbereich verwendet, und zwar als Anschlusskästen für Autoradios, Autonavigationssystem, etc. Bei solchen als Anschlusskästen ausgebildeten MQS-Steckern wird eine Mehrzahl von Kontaktpins mit einer Leiterplatte verlötet.
  • Der Erfindung liegt die Aufgabe zugrunde, einen kompakten MQS-Stecker der eingangs benannten Art bereitzustellen.
  • Diese Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind die Gegenstände der abhängigen Ansprüche.
  • Ein erster Aspekt betrifft einen MQS-Stecker mit einer Mehrzahl von Kontaktpins, die zum Kontaktieren und Verlöten mit einer Leiterplatte ausgebildet und angeordnet sind. Dabei ragen die Kontaktpins in einer Kontaktrichtung aus dem MQS-Stecker heraus. Die Kontaktpins ragen homogen geordnet aus dem MQS-Stecker heraus. Insbesondere können die Kontaktpins so homogen geordnet aus dem MQS-Stecker herausragen, dass sich die Leiterplatte beim Verlöten der Kontaktpins mit der Leiterplatte im Wesentlichen homogen erwärmt.
  • Der MQS-Stecker kann als Anschlusskasten ausgebildet sein. Die Kontaktpins sind als elektrische Kontaktpins ausgebildet und dienen zum elektrischen und mechanischen Kontaktieren der Leiterplatte, auf der sie verlötet werden. Die Kontaktpins dienen insbesondere dazu, mit einer PCB-Leiterplatte verlötet zu werden, wobei PCB für "Printed Circuit Board" steht. Dazu können die Kontaktpins in dazu vorgesehene und ausgebildete Aufnahmen und/oder Löcher der Leiterplatte eingeschoben werden, und dort mit der Leiterplatte verlötet werden, wodurch ein elektrischer Kontakt hergestellt wird. Da die Leiterplatte im Wesentlichen flächig ausgebildet ist, sind die Kontaktpins zumindest teilweise so ausgebildet, dass sie alle parallel zu einer Kontaktrichtung ausgerichtet sind, in der sie von dem MQS-Stecker weg weisen. Dabei sind die Kontaktpins zumindest teilweise im Wesentlichen parallel zueinander und parallel zur Kontaktrichtung ausgebildet.
  • Der MQS-Stecker ist dazu ausgebildet und vorgesehen, in Kontaktrichtung zu der Leiterplatte hin bewegt zu werden, und zwar mit den aus dem MQS-Stecker herausragenden Kontaktpins zuerst. So können die Kontaktpins auf die Leiterplatte und/oder durch zugeordnete Aufnahmen und/oder Löcher der Leiterplatte bewegt und/oder angeordnet werden, wo die Kontaktpins mit der Leiterplatte verlötet werden. Dabei weist die Kontaktrichtung vom MQS-Stecker weg etwa im Lot auf eine dem MQS-Stecker zugewandte flächige Seite der Leiterplatte.
  • Der MQS-Stecker weist dabei als "Mehrzahl von Kontaktpins" zumindest zehn Kontaktpins auf, bevorzugt zumindest zwanzig Kontaktpins, besonders bevorzugt zumindest vierzig Kontaktpins. Alle diese Kontaktpins weisen zumindest mit einem Ende aus dem MQS-Stecker heraus, und zwar im Wesentlichen in Kontaktrichtung.
  • Da die Kontaktpins dazu ausgebildet und vorgesehen sind, mit einer Leiterplatte verlötet zu werden, ragen die Kontaktpins bei herkömmlichen MQS-Steckern dieser Art zunächst willkürlich und ungeordnet aus dem MQS-Stecker heraus. Bei dem MQS-Stecker gemäß der Erfindung sind die Kontaktpins jedoch bereits vor dem Verlöten mit der Leiterplatte so homogen angeordnet, dass sie homogen verteilt in Kontaktrichtung aus dem MQS-Stecker herausragen. Die Kontaktpins sind vorgeordnet und vorausgerichtet. Diese Vorordnung und Vorausrichtung bleibt beim zunächst mechanischen Kontaktieren der Leiterplatte erhalten, genauso wie beim Verlöten mit der Leiterplatte.
  • Die Vorordnung der Kontaktpins ist dabei derartig ausgebildet, dass sich die Leiterplatte beim Verlöten der Mehrzahl von Kontaktpins mit der Leiterplatte im Wesentlichen homogen erwärmt. "Im Wesentlichen homogen erwärmen" bedeutet dabei, dass der Temperaturgradient gemessen über dem Flächenbereich der Leiterplatte, mit dem die Kontaktpins verlötet werden, möglichst gering ist und ein lokales und/oder absolutes Minimum annehmen kann. Im Wesentlichen homogen bedeutet dabei insbesondere, dass sich auf der Leiterplatte beim Verlöten keine lokalen Temperaturmaxima aufgrund von sehr nah beieinander angeordneten Kontaktpins ergibt, also aufgrund von Clustern von Kontaktpins. So ergibt sich lediglich an jedem Kontaktpin ein geringes lokales Temperaturmaximum, jedoch nicht mehr ein extremes Temperaturmaximum aufgrund eines Clusters von Kontaktpins. Die einzelnen Kontaktpins sind so homogen voneinander beabstandet, dass sich im Wesentlichen eine gleichmäßige Temperaturverteilung über den gesamten Bereich der Leiterplatte ergibt, an dem Kontaktpins auf ihr verlötet werden. An den Rändern dieses Bereichs ist das Feld selbstverständlich nicht mehr homogen, da dort die Temperatur in Richtung von diesem Verlötbereich weg abnimmt, da außerhalb dieses Bereichs keine weiteren Lötvorgänge mehr erfolgen.
  • Durch die geordnete und homogene Verteilung der Kontaktpins werden die Temperaturen von lokalen Temperaturmaxima reduziert, und somit auch die Belastung der Leiterplatte. Dabei können die Kontaktpins sogar enger als bei herkömmlichen MQS-Stecker zueinander angeordnet sein können. Durch diese homogene Verteilung wird die insgesamt zum Verlöten benötigte Fläche auf der Leiterplatte reduziert und eine besonders kompakte Bauweise des MQS-Steckers ermöglicht.
  • Hierbei ist zu beachten, dass die Mehrzahl von Kontaktpins keine Kontaktpins zum Herstellen einer Steckverbindung betreffen, sondern Kontaktpins zum Herstellen einer Lötverbindung. Insgesamt benötigen die homogen geordneten Kontaktpins weniger Platz als bislang auf der Leiterplatte, da sie gleichmäßiger und enger als bislang bekannt gepackt aus dem MQS-Stecker hervorstehen.
  • Gemäß einer Ausführungsform ragen die Kontaktpins mit jeweils einem Kontaktende im Wesentlichen so gleichmäßig verteilt aus dem MQS-Stecker heraus, dass jedes Kontaktende zu zumindest zwei benachbarten Kontaktenden im Wesentlichen den gleichen Abstand senkrecht zur Kontaktrichtung aufweist. Dabei sind die zwei benachbarten Kontaktenden nächste Nachbarn. Somit weist jedes Kontaktende zumindest zwei nächste Nachbarn auf. Ein Kontaktende kann dabei auch drei, vier oder mehr nächste Nachbarn aufweisen, je nach Anordnung der Kontaktenden der Kontaktpins. Die Kontaktpins sind jedoch zumindest so geordnet, dass kein Kontaktpin lediglich einen nächsten Nachbarn aufweist. Dadurch wird eine deutliche und feste Ordnung aller Kontaktpins der Mehrzahl von Kontaktpins bereitgestellt, die ein besonders homogenes Lötbild ergibt.
  • Gemäß einer Ausführungsform ragen die Kontaktpins mit jeweils einem Kontaktende aus dem MQS-Stecker heraus, wobei die Kontaktenden zumindest teilweise in Zeilen und/oder Spalten angeordnet sind. Hierbei können die Kontaktpins in Gruppen und/oder Untergruppen aufgeteilt sein, die jeweils eine Reihe und/oder Spalte bilden. Die Anordnung in Zeilen und/oder Spalten führt zu einer besonders günstigen homogenen Verteilung der Kontaktenden der Kontaktpins, die darum zu einem besonders homogenen Erwärmen beim Verlöten mit der Leiterplatte führt.
