Nothing Special   »   [go: up one dir, main page]

EP2534085B1 - Kran, insbesondere hafenmobilkran, mit einem hybridantriebssystem - Google Patents

Kran, insbesondere hafenmobilkran, mit einem hybridantriebssystem Download PDF

Info

Publication number
EP2534085B1
EP2534085B1 EP11703451.2A EP11703451A EP2534085B1 EP 2534085 B1 EP2534085 B1 EP 2534085B1 EP 11703451 A EP11703451 A EP 11703451A EP 2534085 B1 EP2534085 B1 EP 2534085B1
Authority
EP
European Patent Office
Prior art keywords
circuit
short
energy storage
crane
term energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11703451.2A
Other languages
English (en)
French (fr)
Other versions
EP2534085A1 (de
Inventor
Jörg Müller
Johannes Reiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Demag Cranes and Components GmbH
Original Assignee
Gottwald Port Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gottwald Port Technology GmbH filed Critical Gottwald Port Technology GmbH
Priority to PL11703451T priority Critical patent/PL2534085T3/pl
Publication of EP2534085A1 publication Critical patent/EP2534085A1/de
Application granted granted Critical
Publication of EP2534085B1 publication Critical patent/EP2534085B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • B66C13/23Circuits for controlling the lowering of the load
    • B66C13/26Circuits for controlling the lowering of the load by AC motors
    • B66C13/28Circuits for controlling the lowering of the load by AC motors utilising regenerative braking for controlling descent of heavy loads and having means for preventing rotation of motor in the hoisting direction when load is released
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/12Arrangements of means for transmitting pneumatic, hydraulic, or electric power to movable parts of devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes

Definitions

  • the invention relates to a crane, in particular mobile harbor crane, with a diesel-electric drive whose alternator feeds an alternating voltage circuit with a DC voltage circuit connected to the AC circuit, with electric motors that drive at least one slew, a hoist and a luffing crane, with at least one braking resistor and with a short-term energy storage, which is connected to the temporary storage of excess energy to the AC voltage circuit or to the DC voltage circuit.
  • a hybrid drive system for a straddle lift truck is known.
  • Such straddle carriers are also known as straddle carriers and are used in seaports and container terminals for transporting and stacking containers.
  • the hybrid propulsion system includes a power generator with a diesel engine that drives an alternator.
  • the three-phase generator feeds a DC link via a rectifier to which driving, lifting and auxiliary motors are connected via inverters.
  • a short-term energy storage is connected via a charge and / discharge controller to the DC voltage intermediate circuit to cover graduallyitigen energy demand peaks, as they arise when starting and braking the traction drive of the straddle carrier or when lifting and lowering the container .
  • This short-term memory can be charged during regenerative braking of the travel and lifting drives and thus does not have to be converted by the driving and lifting drives back into the DC link energy with braking resistors into heat.
  • the short-term memory thus avoids these energy losses and serves as a buffer for the energy.
  • the short-term energy storage is constructed of interconnected double-layer capacitors with very high capacities, which are also referred to as "ultracapacitors" or "Ultra Caps”.
  • a further energy store is connected to the DC voltage intermediate circuit via a further charge and discharge controller.
  • the further energy storage is designed as a lightweight high-energy battery, in particular sodium chloride, sodium-sulfur or nickel-metal hydride accumulator, to cover average power demand peaks, for example, when driving in the minute range occur.
  • the charge and discharge controller for the short-time energy storage and the other energy storage is designed as a controllable two-quadrant DC / DC converter.
  • an electrical control device is provided which is connected to the power generation unit, the short-time energy storage and the further energy storage in order to control these depending on the operating state of the hybrid drive system.
  • Such a mobile harbor crane essentially consists of an undercarriage with which the Mobile Harbor Crane in the countryside, For example, a wharf, or supported on a floating pontoon, and a rotatably mounted about a vertical axis on the undercarriage superstructure.
  • the undercarriage can be moved over tires on the quay or over rail wheels on rails. During the handling operation, the undercarriage is supported by supports.
  • a vertically extending tower On the superstructure, a vertically extending tower, the rotary and lifting mechanisms for the rotation of the upper carriage and the lifting of a load and a counterweight are arranged. Furthermore, a boom is articulated on the tower approximately in the region of half its length and on the side facing away from the counterweight.
  • the boom is connected to a pivotable about a horizontal rocker axis with the tower and additionally pivoted on a hinged to the boom and the bottom of the uppercar bevelled cylinder from its laterally projecting operating position into an upright rest position.
  • the boom is formed in the usual way as a lattice mast.
  • Such mobile harbor cranes are in terms of their drive concept, the formation of a serial hybrid, since they work with a diesel-electric drive in which the chemical energy of the diesel fuel is converted by an internal combustion engine into mechanical work and fed by an alternator as electrical energy into an AC circuit.
  • the slewing gear and the luffing gear and any other drives DC or AC motors are used in which a renewed conversion of the electrical energy takes place back into mechanical work, which is ultimately for lifting loads, for moving and turning the crane or used to move the boom.