  • Gemäß einer Ausführungsform weist der MQS-Stecker zumindest eine Steckfläche auf, in die jeweils ein Steckende der Kontaktpins im Wesentlichen im Lot auf die zumindest eine Steckfläche und parallel zu einer Steckrichtung eingesteckt sind. Hierbei ist die zumindest eine Steckfläche in einer Ebene parallel zum Richtungsvektor der Kontaktrichtung angeordnet und die Kontaktpins sind so um etwa 90° gebogen, dass jeweils ein Kontaktende der Kontaktpins parallel zur Kontaktrichtung angeordnet ist. Die zumindest eine Steckfläche kann mehrteilig ausgebildet sein und somit aus mehreren Steckflächen bestehen. Sie dient zum Einstecken der Steckenden der Kontaktpins. Die Kontaktpins weisen jeweils ein Steckende auf, das am MQS-Stecker in die zumindest eine Steckfläche gesteckt ist, und ein Kontaktende, das homogen geordnet aus dem MQS-Stecker herausragt. Das Kontaktende ist dabei das Ende des jeweiligen Kontaktpins, das zum Verlöten und Kontaktieren der Leiterplatte ausgebildet ist. Die zumindest eine Steckfläche kann mehrteilig sein, insbesondere zumindest zwei Teile aufweisen, die in einer Ebene parallel zur Kontaktrichtung ausgebildet sind. Die einzelnen Kontaktpins weisen eine 90° Biegung auf und sind im Wesentlichen L-förmig ausgebildet. Sie sind jeweils mit ihrem Steckende als erster Arm des "L" in die zumindest eine Steckfläche gesteckt. Mit dem Kontaktende als zweiten Arm des "L" weisen sie in Kontaktrichtung aus dem MQS-Stecker heraus. Die Verwendung von im Wesentlichen L-förmigen Kontaktpins und der wie beschrieben angeordneten Steckfläche ermöglicht ein besonders homogenes und geordnetes Anordnen der Kontaktpins im und am MQS-Stecker.
  • In einer Weiterbildung dieser Ausführungsform ist eine Vorderseitengruppe von der Mehrzahl der Kontaktpins in eine Vorderseite der zumindest einen Steckfläche eingesteckt, und eine Rückseitengruppe von der Mehrzahl von Kontaktpins in eine Rückseite der zumindest einen Steckfläche eingesteckt. Die Mehrzahl von Kontaktpins ist in dieser Ausführungsform zumindest in zwei Gruppen unterteilt, nämlich der Vorderseitengruppe und der Rückseitengruppe. Die Vorderseitengruppe ist dabei mit dem Steckende voraus in die Vorderseite der zumindest einen Steckfläche gesteckt, während die Rückseitengruppe mit dem Steckende voraus in die Rückseite der zumindest einen Steckfläche gesteckt ist. Somit weisen die Steckenden der Kontaktpins der Rückseitengruppe genau in entgegengesetzte Richtung als die Steckenden der Kontaktpins der Vorderseitengruppe. Die Steckenden beider dieser Gruppen sind jedoch parallel zur Steckrichtung angeordnet. Die Wahl der Begriffe Vorderseite und Rückseite ist hierbei willkürlich und bezieht sich auf eine erste und zweite Seite der Steckfläche, wobei beide Seiten, also die Vorderseite und die Rückseite in einer Ebene liegen, die parallel zum Richtungsvektor der Kontaktrichtung angeordnet ist. Die Vorderseite kann z.B. als eine Gehäuseaußenseite des MQS-Steckers ausgebildet sein, während die Rückseite als eine Gehäuseinnenseite des MQS-Steckers ausgebildet sein kann. Durch die Aufteilung der Mehrzahl der Kontaktpins in zumindest eine Vorderseitengruppe und zumindest eine Rückseitengruppe erfolgt eine effiziente Vorordnung der Kontaktpins.
  • In einer Weiterbildung dieser Ausführungsform sind die Kontaktenden der Kontaktpins der Vorderseitengruppe versetzt zu den Kontaktpins der Rückseitengruppe angeordnet sind, und zwar versetzt in eine Richtung, z.B. eine Versatzrichtung, senkrecht zur Kontaktrichtung und senkrecht zur Steckrichtung. Dieser Versatz, also diese Anordnung der Kontaktpins Vorderseitengruppe "auf Lücke" zu den Kontaktpins der Rückseitengruppe, ermöglicht es, die Steckenden der Kontaktpins der unterschiedlichen Gruppen (also der Vorderseitengruppe und der Rückseitengruppe) besonders kompakt auf etwa die gleiche Höhe in die Steckfläche einzustecken. Die Kontaktpins der Vorderseitengruppe und die Kontaktpins der Rückseitengruppe können so ohne einen Versatz zueinander in Ausbreitungsrichtung der Steckfläche in die Steckfläche eingesteckt werden. Die Kontaktpins, und somit auch die Steckenden der Kontaktpins, sind so in diese Versatzrichtung zueinander versetzt angeordnet, dass sich die einzelnen Kontaktpins weder physikalisch und noch elektrisch kontaktieren. Diese Anordnung der Kontaktpins "auf Lücke" ermöglicht (a) einen kompakten Aufbau des MQS-Steckers und zudem (b) die Ausbildung mehrerer Reihen Kontaktpins der Vorderseitengruppe und mehrerer Reihen Kontaktpins der Rückseitengruppe.
  • In einer Weiterbildung dieser Ausführungsform sind die Kontaktpins der Vorderseitengruppe in zumindest zwei Vorderseitenuntergruppen unterteilt, und die Kontaktpins jeder Vorderseitenuntergruppe sind in jeweils einer Reihe in die Vorderseite der zumindest einen Steckfläche eingesteckt. Dabei sind die Reihen jeder Vorderseitenuntergruppe auf der Vorderseite der zumindest einen Steckfläche in Kontaktrichtung voneinander beabstandet. Die Mehrzahl von Kontaktpins ist somit nicht nur in eine Vorderseitengruppe und eine Rückseitengruppe unterteilt, sondern zudem ist die Vorderseitengruppe weiter unterteilt in zumindest zwei Vorderseitenuntergruppen. Die Kontaktpins jeder Vorderseitenuntergruppe sind in einer Reihe angeordnet, d.h. die Steckenden der Kontaktpins einer Vorderseitenuntergruppe sind in einer Reihe angeordnet, die zum Beispiel senkrecht zum Richtungsvektor der Kontaktrichtung auf der Vorderseite der zumindest einen Steckfläche angeordnet und in diese eingesteckt ist. Die Reihen sind in Kontaktrichtung voneinander beabstandet. Dies bedeutet, dass die Steckenden der Kontaktpins in einer Betriebsposition einen Abstand von der Leiterplatte aufweisen, der abhängig ist von der Zugehörigkeit zur jeweiligen Vorderseitenuntergruppe. Die Unterteilung in Vorderseitenuntergruppen erhöht die Ordnung der Kontaktpins noch weiter, wodurch der Ordnungsgrad der Kontaktpins weiter erhöht wird.
  • Zusätzlich oder alternativ können dabei auch die Kontaktpins der Rückseitengruppe in zumindest zwei Rückseitenuntergruppen unterteilt sein. Dabei sind die Kontaktpins jeder Rückseitenuntergruppe in jeweils einer Reihe in die Rückseite der zumindest einen Steckfläche eingesteckt, wobei die Reihen jeder Rückseitenuntergruppe auf der Rückseite der zumindest einen Steckfläche in Kontaktrichtung voneinander beabstandet sind. Für die Reihen der Rückseitenuntergruppen gilt das zu den Reihen der Kontaktpins der Vorderseitenuntergruppen Ausgeführte. Auch die Reihen der Rückseitenuntergruppen können vor den Reihen der Vorderseitenuntergruppen in Kontaktrichtung voneinander beabstandet sein. Die Reihen der jeweiligen Untergruppen beziehen sich dabei auf Anordnungsformen der Steckenden der jeweiligen Kontaktpins in bzw. auf der Vorder- bzw. Rückseite der zumindest einen Steckfläche. Auch durch die Aufteilung der Kontaktpins der Rückseitenuntergruppe in zumindest zwei Rückseitenuntergruppen wird der Ordnungsgrad der Kontaktpins erhöht.