  • Energy that is fed back for example by lowering loads on the boom in the AC circuit, is initially made available to other consumers. Once there is an excess of energy in the AC circuit, it will be converted to heat by braking resistors, destroying the returned energy, i. finally lost.
  • the present invention seeks to provide a crane, in particular mobile harbor crane, with an improved hybrid drive system.
  • a diesel-electric drive whose alternator feeds an AC circuit
  • a connected to the AC voltage circuit DC circuit with electric motors that drive at least one slew, a hoist and a luffing crane, with at least one braking resistor and with a short-term energy storage, which is connected to the intermediate storage of excess energy to the AC circuit or to the DC circuit
  • an improvement of the hybrid drive system achieved in that at least one of the electric motors is connected to the AC voltage circuit, at least one of the electric motors is connected to the DC voltage circuit and the AC voltage circuit is connected to the DC voltage circuit via a rectifier such that an energy exchange between the AC voltage circuit and the DC voltage circuit is possible t.
  • the short-term energy storage for the storage of, for example, regenerative braking of the drives recovered excess energy
  • the performance of the drive of the alternator combustion engine, in particular diesel engine can be improved so that the fuel consumption and thus the emission of pollutants lowered and the recovered Energy can be harnessed elsewhere.
  • the short-term energy storage can be retrofitted into existing mobile harbor cranes as an extension.
  • it ensures that the mobile harbor crane can continue its normal operation in the event of failure of the short-term energy storage, as the braking resistor is still present.
  • the rectifier which connects the AC voltage circuit and the DC voltage circuit is designed to be capable of regenerative feedback.
  • the recovery of energy is achieved in an advantageous manner in that at least the electric motors of the hoist and the luffing mechanism for the recovery of electrical energy in the AC voltage circuit or in the DC voltage circuit can be operated as a generator.
  • the electric motors are designed as three-phase motors.
  • the short-time energy storage is connected via a DC-DC converter to the DC voltage circuit.
  • the short-time energy storage can be synchronized with the DC voltage circuit with respect to the voltage level.
  • the short-time energy storage is designed as a double-layer capacitor.
  • Such double-layer capacitors are durable, maintenance-free and lightweight and have a low energy density at high power density. As a result, these are particularly suitable as a short-term energy storage.
  • the double-layer capacitors can absorb or deliver significantly higher powers and their lifetime is not so much affected by the rapid and short-term switching between charging and discharging as batteries.
  • the braking resistor is connected via a rectifier to the AC voltage intermediate circuit.
  • the slewing gear has a three-phase motor which is connected via an inverter to the DC voltage circuit
  • the hoist has a three-phase motor which is connected via an inverter to the DC voltage circuit
  • the luffing gear has a three-phase motor, which is connected directly to the AC voltage circuit.
  • a power control which is set via an operating strategy, with the diesel-electric drive, the braking resistor or its rectifier, the short-term energy storage and the DC-DC converter of the short-term energy storage is connected and on the basis of the data of the alternator Active power meter and the state of charge of the short-term energy storage the short-term energy storage and controls the braking resistor as needed.
  • operating strategies either a recuperation strategy or a downsizing strategy are used.
  • the main objective is to absorb the entire energy fed back into the AC circuit, thus avoiding the use of braking resistors.
  • the main objective of the downsizing strategy is to limit the power demand on the diesel-electric drive so that operation of the mobile harbor crane would also be possible with a reduced internal combustion engine and a reduced alternator without sacrificing performance.
  • the short-term energy storage will go in this downsizing strategy usually only when reaching the maximum power of the internal combustion engine in the Boostschreib.
  • the behavior of the double-layer capacitor and the operating states of the rest of the system is primarily defined as a function of the measured active power of the generator and the state of charge of the memory to optimize energy conservation.
  • a controlled power output of the short-term energy storage can avoid hard load requirements on the internal combustion engine.
  • the soft start prevents sudden loads, which has a positive effect on the transient fuel consumption and the exhaust emissions of the internal combustion engine.
  • Setting to a constant discharge power increases the efficiency of the short-term energy storage during the regular boost.
  • this does not rule out that in the context of the invention during the boosting with a corresponding power request of the consumer can also be deviated from the constant discharge, especially if the state of charge of the short-term energy storage is close to the maximum value after a charging phase.
  • a lower state of charge limit and upper state of charge limit is defined via the power control for the short-time energy store. Accordingly, the short-term energy storage can discharge to a fixed lower state of charge limit, which is defined by the lower voltage range of the inverter or the usable state of charge of the short-term energy storage.
  • the lower state of charge limit is defined as 25% of the upper state of charge limit. This refinement also serves to optimize the efficiency, since at higher voltage the losses due to the internal resistance of the short-time energy store are lower. This is taken into account when the working range of the short-term energy storage is in the highest possible voltage ranges above the defined lower state of charge limit for the discharge.
  • the power output of the short-term energy storage is reduced near the switching limit between boost mode and normal operation, also hard load requirements to the internal combustion engine when switching off the short-term energy storage can be avoided. This has a positive effect on consumption and exhaust gas behavior of the internal combustion engine.