  • Hierbei kann jede Vorderseitenuntergruppe und/oder jede Rückseitenuntergruppe zwischen 10 und 20 Kontaktpins aufweisen. Dabei können die Vorderseitenuntergruppen eine andere Anzahl Kontaktpins aufweisen als die Rückseitenuntergruppen. Die Vorderseitenuntergruppen können alle gleich viele Kontaktpins aufweisen, oder unterschiedlich viele Kontaktpins. Ebenso können die Rückseitenuntergruppen alle gleich viele Kontaktpins aufweisen oder unterschiedlich viele.
  • In einer der Ausführungsformen mit den Vorderseitenuntergruppen und/oder Rückseitenuntergruppen können die Kontaktenden der Kontaktpins der Vorderseitenuntergruppen und/oder der Rückseitenuntergruppen in jeweils einer Reihe angeordnet aus dem MQS-Stecker herausragen, wobei die Reihen der Kontaktenden jeder Vorderseitenuntergruppe und/oder jeder Rückseitenuntergruppe in Steckrichtung voneinander beabstandet sind. In dieser Ausführungsform ist den Reihen der Steckenden auf der zumindest einen Steckfläche eine Reihe von Kontaktenden derselben Kontaktpins zugeordnet, die dazu ausgebildet und vorgesehen sind, mit der Leiterplatte verlötet zu werden. Die Vorordnung der Kontaktpins in Vorderseitenuntergruppen und/oder Rückseitenuntergruppen ermöglicht eine geordnete Aufteilung und Anordnung der Kontaktenden der Kontaktpins in Reihen. Diese einzelnen Reihen können in Steckrichtung voneinander beabstandet ausgebildet sein. Dies ermöglicht eine besonders effiziente Ordnung der Kontaktpins. Zudem ist durch diese Ausbildung eine besonders einfache und geordnete Herstellung des MQS-Steckers mit einem hohen Ordnungsgrad der Kontaktpins möglich.
  • In einer Weiterbildung sind die Kontaktpins der Rückseitengruppe mit ihrem Kontaktende in etwa parallel zur Kontaktrichtung in Einschübe in der zumindest einen Steckfläche eingesteckt. Dabei kann es sich um ein Bestandteil der zumindest einen Steckfläche handeln, in den Steckenden der Vorderseitengruppe in etwa parallel zur Steckrichtung eingesteckt sind, und die Kontaktenden der Rückseitengruppe in etwa parallel zur Kontaktrichtung K. Dazu können in diesem Bestandteil der zumindest einen Steckfläche entsprechende Einschübe ausgebildet sein für die jeweiligen Steck- und Kontaktenden der Kontaktpins. Die Steckenden der Vorderseitengruppe sind dabei "auf Lücke" zu den Kontaktenden der Rückseitengruppe gesteckt.
  • Gemäß einer Ausführungsform beträgt die Mehrzahl von Kontaktpins eine Anzahl von 20 bis 120, bevorzugt von 30 bis 80. Dies ist eine typische Anzahl von Kontaktpins für MQS-Stecker, die als Anschlusskästen ausgebildet sind. Dabei ist die Anzahl der Kontaktpins bereits so hoch, dass eine nicht homogene und nicht vorgeordnete Anordnung der Kontaktpins zu einem extrem inhomogenen Lötbild auf der Leitplatte führt, was zu Belastungen und Beschädigungen der Leiterplatte führen kann.
  • Gemäß einer Ausführungsform sind die Kontaktpins als gestanzte Kontakte und/oder als thermisch gerissene Drähte ausgebildet. Diese Art von elektrischen Kontaktpins lässt sich besonders günstig verbiegen und/oder besonders stabil als vorgebogene Kontakte in einen MQS Stecker einbauen bzw. einschieben.
  • Ein zweiter Aspekt betrifft ein Verfahren zur Herstellung eines MQS-Steckers mit einer Mehrzahl von Kontaktpins, die zum Kontaktieren und Verlöten mit einer Leiterplatte ausgebildet und angeordnet sind, wobei die Kontaktpins in einer Kontaktrichtung aus dem MQS-Stecker herausragen. Bei dem Verfahren werden die Kontaktpins so homogen am MQS-Stecker angeordnet, dass sie so homogen geordnet aus dem MQS-Stecker herausragen, dass sich die Leiterplatte beim Verlöten der Kontaktpins mit der Leiterplatte im Wesentlichen homogen erwärmt. Nach dem Anordnen der Kontaktpins am MQS-Stecker kann dieser mit der Leiterplatte verlötet werden. Das Verfahren dient insbesondere zum Herstellen eines MQS-Steckers gemäß dem ersten Aspekt. Deswegen betreffen alle Ausführungen und insbesondere alle Ausführungsformen des ersten Aspekts auch das Verfahren gemäß dem zweiten Aspekt.
  • In einer Ausführungsform des Verfahrens werden die Kontaktpins mit jeweils einem Steckende in zumindest eine Steckfläche des MQS-Steckers so eingesteckt, dass sie mit dem Steckende im Wesentlichen im Lot auf die zumindest eine Steckfläche und parallel zu einer Steckrichtung angeordnet sind, wobei die Steckfläche in einer Ebene parallel zum Richtungsvektor der Kontaktrichtung angeordnet ist. Das Einstecken der Steckenden kann zum Beispiel in Steckrichtung mit dem Steckende voraus erfolgen. Das Einstecken kann jedoch auch so erfolgen, dass die Kontaktpins zum Beispiel mit ihrem Kontaktende in Einschübe, zum Beispiel in Form von Nuten, so eingeschoben werden, dass das Steckende des jeweiligen Kontaktpins an einer vorbestimmten Zielposition angeordnet ist, in der das Steckende parallel zur Steckrichtung angeordnet ist. In dieser Position kann das Steckende im MQS-Stecker elektrisch kontaktiert werden, während das Kontaktende in Kontaktrichtung aus dem MQS-Stecker zum Verlöten mit der Leiterplatte herausragt.
  • In einer Weiterbildung dieser Ausführungsform wird ein Anteil der Kontaktpins nach dem Einstecken in die zumindest eine Steckfläche so um etwa 90° gebogen, dass jeweils ein Kontaktende dieses Anteils der Kontaktpins parallel zur Kontaktrichtung angeordnet ist. Dieser Anteil von Kontaktpins kann somit im Wesentlichen in langgestreckter Form in die zumindest eine Steckfläche eingesteckt werden. Anschließend werden die zunächst langgestreckten Kontaktpins so um 90° gebogen, dass das Kontaktende der Kontaktpins in Kontaktrichtung weist. Das Steckende der Kontaktpins bleibt dabei in die Steckfläche in Steckrichtung eingesteckt.
  • Alternativ oder zusätzlich hierzu kann ein Anteil der Kontaktpins beim Einstecken in die zumindest eine Steckfläche so um etwa 90° vorgebogen sein, dass nach dem Einstecken in die zumindest eine Steckfläche jeweils ein Kontaktende dieses Anteils der Kontaktpins parallel zur Kontaktrichtung angeordnet ist. Mit anderen Worten ist dieser Anteil der Kontaktpins bereits vorgebogen, wenn er in die Steckfläche eingesteckt wird. Die beiden beschriebenen Arten können miteinander kombiniert werden. So kann eine Gruppe oder Untergruppe von langgestreckten Kontaktpins mit dem Stecker wieder eingesteckt und anschließend wie beschrieben umgebogen werden, während ein oder mehrere weitere Gruppen bzw. Untergruppen von vorgebogenen Kontaktpins in die zumindest eine Steckfläche eingesteckt werden.
  • Die Erfindung betrifft auch ein MQS-Steckersystem mit einem MQS-Stecker gemäß dem ersten Aspekt und einer Leiterplatte, mit der die Kontaktpins homogen geordnet verlötet sind.
  • Die Erfindung wird nachfolgend anhand von in Figuren gezeigten Ausführungsformen näher beschrieben. Einzelne Merkmale der in den Figuren gezeigten Ausführungsformen können in anderen Ausführungsformen realisiert sein. Einige gleiche oder ähnliche Merkmale der Ausführungsformen sind dabei mit den gleichen Bezugszeichen bezeichnet. Es zeigen:
  • Figur 1
    eine perspektivische Darstellung eines ersten MQS-Steckers;
    Figur 2
    einen Querschnitt durch den ersten MQS-Stecker;
    Figur 3
    eine homogene Anordnung von Kontaktenden von Kontaktpins, die aus einem MQS-Stecker herausragen;
    Figur 4a
    in einer perspektivischen Darstellung einen Ausschnitt des ersten MQS-Steckers, in den Kontaktpins einer ersten Vorderseitenuntergruppe eingesteckt sind;
    Figur 4b
    in einer perspektivischen Darstellung einen Ausschnitt des ersten MQS-Steckers, in den Kontaktpins einer ersten und zweiten Vorderseitenuntergruppe eingesteckt sind;
    Figur 4c
    in einer perspektivischen Darstellung einen Ausschnitt des ersten MQS-Steckers, in den Kontaktpins einer ersten und zweiten Vorderseitenuntergruppe und Kontaktpins einer ersten Rückseitenuntergruppe eingesteckt sind;
    Figur 4d
    in einer perspektivischen Darstellung einen Ausschnitt des ersten MQS-Steckers, in den Kontaktpins einer ersten und zweiten Vorderseitenuntergruppe und Kontaktpins einer ersten und zweiten Rückseitenuntergruppe eingesteckt sind;
    Figur 5
    eine perspektivische Darstellung eines zweiten MQS-Steckers;
    Figur 6
    eine perspektivische Darstellung eines Ausschnitts des ersten MQS-Steckers und
    Figur 7
    eine perspektivische Darstellung eines Ausschnitts des zweiten MQS-Steckers.
  • Figur 1 zeigt eine perspektivische Darstellung eines ersten MQS-Steckers 1. Der MQS-Stecker 1 weist ein Gehäuse 5 auf und ist als Anschlusskasten ausgebildet. Aus einer Seite des MQS-Steckers 1, in der in Figur 1 gezeigten Ausführungsform aus der Unterseite des MQS-Steckers 1, ragt eine Mehrzahl Kontaktpins 10 aus dem MQS-Stecker 1 heraus. Der MQS-Stecker 1 ist dazu ausgebildet und vorgesehen, mit einer Leiterplatte (nicht gezeigt) verlötet zu werden. Insbesondere kann der MQS-Stecker 1 auf die Leiterplatte aufgesteckt werden, wobei die Kontaktpins 10 in Kontaktrichtung K in dazu vorgesehene Öffnungen der Leiterplatte eingesteckt und dort verlötet werden. Die Kontaktrichtung K weist im Wesentlichen im Lot von einer Außenseite des Gehäuses 5 des MQS-Steckers 1 weg, in der in Figur 1 gezeigten Ausführungsform im Lot von der Unterseite des MQS-Steckers 1.
  • Figur 2 zeigt einen Querschnitt durch den MQS-Stecker 1, der in Figur 1 gezeigt ist. Die Kontaktpins 10 weisen mit einem Kontaktende 11 in Kontaktrichtung K. Alle der Kontaktpins 10 sind im Wesentlichen L-förmig ausgebildet. Dabei ist ein Arm dieses "L"s als Steckende 11 ausgebildet und erstreckt sich von der 90°-Biegung in Kontaktrichtung K bis zum Ende des Kontaktpins 10. Der zweite L-Arm ist als Steckende 12 ausgebildet und erstreckt sich von der 90°-Biegung bis zum anderen Ende des jeweiligen Kontaktpins 10.
  • Der MQS-Stecker 1 weist eine erste Steckfläche 6 auf, die als Platine und/oder Leiterplatte, z.B. als PCB, ausgebildet sein kann. Diese erste Steckfläche 6 ist z.B. auch in Figur 1 gezeigt. Die erste Steckfläche 6 kann im Wesentlichen so groß wie eine Gehäusewand des MQS-Steckers 1 ausgebildet sein. Die erste Steckfläche 6 ist in Form einer Platte ausgebildet, die in einer Ebene parallel zum Richtungsvektor der Kontaktrichtung K angeordnet ist. Durch diese Anordnung der ersten Steckfläche 6 sind die Steckenden 12 aller L-förmigen Kontaktpins 10 im Wesentlichen im Lot auf diejenige Ebene ausgerichtet, in der die Steckfläche 6 angeordnet ist. Die Steckfläche 6 kann auch als Gehäusewand des Gehäuses 5 ausgebildet sein.
  • In Figur 2 ist weiterhin eine zweite Steckfläche 7 des MQS-Steckers 1 gezeigt, die in einer Ebene angeordnet ist, die parallel zu der Ebene der ersten Steckebene 6 angeordnet ist. Die erste Steckfläche 6 kann mit der zweiten Steckfläche 7 gemeinsam eine einzige Steckfläche bilden, oder, wie in dem in den Figuren gezeigten Ausführungsbeispiel, zweiteilig ausgebildet sein. Die beiden Steckflächen bilden zusammen eine zweiteilige Steckfläche, deren einzelne Steckflächen 6 und 7 gegeneinander parallel versetzt sind, und zwar senkrecht zur Kontaktrichtung K und im Lot auf die beiden Steckflächen.
  • Eine erste Gruppe der Kontaktpins 10, eine Vorderseitengruppe 15, ist in die Vorderseite der zweiten Steckfläche 7 eingesteckt. Eine zweite Gruppe von Kontaktpins 10, nämlich eine Rückseitengruppe 17, ist in die Rückseite der ersten Steckfläche 6 eingesteckt. Insgesamt sind die Kontaktpins 10 so effizient und homogen geordnet, dass sich das in Figur 3 gezeigte Steckbild der Kontaktpins 10 ergibt. In Figur 3 ist lediglich die Anordnung der Kontaktenden 11 der Kontaktpins 10 gezeigt. So ist es genauer betrachtet nicht die Anordnung der gesamten Kontaktpins 10, sondern lediglich die Anordnung der Kontaktenden 11 der Kontaktpins 10 die so homogen geordnet in Kontaktrichtung aus dem MQS-Stecker 1 herausragen, dass sich beim Verlöten mit der Leitplatte eine homogene Erwärmung ergibt.
  • In dem in Figur 3 gezeigten Steckbild ragen die Kontaktpins 10 so gleichmäßig verteilt aus dem MQS-Stecker heraus, dass jedes Kontaktende 11 zu zumindest zwei benachbarten Kontaktenden 11 im Wesentlichen den gleichen Abstand senkrecht zur Kontaktrichtung K aufweist. Dabei sind die zwei benachbarten Kontaktenden 11 nächste Nachbarn. Somit weist jedes Kontaktende 11 zumindest zwei nächste Nachbarn auf, wie z.B. die Kontaktenden in den Ecken des Steckbilds. Kontaktenden 11 weiter im Inneren des Steckbilds können dabei auch z.B. drei oder mehr nächste Nachbarn aufweisen.
  • Diese homogene Anordnung der Kontaktpins ist im Steckbild der Figur 3 gezeigt. Deutlich zu erkennen ist die Unterteilung in die Kontaktpins der Vorderseitengruppe 15 und die Kontaktpins der Rückseitengruppe 17. Wie in Figur 2 zu sehen, sind die Kontaktpins der Vorderseitengruppe 15 in eine Steckrichtung S mit dem Steckende 12 voran in die zweite Steckfläche 7 gesteckt. Umgekehrt sind die Steckenden 12 der Kontaktpins der Rückseitengruppe 17 in Gegenrichtung in die Rückseite der ersten Steckfläche 6 gesteckt, also entgegen der Steckrichtung S. Die Steckrichtung S ist im Wesentlichen senkrecht zur Kontaktrichtung K und weist im Wesentlichen im Lot auf die beiden Steckflächen 6 und 7.