  • the regenerative capacity of the hybrid drive system of the crane is advantageously increased by the fact that the luffing mechanism comprises a hydraulic cylinder and a hydraulic pump and that the electric motor driving the hydraulic pump can be regenerated.
  • the FIG. 1 shows a view of a mobile harbor crane 1 for the handling of standardized containers, in particular ISO containers, between land and water or vice versa or within container terminals. Also, the mobile harbor crane 1 can be equipped with a grab for handling bulk materials.
  • the mobile harbor crane 1 consists essentially of an undercarriage 2 and a superstructure 3 with a tower 4 and a boom 5. In the usual way, the mobile harbor crane 1 via its undercarriage 2 on land, here a quay 7, supported. About the undercarriage 2 with RadMailtechniken 6 of the mobile harbor crane 1 on the quay 7 is movable and is supported during the Umzzi horres via supports 8 on this.
  • the mobile harbor crane 1 is mounted on rails movable or stationary on a floating pontoon.
  • On the undercarriage 2 of the superstructure 3 is mounted, which is pivotable about a vertical axis of rotation D of a slewing gear D.
  • the slewing gear d usually has a turntable in engagement with a drive gear.
  • the superstructure 3 also carries a hoist h and in the rear area a counterweight 9. Also supported on the superstructure 3 extending in the vertical direction tower 4, at the top of a roller head 10 is fixed with sheaves. Furthermore, the boom 5 is articulated to the tower 4 approximately in the region of its half length and on the side facing away from the counterweight 9.
  • the boom 5 is pivotally connected to the tower 4 about a horizontal rocking axis W and in addition via a pivoted on the boom 5 and the bottom of the uppercarriage 3 Wipptechnik w, which is usually designed as a hydraulic cylinder, from its laterally projecting operating position into an upright rest position pivotable.
  • the boom 5 is formed in a conventional manner as a lattice mast.
  • At the tower 4 facing away from the tip of the boom 5 more sheaves are rotatably mounted on the basis of the hoist h hoists are guided over the roller head 10 to the load to be lifted.
  • FIG. 2 shows a block diagram of a hybrid drive of the mobile harbor crane 1 after FIG. 1 ,
  • such mobile harbor cranes can be serial hybrids with respect to their propulsion concept, since they operate with a diesel-electric drive 11, in which the chemical energy of a diesel fuel is converted into mechanical work by an internal combustion engine 11 a.
  • the internal combustion engine 11a drives an alternator 11b, which controls the mechanical Converts energy into electrical energy and fed into an AC circuit 12.
  • the three-phase generator 11 b generates a three-phase alternating current with a voltage level of 440 V.
  • the supply network for providing energy for the various electric motors of the mobile harbor crane 1 comprises in addition to the AC voltage circuit 12 a DC voltage circuit 17 which is connected via a rectifier 16 to the AC voltage circuit 12.
  • an energy exchange between the AC circuit 12 and the DC circuit 17 is possible, for example, by regenerative braking or regenerative operation of an electric motor recovered electrical energy in one of the voltage circuits 12, 17 there is an excess of energy and another electric motor has energy needs.
  • To the AC circuit 12 is the drive of the luffing w and the DC circuit 17 are different consumers, in particular the respective drives of the hoist h and the slewing gear d, connected, in which a renewed conversion of electrical energy back into mechanical work takes place, the rocking of the boom 5, is used for lifting loads or for turning the mobile harbor crane 1.
  • the hoist h and the slewing gear d have three-phase electric motors h1, d1, preferably asynchronous motors, which are each connected via an inverter h2, d2 to the DC voltage circuit 17.
  • the inverters h2, d2 the DC voltage is converted into AC voltage.
  • a constant-speed three-phase motor w1 is connected to the AC voltage circuit 12, which drives a hydraulic pump w2, in particular axial piston pump.
  • the hydraulic pump w2 is connected to a hydraulic cylinder w3, via which the boom 5 of the mobile harbor crane 1 can be pivoted about the luffing axis W.
  • the hydraulic pump w2 and the three-phase motor w1 can be designed such that excess energy can not be returned, but is dissipated, for example, via throttles. However, it is also conceivable that the hydraulic pump w2 and the three-phase motor w1 are capable of being regenerated, so that an energy return into the AC voltage circuit 12 or via the rectifier 16 into the DC voltage circuit 17 can take place.
  • drives which are connected directly to the engine 11 a or are connected to the AC voltage circuit 12.
  • Corresponding drives operated by three-phase motors can likewise be connected to the DC voltage circuit 17 via rectifiers. It is also possible to operate these drives via DC motors and to connect them to the DC voltage circuit 17 or via inverters to the AC voltage circuit 12. By the device of both the AC voltage circuit 12 and the DC voltage circuit 17, it is possible to vary the motors used for the respective drives.
  • a short-term energy storage 13 is connected to the DC voltage circuit 17.
  • the recoverable from this short-term energy storage 13 energy arises essentially when lowering and braking of the load and thus by the regenerative braking of the three-phase motor h1 of the hoist h. If a regenerative hydraulic pump w2 and a regenerative three-phase motor w1 are used, the energy returned by the hydraulic pump w2 can also be absorbed by the short-time energy storage 13.