  • In den in den Figuren gezeigten Ausführungsformen sind die Kontaktpins 10 nicht nur in die Vorderseitengruppe 15 und die Rückseitengruppe 17 unterteilt, sondern sie sind noch weiter aufgeteilt in Untergruppen. So weist die Vorderseitengruppe 15 Kontaktpins 10 einer ersten Vorderseitenuntergruppe 15a und einer zweiten Vorderseitenuntergruppe 15b auf. Genauso weist auch die Rückseitengruppe 17 Kontaktpins 10 einer ersten Rückseitenuntergruppe 17a und einer zweiten Rückseitenuntergruppe 17b auf. Jede der Rückseitenuntergruppen 17a und 17b weist dabei jeweils 18 Kontaktpins 10 auf. Die Kontaktpins jeder der Untergruppen 15a, 15b, 17a und 17b sind in einer Reihe angeordnet. Diese Reihenanordnung gilt sowohl für die in Figur 3 gezeigten Kontaktenden 11 der Kontaktpins 10, als auch für die Steckenden 12 der Kontaktpins 10, die in die erste bzw. zweite Steckfläche 6 bzw. 7 eingesteckt sind. Dort sind die Steckenden 12 elektrisch kontaktiert mit Anschlüssen des ersten MQS-Steckers 1.
  • In Figuren 4a bis 4d ist gezeigt, in welcher Reihenfolge die Kontaktpins 10 in die beiden Steckflächen 6 und 7 des MQS-Steckers 1 eingesetzt bzw. eingesteckt bzw. installiert werden. Die Figuren 4a bis 4d zeigen vier aufeinanderfolgende Herstellungsschritte des MQS-Steckers 1, insbesondere die vier Herstellungsschritte, in denen jeweils die Kontaktpins 10 einer der vier Untergruppe an dem MQS-Stecker 1 angeordnet werden. Allgemein werden die Kontaktpins 10 einer Untergruppe in jeweils einem Herstellungsschritt am MQS-Stecker 1 angeordnet.
  • In Figur 4a ist gezeigt, dass zunächst lediglich die Kontaktpins der ersten Vorderseitenuntergruppe 15a in die zweite Steckfläche 7 eingesteckt werden. Dazu können die Kontaktpins mit dem Steckende 12 voran in entsprechende Einschübe in der ersten Steckfläche eingeführt werden. Anschließend kann das Kontaktende 11 jedes Kontaktpins 10 um 90° gegenüber dem Steckende 12 verbogen werden, so dass sich die in Fig. 4a gezeigte L-Form ergibt.
  • Die Kontaktpins 10 können auch bereits verbogen sein, bevor sie in die zweite Steckfläche 7 eingesteckt werden. Alle Steckenden 12 der Kontaktpins der ersten Vorderseitenuntergruppe 15a sind im Wesentlichen in einer Reihe und/oder einer Linie angeordnet. Diese Reihe und/oder Linie verläuft auf der Oberfläche der zweiten Steckfläche 7 und ist im Wesentlichen senkrecht ausgerichtet sowohl zur Kontaktrichtung K als auch zur Steckrichtung S. Auch die Kontaktenden 11 aller Kontaktpins 10 der ersten Vorderseitenuntergruppe 15a sind in einer Reihe und/oder auf einer Geraden angeordnet. So angeordnet sind die Kontaktenden 11 der ersten Vorderseitenuntergruppe 15a dazu ausgebildet und vorgesehen, mit der Leiterplatte (nicht gezeigt) verlötet zu werden.
  • Figur 4b zeigt denselben Ausschnitt des MQS-Steckers 1, der auch in Figur 4a gezeigt ist. Zusätzlich zu den Kontaktpins der ersten Vorderseitenuntergruppe 15a sind in dem in Figur 4b gezeigten Herstellungsschritt auch die Kontaktpins der zweiten Vorderseitenuntergruppe 15b in die zweite Steckfläche 7 des MQS-Steckers 1 eingesteckt. Dabei wird jeweils ein Kontaktpin der zweiten Vorderseitenuntergruppe 15b über einem Kontaktpin der ersten Vorderseitenuntergruppe 15a angeordnet. Mit anderen Worten weisen die erste Vorderseitenuntergruppe 15a und die zweite Vorderseitenuntergruppe 15b genau gleich viele Kontaktpins 10 auf, in dem in den Figuren gezeigten Beispiel jeweils 12 Kontaktpins. Die Kontaktpins der zweiten Vorderseitenuntergruppe 15b werden nach den Kontaktpins der ersten Vorderseitenuntergruppe 15a in die zweite Steckfläche 7 eingesteckt. Anders herum wäre der Zugang zu Einschüben in der zweiten Steckfläche 7 für die Kontaktpins der ersten Vorderseitenuntergruppe 15a durch die Kontaktpins der zweiten Vorderseitenuntergruppe 15b blockiert.
  • In Figur 4c ist gezeigt, wie zusätzlich zu den Kontaktpins der ersten und zweiten Vorderseitenuntergruppe 15a und 15b auch die Kontaktpins der ersten Rückseitenuntergruppe 17a am MQS-Stecker installiert sind. In den Figuren 4a bis 4d ist dabei die erste Steckfläche 6 nicht gezeigt sondern weggelassen, um eine bessere Ansicht auf die Kontaktpins der ersten und zweiten Rückseitenuntergruppe zu ermöglichen.
  • In Figur 4d ist sind im letzten Herstellungsschritt auch die Kontaktpins der zweiten Rückseitenuntergruppe 17b in den MQS-Stecker 1 eingesetzt. Auch die Kontaktpins der zweiten Rückseitenuntergruppe 17b sind über die Kontaktpins der ersten Rückseitenuntergruppe 17a installiert, ähnlich wie bei den Kontaktpins der ersten und zweiten Vorderseitenuntergruppe 15a und 15b.
  • So weisen die Kontaktpins der zweiten Rückseitenuntergruppe 17b längere Steckenden 12 und längere Kontaktenden 11 auf als die Kontaktpins der ersten Rückseitenuntergruppe 17a. Genauso weisen die Kontaktpins der zweiten Vorderseitenuntergruppe 15b längere Steckenden 12 und längere Kontaktenden 11 auf als die Kontaktpins der ersten Vorderseitenuntergruppe 15a. Dadurch wird erreicht, dass die Kontaktenden 11 aller Untergruppen in etwa auf gleicher Länge in Richtung der Kontaktrichtung K enden (vgl. auch Figur 1).
  • Insgesamt ergibt sich die in Figur 3 gezeigte Anordnung der Kontaktenden 11 der Kontaktpins in Reihen und Spalten. Dabei sind die Kontaktenden 11 der ersten Vorderseitenuntergruppe 15a, der zweiten Vorderseitenuntergruppe 15b, der ersten Rückseitenuntergruppe 17a und der zweiten Rückseitenuntergruppe 17b in zueinander parallelen Reihen angeordnet, die in Steckrichtung S voneinander beabstandet angeordnet sind. Insbesondere sind diese Reihen in einer Richtung im Lot zur Kontaktrichtung K voneinander beabstandet.
  • In Steckrichtung S sind die in Figur 3 gezeigten Reihen der Kontaktenden 11 nicht exakt übereinander ausgerichtet. So sind die Kontaktenden 11 der Kontaktpins der Vorderseitengruppe 15 leicht versetzt zu den Kontaktpins der Rückseitengruppe 17, und zwar versetzt senkrecht zur Kontaktrichtung K und senkrecht zur Steckrichtung S, nämlich in eine (nicht eingezeichnete Versatzrichtung). Dies beruht darauf, dass die einzelnen Kontaktpins der Vorderseitengruppe 15 jeweils auf Lücke zu den Kontaktpins der Rückseitengruppe 17 in die erste und zweite Steckfläche 6 und 7 gesteckt werden, um ein Kontaktieren der L-förmigen Kontaktpins untereinander zu vermeiden. Dies ermöglicht einen kompakten Steckeraufbau, bei dem sich die Kontaktpins der Vorderseitengruppe 15 mit den Kontaktpins der Rückseitengruppe 17 z.B. an und/oder in zumindest einer der Steckflächen 6, 7 überschneiden und/oder überkreuzen können. Dieses Überkreuzen der Kontaktpins ist in dem in Fig. 2 gezeigten Querschnitt gezeigt: So sind die Steckenden 12 der beiden Vorderseitengruppen 15a und 15b im Wesentlichen rechtwinklig gekreuzt zu den Kontaktenden 11 der beiden Rückseitengruppen 17a und 17b im Inneren der zweiten Steckfläche 7 angeordnet. Hierbei kontaktieren sich die einzelnen Kontaktpins 11 jedoch nicht, insbesondere nicht elektrisch, da sie in Versatzrichtung versetzt zueinander angeordnet sind (wie in Fig. 3 gezeigt).