  • each of the electric motors can be designed in a regenerative manner and connected to the AC voltage circuit 12 or to the DC voltage circuit 17.
  • both voltage circuits 12 and 17 of the power supply network to the energy storage system or the short-term energy storage 13 are connected.
  • a braking resistor 14 is connected to the AC voltage circuit 12. About this braking resistor 14 then the voltage fed back by the regenerative braking of the three-phase motors d1, h1, and w1 in the AC circuit 12 voltage is converted into heat and thus destroyed.
  • the integration of the short-term energy storage 13 in the DC circuit 17 results in various new operating conditions for the hybrid drive of the mobile harbor crane 1.
  • the means the internal combustion engine 11a serves the occurring during operation of the mobile harbor crane 1 different load requirements, and "resistance brakes" in which - possibly via the DC circuit 17 - is fed back into the AC circuit 12 energy in the braking resistors 14 is converted into heat come add additional operating conditions.
  • the short-time energy storage 13 is designed as a double-layer capacitor, which is also referred to as "Ultracap” or “Supercap”.
  • Double-layer capacitors are durable, maintenance-free and lightweight and have a low energy density at high power density. As a result, these are particularly suitable as a short-term energy storage.
  • Compared to batteries can be absorbed by the double-layer capacitors significantly higher power or delivered.
  • the energy content per volume is lower than that of batteries, these features make double-layer capacitors ideal as short-time energy storage for use in mobile harbor cranes, since lowering the loads of a mobile harbor crane 1 results in very high power but low energy over a relatively short time Period of a few seconds occur and for acceleration processes during lifting and other crane movements high peak performance only occur at short notice.
  • the slewing gear d feeds only small amounts of energy back into the AC voltage intermediate circuit 12, since the rotational movement of the upper carriage 3 of the mobile harbor crane 1 is slow and thus the acceleration and deceleration processes are short and low in energy.
  • the short-time energy storage 13 is connected bidirectionally to the DC voltage circuit 17 with the interposition of a DC-DC converter 13a.
  • the DC-DC converter 13a adopts the voltage adjustment to the DC voltage circuit 17.
  • the short-term energy storage 13 can enable a soft start of the internal combustion engine 11a by corresponding boosting. This will avoid sudden, hard load requirements on the internal combustion engine 11 a. This has positive effects on the transient consumption and the exhaust gas behavior of the internal combustion engine 11a. Also, in phases of positive power demand, a definable basic engine load is maintained. This allows a faster response of the internal combustion engine 11a at sudden load requirements. Furthermore, it is ensured that the power of the short-term energy storage device 13 is gradually reduced near the switching limit between "boost" and "normal” operation. This in turn avoids a hard load request to the engine 13 when the boost operation is terminated.
  • the short-time energy storage 13 is controlled by a power controller 15, a so-called power coordinator, ie the charging or discharging power of the short-time energy storage 13 in amount and duration set.
  • the power control 15 is parameterized by the operating strategy used.
  • the power coordinator also controls the transition from charging the short-time energy storage 13 to the benefit of the braking resistors 14.
  • the purpose of the power control 15 is therefore in particular to ensure that excess energy directly drives the drives or three-phase motors d1 connected to the AC voltage circuit 12 or the DC voltage circuit 17 , h1 and w1 are supplied in order to avoid losses occurring during temporary storage in the short-term energy store 13. Only when no consumer has more energy and at the same time the short-term energy storage 13 still has free charging capacity, a caching is made.
  • the braking resistors 14 thus serve as an emergency system in the event that neither one of the drive motors or Three-phase motors d1, h1 and w1 energy requirement in the amount of energy fed back has yet the short-term energy storage 13 can absorb a corresponding amount of energy.
  • the main goal is to absorb the entire energy fed back into the AC voltage circuit 12 or into the DC voltage circuit 17, and thus to avoid the use of the braking resistors 14.
  • the load point boost is not used in this operating strategy.
  • the short-time energy storage 13 is discharged at a constant power. This discharge power is chosen so small that the short-term energy storage 13 discharges as far as possible to record the entire recuperation energy in the next charging cycle. Thus, the highest possible efficiency of the short-term energy storage 13 is achieved.
  • a lower SOC limit state of charge, charging status 0: completely emptied 1: fully charged
  • This also serves to optimize the efficiency, since at higher voltage, the losses due to the internal resistance of the short-time energy storage 13 are lower. Also, during the boost, it is possible to deviate from the constant discharge power in some cases. It can be boosted, for example, with a corresponding power request with maximum discharge power, if the state of charge of the short-time energy storage 13 is close to the maximum value after a charging phase.
  • the downsizing strategy provides as the main goal to limit the power demand on the diesel-electric drive 11 so that operation of the mobile harbor crane 1 would also be possible with a downsized internal combustion engine 11a and a downsized alternator 11b without sacrificing performance.