    Figur 5 zeigt einen zweiten MQS-Stecker 2, der zu großen Teilen identisch zum ersten MQS-Stecker 1 aufgebaut ist. Die Unterschiede der beiden MQS-Stecker 1 und 2 sind in den folgenden Figuren gezeigt.
  • Figur 6 zeigt eine perspektivische Darstellung eines Ausschnitts des ersten MQS-Steckers 1. In diesem Ausschnitt ist wie in den Figuren 4a bis 4d die erste Steckfläche 6 nicht gezeigt sondern weggelassen. Zudem sind einige der Kontaktpins aus jeder Untergruppe weggelassen. Zu sehen sind dabei in der zweiten Steckfläche 7 ausgebildete Einschübe 25a der ersten Vorderseitenuntergruppe 15a und Einschübe 25b der zweiten Vorderseitenuntergruppe 15b. Die Einschübe 25a und 25b sind im Wesentlichen als Löcher im Lot durch die zweite Steckfläche 7 ausgebildet, durch die die Steckenden 12 der Kontaktpins der jeweiligen Untergruppe 25a bzw. 25b durchgesteckt werden können.
  • Ebenfalls in Figur 6 gezeigt sind Einschübe 27a der ersten Rückseitenuntergruppe 17a und Einschübe 27b der zweiten Rückseitenuntergruppe 17b. Diese Einschübe 27a und 27b sind als Nuten und/oder Schienen ausgebildet, in die bereits vorgebogene Kontaktpins mit ihrem Kontaktende 11 eingeschoben werden, und zwar bis auf eine Sollposition, in der die Steckenden 12 alle parallel zueinander und mit einem vorbestimmten Abstand zueinander angeordnet sind. Die Kontaktpins 10 der Rückseitengruppe 17 können hierbei von unten, also entgegen der Kontaktrichtung K, in die nutenförmigen Einschübe 27a und 27b eingeschoben werden, bis sie mit einer Verbreiterung an einen Anschlag 18 stoßen. Der Anschlag 18 limitiert die Einschubbewegung entgegen der Kontaktrichtung K. Der Anschlag 18 verhindert ein tieferes Eindringen der Kontaktpins 10 der Rückseitengruppe 17 in die Einschübe 27a und 27b. Die Kontaktpins 10 der Rückseitengruppe 17 weisen verbreiterte Kontaktenden 11 auf. Durch Nuten im Anschlag 18 können lediglich die schmaleren Steckenden 12 dieser Kontaktpins 10 passieren, nicht aber die verbreiterten Kontaktenden 11. In dieser Ausführungsform werden zuerst die Kontaktpins der zweiten Rückseitenuntergruppe 17b in die Einschübe 27b eingeschoben, und anschließend erst die Kontaktpins der ersten Rückseitenuntergruppe 17a.
  • Figur 7 zeigt in einer perspektivischen Darstellung einen Ausschnitt des MQS-Steckers 2, der im Wesentlichem dem in Figur 6 gezeigten Ausschnitt des MQS-Steckers 1 entspricht. Auch in Figur 7 ist die erste Steckplatte 6 weggelassen, genauso wie einige der Kontaktpins 10 jeder der Vorderseitenuntergruppen und jeder der Rückseitenuntergruppen. Gezeigt sind jeweils Einschübe 25a' der ersten Vorderseitenuntergruppe 15a, Einschübe 25b' der zweiten Vorderseitenuntergruppe 15b. In diese Einschübe 25a' und 25b' werden die Kontaktpins der zugeordneten Vorderseitenuntergruppe 15a bzw. 15b mit ihrem Steckende 12 eingesteckt. Weiterhin sind in Fig. 7 Einschübe 27a' der ersten Rückseitenuntergruppe 17a und Einschübe 27b' der zweiten Rückseitenuntergruppe 17b gezeigt. In diese Einschübe 27a' und 27b' werden die Kontaktpins der zugeordneten Rückseitenuntergruppe 17a bzw. 17b mit ihrem Kontaktende 11 eingesteckt. Alle diese Einschübe 27a', 27b', 25a' und 25b' sind in der zweiten Steckfläche 7 als tunnelförmige Löcher ausgebildet.
  • In der in Figur 7 gezeigten Ausführungsform können die Kontaktpins im Wesentlichen geradlinig in die jeweiligen Einschübe eingeführt und anschließend um 90° verbogen werden.
  • Im Gegensatz dazu sind beim ersten MQS-Stecker 1 (vgl. Fig. 6) zumindest die Kontaktpins der Rückseitenuntergruppen 17a und 17b bereits vorgebogen und werden in dieser vorgebogenen Form in die Einschübe 27a und 27b eingesteckt.
  • Die Einschübe 27a und 27b bzw. 27a' und 27b' für die Kontaktenden 11 der Kontaktpins der Rückseitenuntergruppen 17a und 17b sind dabei ebenfalls in der zweiten Steckfläche 7 ausgebildet. Diese Einschübe 27a und 27b bzw. 27a' und 27b' sind parallel zur Kontaktrichtung K ausgebildet und auf Lücke zu den Einschüben 25a und 25b bzw. 25a' und 25b' für die Steckenden 12 der Kontaktpins der Vorderseitenuntergruppen 15a und 15b.
  • Nach dem Anordnen aller Kontaktpins 10 kann die erste Steckfläche 6 am MQS-Stecker 1 bzw. 2 angeordnet werden. Dabei werden Steckenden 12 der Kontaktpins 10 der ersten und zweiten Rückseitenuntergruppe 17a und 17b in entsprechende Einschübe der ersten Steckfläche 6 gesteckt, siehe auch Fig. 1 und Fig. 5.
  • Durch die in den Figuren gezeigte Anordnung erfolgt eine effiziente und einfach zu realisierende Anordnung von Kontaktpins, insbesondere wenn der MQS-Stecker eine hohe Anzahl wie z.B. zwischen 20 und 120 Kontaktpins aufweist. Die Aufteilung in zumindest eine Vorderseitengruppe und eine Rückseitengruppe, insbesondere in insgesamt zumindest vier Untergruppen, stellt eine hinreichende und gute Vorsortierung und Ordnung der Kontaktpins bereit, die sehr kompakt ist und zu einer möglichst homogenen Erwärmung der Leiterplatte beim Verlöten der Leiterplatte mit den Kontaktpins 10 führt.
  • Als vorgebogene Kontaktpins können insbesondere gestanzte Kontakte verwendet werden, die (wie in den Figuren 4a bis 4d gezeigt) überlappend montiert werden. Solche gestanzten Kontakte sind, wie in Figur 6 gezeigt, insbesondere bei den Kontaktpins der Rückseitengruppe 17 des ersten MQS-Steckers 1 verwendet und verbaut.
  • Zudem können als Kontaktpins auch thermisch gerissene Drähte verwendet werden, die besonders gut gebogen werden können, wenn sie mit einem Ende (wie z.B. dem Steckende oder dem Kontaktende) bereits in eine Steckfläche eingesteckt ist. Solche thermisch gerissenen Drähte bilden die Kontaktpins des zweiten MQS-Steckers 2, wie sie insbesondere in Figur 7 gezeigt sind.
  • Bezugszeichenliste
  • 1
    MQS-Stecker
    2
    MQS-Stecker
    5
    Gehäuse
    6
    erste Steckfläche
    7
    zweite Steckfläche
    10
    Kontaktpin
    11
    Kontaktende
    12
    Steckende
    15
    Vorderseitengruppe
    15a
    erste Vorderseitenuntergruppe
    15b
    zweite Vorderseitenuntergruppe
    17
    Rückseitengruppe
    17a
    erste Rückseitenuntergruppe
    17b
    zweite Rückseitenuntergruppe
    18
    Anschlag
    25a
    Einschub der ersten Vorderseitenuntergruppe
    25b
    Einschub der zweiten Vorderseitenuntergruppe
    25a'
    Einschub der ersten Vorderseitenuntergruppe
    25b'
    Einschub der zweiten Vorderseitenuntergruppe
    27a
    Einschub der ersten Rückseitenuntergruppe
    27b
    Einschub der zweiten Rückseitenuntergruppe
    27a'
    Einschub der ersten Rückseitenuntergruppe
    27b'
    Einschub der zweiten Rückseitenuntergruppe
    K
    Kontaktrichtung
    S
    Steckrichtung

Claims (15)

  1. MQS-Stecker (1; 2) mit einer Mehrzahl von Kontaktpins (10), die zum Kontaktieren und Verlöten mit einer Leiterplatte ausgebildet und angeordnet sind, wobei
    - die Kontaktpins (10) in einer Kontaktrichtung (K) aus dem MQS-Stecker (1; 2) herausragen und
    - die Kontaktpins (10) so homogen geordnet aus dem MQS-Stecker (1; 2) herausragen, dass sich die Leiterplatte beim Verlöten der Kontaktpins (10) mit der Leiterplatte im Wesentlichen homogen erwärmt.
  2. MQS-Stecker nach Anspruch 1, mit zumindest einer Steckfläche (6, 7), in die jeweils ein Steckende (12) der Kontaktpins (10) im Wesentlichen im Lot auf die zumindest eine Steckfläche (6, 7) und parallel zu einer Steckrichtung (S) eingesteckt sind, wobei
    die zumindest eine Steckfläche (6, 7) in einer Ebene parallel zum Richtungsvektor der Kontaktrichtung (K) angeordnet ist und
    die Kontaktpins (10) so um etwa 90° gebogen sind, dass jeweils ein Kontaktende (11) der Kontaktpins (10) parallel zur Kontaktrichtung (K) angeordnet ist.
  3. MQS-Stecker nach Anspruch 2, wobei eine Vorderseitengruppe (15) von der Mehrzahl von Kontaktpins (10) in eine Vorderseite der zumindest einen Steckfläche (7) eingesteckt ist, und eine Rückseitengruppe (17) von der Mehrzahl von Kontaktpins (10) in eine Rückseite der zumindest einen Steckfläche (6) eingesteckt ist.
  4. MQS-Stecker nach Anspruch 3, wobei die Kontaktenden (11) der Kontaktpins (10) der Vorderseitengruppe (15) versetzt zu den Kontaktpins (10) der Rückseitengruppe (17) angeordnet sind, und zwar versetzt in eine Richtung senkrecht zur Kontaktrichtung (K) und senkrecht zur Steckrichtung (S).
  5. MQS-Stecker nach Anspruch 3 oder 4, wobei die Kontaktpins (10) der Vorderseitengruppe (15) in zumindest zwei Vordseitenuntergruppen (15a, 15b) unterteilt sind, und die Kontaktpins (10) jeder Vorderseitenuntergruppe (15a; 15b) in jeweils einer Reihe in die Vorderseite der zumindest einen Steckfläche (7) eingesteckt sind, wobei die Reihen jeder Vorderseitenuntergruppe (15a; 15b) auf der Vorderseite der zumindest einen Steckfläche (7) in Kontaktrichtung (K) voneinander beabstandet sind.
  6. MQS-Stecker nach einem der Ansprüche 3 bis 5, wobei die Kontaktpins (10) der Rückseitengruppe (17) in zumindest zwei Rückseitenuntergruppen (17a, 17b) unterteilt sind, und die Kontaktpins (10) jeder Rückseitenuntergruppe (17a; 17b) in jeweils einer Reihe in die Rückseite der zumindest einen Steckfläche (6) eingesteckt sind, wobei die Reihen jeder Rückseitenuntergruppe (17a; 17b) auf der Rückseite der zumindest einen Steckfläche (6) in Kontaktrichtung (K) voneinander beabstandet sind.
  7. MQS-Stecker nach Anspruch 5 oder 6, wobei jede Vorderseitenuntergruppe (15a; 15b) und/oder jede Rückseitenuntergruppe (17a; 17b) von 10 bis 20 Kontaktpins (10) aufweist.
  8. MQS-Stecker nach einem der Ansprüche 5 bis 7, wobei die Kontaktenden (11) der Kontaktpins (10) der Vorderseitenuntergruppen (15a, 15b) und/oder der Rückseitenuntergruppen (17a, 17b) in jeweils einer Reihe angeordnet aus dem MQS-Stecker (1; 2) herausragen, wobei die Reihen der Kontaktenden (11) jeder Vorderseitenuntergruppe (15a, 15b) und/oder jeder Rückseitenuntergruppe (17a, 17b) in Steckrichtung (S) voneinander beabstandet sind.
  9. MQS-Stecker nach einem der Ansprüche 3 bis 8, wobei die Kontaktpins (10) der Rückseitengruppe (17) mit ihrem Kontaktende (11) parallel zur Kontaktrichtung in Einschübe (27a, 27b; 27a', 27b') in der zumindest einen Steckfläche (7) eingesteckt sind.
  10. MQS-Stecker nach einem der vorangegangenen Ansprüche, wobei die Kontaktpins (10) mit jeweils einem Kontaktende (11) im Wesentlichen so gleichmäßig verteilt aus dem MQS-Stecker (1; 2) herausragen, dass jedes Kontaktende (11) zu zumindest zwei benachbarten Kontaktenden (11) im Wesentlichen den gleichen Abstand senkrecht zur Kontaktrichtung (K) aufweist;
    und/oder
    wobei die Kontaktpins (10) mit jeweils einem Kontaktende (11) aus dem MQS-Stecker (1; 2) herausragen, wobei die Kontaktenden (11) zumindest teilweise in Zeilen und/oder Spalten angeordnet sind.
  11. MQS-Stecker nach einem der vorangegangenen Ansprüche, wobei die Mehrzahl von Kontaktpins (10) von 20 bis 120 beträgt;
    und/oder
    wobei die Kontaktpins (10) als gestanzte Kontakte und/oder als thermisch gerissene Drähte ausgebildet sind.
  12. Verfahren zur Herstellung eines MQS-Steckers (1; 2) mit einer Mehrzahl von Kontaktpins (10), die zum Kontaktieren und Verlöten mit einer Leiterplatte ausgebildet und angeordnet sind, wobei die Kontaktpins (10) in einer Kontaktrichtung (K) aus dem MQS-Stecker (1; 2) herausragen,
    wobei die Kontaktpins (10) am MQS-Stecker (1; 2) so homogen angeordnet werden, dass sie so homogen geordnet aus dem MQS-Stecker (1; 2) herausragen, dass sich die Leiterplatte beim Verlöten der Kontaktpins (10) mit der Leiterplatte im Wesentlichen homogen erwärmt.
  13. Verfahren nach Anspruch 14, wobei die Kontaktpins (10) mit jeweils einem Steckende (12) in zumindest eine Steckfläche (6, 7) des MQS-Steckers (1; 2) so eingesteckt werden, dass sie mit dem Steckende (12) im Wesentlichen im Lot auf die zumindest eine Steckfläche (6, 7) und parallel zu einer Steckrichtung (S) angeordnet sind, wobei die Steckfläche (6, 7) in einer Ebene parallel zum Richtungsvektor der Kontaktrichtung (K) angeordnet ist;
    wobei eine Vorderseitengruppe (15) von der Mehrzahl von Kontaktpins (10) in eine Vorderseite der zumindest einen Steckfläche (7) eingesteckt ist, und eine Rückseitengruppe (17) von der Mehrzahl von Kontaktpins (10) in eine Rückseite der zumindest einen Steckfläche (6) eingesteckt ist; und
    wobei die Kontaktenden (11) der Kontaktpins (10) der Vorderseitengruppe (15) versetzt zu den Kontaktpins (10) der Rückseitengruppe (17) angeordnet sind, und zwar versetzt in eine Richtung senkrecht zur Kontaktrichtung (K) und senkrecht zur Steckrichtung (S).
  14. Verfahren nach Anspruch 13, wobei zumindest ein Anteil der Kontaktpins (10) nach dem Einstecken in die zumindest eine Steckfläche (6, 7) so um etwa 90° gebogen wird, dass jeweils ein Kontaktende (11) dieses Anteils der Kontaktpins (10) parallel zur Kontaktrichtung (K) angeordnet ist.
  15. Verfahren nach Anspruch 13 oder 14, wobei zumindest ein Anteil der Kontaktpins (10) beim Einstecken in die zumindest eine Steckfläche (6, 7) so um etwa 90° vorgebogen ist, dass nach dem Einstecken in die zumindest eine Steckfläche (6, 7) jeweils ein Kontaktende (11) dieses Anteils der Kontaktpins (10) parallel zur Kontaktrichtung (K) angeordnet ist.
EP16001405.6A 2015-06-23 2016-06-22 Mqs stecker Active EP3109946B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015008040.7A DE102015008040B4 (de) 2015-06-23 2015-06-23 MQS-Stecker und Verfahren zur Herstellung eines MQS-Steckers