  • the short-term energy storage 13 may discharge to a predetermined SOC lower limit. This is due to the lower tension range of the DC converter 13a - SOC> 0.25 - or the usable SOC range of the short-term energy storage 13 defines.
  • the short-term energy storage 13 will go in this downsizing strategy usually only when reaching the maximum power of the engine 11 a in the boost state.
  • the used DC-DC converter 13a limits the amount of possible power due to its possible voltage adjustment range.
  • a temperature monitoring of the short-term energy storage 13 takes place in order to prevent a shortening of the life due to excessive heating.
  • the basis of the control of the short-time energy storage device 13 with the power control 15 is the regulation of the measured effective power of the three-phase generator 11 b to a defined desired value.
  • the power controller 15 also controls the rectifier 14a of the braking resistor 14. In the case of insufficient charging power of the short-time energy storage 13, the excess power in the braking resistor 14 is converted into heat. In this way, the operating conditions described above are set automatically.
  • the power controller 15 has a limiting module with which the selected operating strategy and thus the associated parameters are realized within the power controller 15.
  • the switching limits which are dependent on the short-time energy store 13, the limitation by the voltage setting range of the DC-DC converter 13a and the temperature monitoring are implemented therein.
  • the variable rise represents a definable ramp time for the DC-DC converter 13a of the short-time energy storage 13. This ensures the soft start of the internal combustion engine 11a and the soft exit from the boosting process.
  • the short-term energy storage 13 can be retrofitted by its modular design of the modules and functionalities as an extension into existing mobile harbor cranes 1.
  • the receipt of the braking resistors 14 in addition to the short-term energy storage 13 ensures that the mobile harbor crane 1 can continue its operation in the event of failure of the short-term energy storage 13.
  • the power controller 15 and the operating strategy are implemented in a programmable logic controller (PLC) which controls the DC-DC converter 13a and thus the short-time power storage 13.
  • PLC programmable logic controller
  • the basis for the power control 15 is the analog signal of an active power meter 11c, which continuously measures the power output of the alternator 11b and provides this information to the rectifier 14a of the braking resistors 14 and the DC-DC converter 13a of the short-time energy storage 13.
  • the braking resistor 14 remains in the system and is used when, if the short-term energy storage 13 can not absorb the entire braking energy or fails.
  • the power controller 15 communicates via a bus system with a higher-level main controller (not shown) of the mobile harbor crane 1. Depending on which bus systems the controllers use, the communication takes place via an interface.
  • the power controller 15 uses a J1939 BUS to communicate with the short-term energy storage 13 and communicates with the DC-DC converter 13a to communicate with a CAN OPEN BUS, which is also used by the main controller of the mobile harbor crane 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Description

  • Die Erfindung betrifft einen Kran, insbesondere Hafenmobilkran, mit einem dieselelektrischen Antrieb, dessen Drehstromgenerator einen Wechselspannungskreis speist, mit einem an dem Wechselspannungskreis angeschlossenen Gleichspannungskreis, mit Elektromotoren, die mindestens ein Drehwerk, ein Hubwerk und ein Wippwerk des Krans antreiben, mit mindestens einem Bremswiderstand und mit einem Kurzzeit-Energiespeicher, der zur Zwischenspeicherung von überschüssiger Energie an den Wechselspannungskreis oder an den Gleichspannungskreis angeschlossen ist.
  • Aus der deutschen Patentanmeldung DE 10 2004 010 988 A1 ist ein Hybridantriebssystem für einen Portalhubstapler bekannt. Derartige Portalhubstapler sind auch als Straddle Carrier bekannt und werden in Seehäfen und Containerterminals zum Transportieren und Stapeln von Containern eingesetzt. Das Hybridantriebssystem umfasst ein Stromerzeugungsaggregat mit einem Dieselmotor, der einen Drehstromgenerator antreibt. Der Drehstromgenerator speist über einen Gleichrichter einen Gleichspannungszwischenkreis, an dem über Wechselrichter Fahr-, Hub- und Hilfsmotoren angeschlossen sind. Um das Stromerzeugungsaggregat erheblich kleiner und leichter auszuführen, ist zur Abdeckung von kurzeitigen Energiebedarfsspitzen, wie sie beim Anfahren und Bremsen des Fahrantriebes des Portalhubstaplers oder beim Heben und Senken der Container entstehen, ein Kurzzeit-Energiespeicher über einen Lade-/ und Entladeregler an den Gleichspannungszwischenkreis angeschlossen. Dieser Kurzzeitspeicher kann beim generatorischen Bremsen der Fahr- und Hubantriebe aufgeladen werden und somit muss nicht die von den Fahr- und Hubantrieben in den Gleichspannungszwischenkreis zurück gespeiste Energie mit Bremswiderständen in Wärme umgewandelt werden. Der Kurzzeitspeicher vermeidet somit diese energetischen Verluste und dient als Zwischenspeicher für die Energie. Der Kurzzeit-Energiespeicher ist aus zusammen geschalteten Doppelschichtkondensatoren mit sehr hohen Kapazitäten, die auch als "Ultrakondensatoren" oder "Ultra-Caps" bezeichnet werden, aufgebaut. Neben dem Kurzzeit-Energiespeicher ist an den Gleichspannungszwischenkreis ein weiterer Energiespeicher über einen weiteren Lade-/ und Entladeregler angeschlossen. Der weitere Energiespeicher ist als leichte Hochenergiebatterie, insbesondere Kochsalz-Nickel-, Natrium-Schwefel- oder Nickel-Metallhydrid-Akkumulator, ausgebildet, um mittlere Leistungsbedarfsspitzen abzudecken, die beispielsweise bei Fahrten im Minutenbereich auftreten. Der Lade-/ und Entladeregler für den Kurzzeit-Energiespeicher und den weiteren Energiespeicher ist als regelbarer Zwei-Quadranten-DC/DC-Wandler ausgebildet. Des Weiteren ist eine elektrische Steuervorrichtung vorgesehen, die mit dem Stromerzeugungsaggregat, dem Kurzzeit-Energiespeicher und dem weiteren Energiespeicher verbunden ist, um diese je nach Betriebszustand des Hybridantriebssystems anzusteuern.
  • Aus der Patentschrift US 7 554 278 B2 beziehungsweise der zugehörigen Offenlegungsschrift US 2008/0048497 A1 ist ein Hybridantriebssystem eines gummibereiften Krans bekannt, das eingangsseitig einen Gleichspannungskreis aufweist, der zum Einen von einem durch einen Verbrennungsmotor angetriebenen Drehstromgenerator mit nachgeschaltetem Gleichrichter und zum Anderen von einer als Energiespeichersystem dienenden Batterieeinheit mit elektrischer Energie gespeist wird. Zur Energieversorgung der elektrisch betriebenen Kranantriebsmotoren ist außerdem ein Wechselspannungskreis vorgesehen, mit dem sämtliche Kranantriebe, insbesondere ein Hubantrieb, elektrisch verbunden sind. Auch ist ein weiterer Schaltkreis vorgesehen, der auf den Gleichspannungskreis aufgeschaltet werden kann und über den die beispielsweise beim Senken einer Last durch generatorisches Bremsen des Hubantriebs zurückgewonnene elektrische Energie zum Aufladen des Energiespeichersystems in dessen Batterieeinheit geleitet werden kann.
  • Ferner ist aus der Offenlegungsschrift US 2008/0121444 A1 ein weiterer Straddle Carrier mit einem Hybridantriebssystem bekannt. Anstatt eines Dieselmotors kommt eine Mikrogasturbine zum Einsatz, die einen Drehstromgenerator antreibt. Dem Drehstromgenerator ist ein Gleichrichter nachgeschaltet, der einen Gleichspannungskreis versorgt. An diesem Gleichspannungskreis sind die elektrischen Fahrantriebsmotoren und der Hubmotor sowie eine Hydraulikpumpe für ein Hydrauliksystem angeschlossen. Die vorgenannten Antriebe sind jeweils elektrische Drehstromantriebe und sind daher jeweils über einen Wechselrichter mit dem Gleichspannungskreis verbunden.
  • Des Weiteren sind bereits aus dem aktuellen Firmenprospekt der Gottwald Port Technology GmbH, Düsseldorf, Deutschland mit dem Titel "Hafenkran-Modell 4" sogenannte Hafenmobilkrane bekannt, mit denen Container oder Schüttgüter in Seehäfen oder Container-Terminals umgeschlagen werden. Ein derartiger Hafenmobilkran besteht im Wesentlichen aus einem Unterwagen, mit dem sich der Hafenmobilkran auf dem Land, beispielsweise einem Kai, oder auf einem Schwimmponton abstützt, und einem um eine vertikale Achse drehbar auf dem Unterwagen gelagerten Oberwagen. Der Unterwagen kann über Reifen auf dem Kai oder über Schienenräder auf Schienen verfahrbar sein. Während des Umschlagbetriebes wird der Unterwagen über Stützen abgestützt. Auf dem Oberwagen sind ein sich in Vertikalrichtung erstreckender Turm, die Dreh- und Hubwerke für das Drehen des Oberwagens sowie das Heben einer Last und ein Gegengewicht angeordnet. Des Weiteren ist an dem Turm etwa im Bereich seiner halben Länge und auf der dem Gegengewicht abgewandten Seite ein Ausleger angelenkt. Der Ausleger ist um eine horizontale Wippachse schwenkbar mit dem Turm verbunden und zusätzlich über einen an dem Ausleger und unten an dem Oberwagen angelenkten Wippzylinder aus seiner seitlich auskragenden Betriebsstellung in eine aufrechte Ruhestellung verschwenkbar. Außerdem ist der Ausleger in üblicher Weise als Gittermast ausgebildet.