Publications (2)

Publication Number Publication Date
EP3109946A1 true EP3109946A1 (de) 2016-12-28
EP3109946B1 EP3109946B1 (de) 2018-11-21

Family

ID=56203080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16001405.6A Active EP3109946B1 (de) 2015-06-23 2016-06-22 Mqs stecker

Country Status (2)

Country Link
EP (1) EP3109946B1 (de)
DE (1) DE102015008040B4 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382812A1 (de) * 2017-03-31 2018-10-03 Yamaichi Electronics Deutschland GmbH Kontaktpinstecker und verfahren zum herstellen eines kontaktpinsteckers
EP4164070A1 (de) * 2021-10-07 2023-04-12 P-Two Industries Inc. Verbinder
CN117269570A (zh) * 2023-09-14 2023-12-22 南京国电南思科技发展股份有限公司 一种带接插件结构的电能表

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350307A (en) * 1991-04-15 1994-09-27 Yazaki Corporation Connector for printed circuit board
WO2002082584A2 (en) * 2001-04-05 2002-10-17 Molex Incorporated Electrical terminal tail aligner
EP2077605A2 (de) * 2008-01-07 2009-07-08 Denso Corporation Steckverbinder und elektronische Steuervorrichtung damit
EP2230726A1 (de) * 2009-03-20 2010-09-22 Tyco Electronics France SAS Funkverbinderblockplatte

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336109A (en) * 1993-04-15 1994-08-09 The Whitaker Corporation Stacked connector assembly
DE10027556C1 (de) * 2000-06-02 2001-11-29 Harting Kgaa Leiterplattensteckverbinder
DE10105042C1 (de) * 2001-02-05 2002-08-22 Harting Kgaa Kontaktmodul für einen Steckverbinder, insbesondere für einen Kartenrand-Steckverbinder
US7214074B2 (en) * 2004-12-21 2007-05-08 J.S.T. Corporation Electrical connector with a tine plate
ITVI20100241A1 (it) * 2010-09-01 2012-03-02 Tyco Electronics Amp Gmbh Modular electrical connector
DE102011075209A1 (de) * 2011-05-04 2012-11-08 Tyco Electronics Amp Gmbh Kontaktanordnung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350307A (en) * 1991-04-15 1994-09-27 Yazaki Corporation Connector for printed circuit board
WO2002082584A2 (en) * 2001-04-05 2002-10-17 Molex Incorporated Electrical terminal tail aligner
EP2077605A2 (de) * 2008-01-07 2009-07-08 Denso Corporation Steckverbinder und elektronische Steuervorrichtung damit
EP2230726A1 (de) * 2009-03-20 2010-09-22 Tyco Electronics France SAS Funkverbinderblockplatte

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382812A1 (de) * 2017-03-31 2018-10-03 Yamaichi Electronics Deutschland GmbH Kontaktpinstecker und verfahren zum herstellen eines kontaktpinsteckers
EP4164070A1 (de) * 2021-10-07 2023-04-12 P-Two Industries Inc. Verbinder
CN117269570A (zh) * 2023-09-14 2023-12-22 南京国电南思科技发展股份有限公司 一种带接插件结构的电能表
CN117269570B (zh) * 2023-09-14 2024-03-22 南京国电南思科技发展股份有限公司 一种带接插件结构的电能表

Also Published As

Publication number Publication date
DE102015008040B4 (de) 2022-03-24
DE102015008040A1 (de) 2016-12-29
EP3109946B1 (de) 2018-11-21

Similar Documents

Publication Publication Date Title
EP1263091B1 (de) Neunzig-Grad-drehbarer Steckverbinder
DE69214569T2 (de) Elektrischer Verbinder zur Montage auf eine Leiterplatte
DE102013108383C5 (de) Steckverbindermodul
EP2476165B1 (de) Steckverbindung mit abschirmung
DE102014108965B4 (de) Elektrischer Einzelelement-Verbinder und elektrische Vorrichtung zum Verbinden eines Drahtes mit einer Leiterplatte
DE102017212145B4 (de) Elektrischer Verbinder
DE102015217777B4 (de) Verbinderanschlusseinheit
DE2018376B2 (de) Steckverteilertafel fuer koaxiale steckverbindungen
DE2413174A1 (de) Elektrischer verbinder
EP3477794B1 (de) Stromführungsprofil und stromführungsanordnung
EP3109946B1 (de) Mqs stecker
DE102008055721A1 (de) Reihenklemme mit Stromschiene
DE602004009268T2 (de) Verbinder
DE2128954C3 (de)
DE102004019613B4 (de) Verbinder und Verfahren zum Ausbilden desselben
DE102006056554A1 (de) Montagevorrichtung zur Aufnahme von Elektronikmodulen
DE2714158C3 (de) Anschlußvorrichtung für ein vieladriges Rundkabel
EP3207594B1 (de) Klemmeneinrichtung mit einer stromschiene
LU101643B1 (de) Steckkontaktelement, Direktsteckverbinder, Verfahren zur Herstellung eines Steckkontaktelementes und Verfahren zur Herstellung eines Direktsteckverbinders
WO2017093457A1 (de) Steckverbinder
EP3223376B1 (de) Netzwerkbuchse und verfahren zum aufnehmen und elektrischen kontaktieren eines netzwerksteckers
EP3033809B1 (de) Kodierung für grundleisten mit einer mehrzahl an kammern
EP3553898A1 (de) Stromführungsprofil und abgriffsteckverbinder
EP2709212B1 (de) Anordnung zum Verbinden von Leiterplatten
DE102013217887B4 (de) Kontaktelement, Stecker umfassend ein Kontaktelement und Steckverbindung umfassend einen Stecker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170627

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002529

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1068634

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002529

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190622

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160622

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1068634

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220901

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240625

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240625

Year of fee payment: 9