  • Derartige Hafenmobilkrane weisen bezüglich ihres Antriebskonzept die Ausbildung eines seriellen Hybridens dar, da sie mit einem dieselelektrischen Antrieb arbeiten, in dem die chemische Energie des Dieselkraftstoffes durch einen Verbrennungsmotor in mechanische Arbeit umgewandelt und von einem Drehstromgenerator als elektrische Energie in einen Wechselspannungskreis gespeist wird. Für den Antrieb des Hubwerks, des Drehwerks und des Wippwerks sowie etwaiger weiterer Antriebe werden Gleichstrom- oder Drehstrommotoren verwendet, in denen eine erneute Umwandlung der elektrischen Energie zurück in mechanische Arbeit stattfindet, die schlussendlich zum Heben von Lasten, zum Verfahren und Drehen des Kranes oder zur Bewegung des Auslegers genutzt wird. Energie, die beispielsweise durch das Senken von Lasten am Ausleger in den Wechselspannungskreis zurück gespeist wird, wird zunächst den übrigen Verbrauchern zur Verfügung gestellt. Sobald ein Energieüberschuss im Wechselspannungskreis vorhanden ist, wird dieser durch Bremswiderstände in Wärme umgewandelt, wobei die zurückgespeiste Energie vernichtet wird, d.h. endgültig verloren geht.
  • Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Kran, insbesondere Hafenmobilkran, mit einem verbesserten Hybridantriebssystem zu schaffen.
  • Diese Aufgabe wird durch einen Kran, insbesondere Hafenmobilkran mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen 2 bis 14 angegeben.
  • Erfindungsgemäß wird bei einem Kran, insbesondere Hafenmobilkran, mit einem dieselelektrischen Antrieb, dessen Drehstromgenerator einen Wechselspannungskreis speist, mit einem an dem Wechselspannungskreis angeschlossenen Gleichspannungskreis, mit Elektromotoren, die mindestens ein Drehwerk, ein Hubwerk und ein Wippwerk des Krans antreiben, mit mindestens einem Bremswiderstand und mit einem Kurzzeit-Energiespeicher, der zur Zwischenspeicherung von überschüssiger Energie an den Wechselspannungskreis oder an den Gleichspannungskreis angeschlossen ist, eine Verbesserung des Hybridantriebssystems dadurch erreicht, dass mindestens einer der Elektromotoren an dem Wechselspannungskreis angeschlossen ist, mindestens einer der Elektromotoren an dem Gleichspannungskreis angeschlossen ist und der Wechselspannungskreis mit dem Gleichspannungskreis über einen Gleichrichter derart verbunden ist, dass ein Energieaustausch zwischen dem Wechselspannungskreis und dem Gleichspannungskreis möglich ist. Durch den Einsatz des Kurzzeit-Energiespeichers für die Speicherung von beispielsweise durch generatorisches Bremsen der Antriebe zurückgewonnener, überschüssiger Energie kann das Betriebsverhalten des zum Antrieb des Drehstromgenerators vorgesehen Verbrennungsmotors, insbesondere Dieselmotors, so verbessert werden, dass der Kraftstoffverbrauch und damit der Schadstoffausstoß gesenkt und die rückgewonnene Energie anderweitig nutzbar gemacht werden kann. Bei einer angestrebten modularen Bauweise der nötigen Baugruppen und Funktionalitäten kann der Kurzzeit-Energiespeicher auch in bestehende Hafenmobilkrane als Erweiterung nachgerüstet werden. Darüber hinaus bleibt gewährleistet, dass der Hafenmobilkran bei Ausfall des Kurzzeit-Energiespeichers seinen normalen Betrieb fortsetzen kann, da der Bremswiderstand weiterhin vorhanden ist. Hierbei ist es besonders vorteilhaft, dass der den Wechselspannungskreis und den Gleichspannungskreis verbindende Gleichrichter rückspeisefähig ausgebildet ist.
  • Die Rückgewinnung von Energie wird in vorteilhafter Weise dadurch erreicht, dass zumindest die Elektromotoren des Hubwerks und des Wippwerks zur Rückspeisung von elektrischer Energie in den Wechselspannungskreis beziehungsweise in den Gleichspannungskreis generatorisch betreibbar sind.
  • In einer vorteilhaften Ausführungsform sind die Elektromotoren als Drehstrommotoren ausgebildet.
  • In einer bevorzugten Ausgestaltung ist vorgesehen, dass der Kurzzeit-Energiespeicher über einen Gleichspannungswandler an den Gleichspannungskreis angeschlossen ist. Durch die Verwendung des Gleichspannungswandlers kann der Kurzzeit-Energiespeicher mit dem Gleichspannungskreis hinsichtlich des Spannungsniveaus synchronisiert werden.
  • Besonders vorteilhaft ist vorgesehen, dass der Kurzzeit-Energiespeicher als Doppelschichtkondensator ausgebildet ist. Derartige Doppelschichtkondensatoren sind langlebig, wartungsfrei und leicht sowie weisen eine geringe Energiedichte bei hoher Leistungsdichte auf. Hierdurch eignen sich diese besonders als Kurzzeit-Energiespeicher. Im Vergleich zu Batterien können von den Doppelschichtkondensatoren wesentlich höhere Leistungen aufgenommen beziehungsweise abgegeben werden und werden in Bezug auf ihre Lebensdauer durch die schnellen und kurzzeitigen Wechsel zwischen Laden und Entladen nicht so stark beeinträchtigt wie Batterien. Zwar ist der Energieinhalt pro Volumen geringer als der von Batterien, doch gerade durch diese Eigenschaften zeichnen sich Doppelschichtkondensatoren hervorragend als Kurzzeit-Energiespeicher für die Verwendung in Hafenmobilkranen aus, da beim Absenken von Lasten eines Hafenmobilkrans sehr hohe Leistungen jedoch geringe Energien über einen relativ kurzen Zeitraum von einigen Sekunden auftreten sowie für Beschleunigungsvorgänge beim Heben und anderen Kranbewegungen hohe Spitzenleistungen jeweils nur kurzfristig auftreten.
  • In bevorzugter Ausbildung ist vorgesehen, dass der Bremswiderstand über einen Gleichrichter an den Wechselspannungszwischenkreis angeschlossen ist.
  • Es ist außerdem von besonderem Vorteil, dass zumindest der Elektromotor des Wippwerks an den Wechselspannungskreis angeschlossen ist.
  • In Kombination mit der vorliegenden Erfindung ist es vorteilhaft, dass das Drehwerk einen Drehstrommotor aufweist, der über einen Wechselrichter an den Gleichspannungskreis angeschlossen ist, das Hubwerk einen Drehstrommotor aufweist, der über einen Wechselrichter an den Gleichspannungskreis angeschlossen ist, und das Wippwerk einen Drehstrommotor aufweist, der direkt an den Wechselspannungskreis angeschlossen ist. Der Kurzeit-Energiespeicher kann dann einfach an einem bestehenden Wechselspannungskreis ohne Konzeptänderung des elektrischen Systems eines vorhandenen Hafenmobilkrans nachgerüstet werden.
  • Besonders vorteilhaft ist vorgesehen, dass eine Leistungssteuerung, die über eine Betriebsstrategie eingestellt ist, mit dem dieselelektrischen Antrieb, dem Bremswiderstand beziehungsweise dessen Gleichrichter, dem Kurzzeit-Energiespeichers und dem Gleichspannungswandler des Kurzzeit-Energiespeicher verbunden ist und auf der Grundlage der Daten eines dem Drehstromgenerator zugeordneten Wirkleistungsmessers und dem Ladezustand des Kurzzeit-Energiespeichers den Kurzzeit-Energiespeicher und bei Bedarf den Bremswiderstand ansteuert. Als Betriebsstrategien kommen wahlweise eine Rekuperationsstrategie oder eine Downsizingstrategie zum Einsatz. Im Zusammenhang mit der Rekuperationsstrategie ist das Hauptziel, die gesamte in den Wechselspannungskreis zurück gespeiste Energie aufzunehmen und somit eine Nutzung der Bremswiderstände zu vermeiden. Die Downsizingstrategie sieht als Hauptziel vor, die Leistungsanforderung an den dieselelektrischen Antrieb so zu begrenzen, dass ein Betrieb des Hafenmobilkrans auch mit einem verkleinerten Verbrennungsmotor und einem verkleinerten Drehstromgenerator ohne Leistungseinbußen möglich wäre. Der Kurzzeit-Energiespeicher wird bei dieser Downsizingstrategie in der Regel nur bei Erreichen der Maximalleistung des Verbrennungsmotors in den Boostzustand gehen. Erfindungsgemäß wird zur Optimierung der Energieeinsparung das Verhalten des Doppelschichtkondensators und der Betriebszustände des restlichen Systems vorrangig in Abhängigkeit von der gemessenen Wirkleistung des Generators und dem Ladezustand des Speichers definiert. Durch eine gesteuerte Leistungsabgabe des Kurzzeit-Energiespeichers lassen sich harte Lastanforderungen an den Verbrennungsmotor vermeiden. Der Sanftanlauf verhindert schlagartige Belastungen, wodurch sich positive Auswirkungen auf den instationären Verbrauch und das Abgasverhalten des Verbrennungsmotors ergeben.
  • Besonders vorteilhaft ist vorgesehen, dass über die Leistungssteuerung der Kurzzeit-Energiespeicher während eines regulären Boostens des dieselelektrischen Antriebs auf eine konstante Entladeleistung eingestellt ist oder über die Leistungssteuerung derart eingestellt ist, dass während des Boostens des dieselelektrischen Antriebs bei entsprechender Leistungsanfrage abweichend von der konstanten Entladeleistung eine höhere Entladeleistung zur Verfügung gestellt wird, wenn der Ladezustand des Kurzzeit-Energiespeichers nach einer Ladephase nahe dem Maximalwert liegt. Eine Einstellung auf eine konstante Entladeleistung erhöht den Wirkungsgrad des Kurzzeit-Energiespeichers während des regulären Boostens. Das schließt jedoch nicht aus, dass im Rahmen der Erfindung während des Boostens bei entsprechender Leistungsanfrage des Verbrauchers auch von der konstanten Entladeleistung abgewichen werden kann, insbesondere wenn der Ladezustand des Kurzzeit-Energiespeichers nach einer Ladephase nahe dem Maximalwert liegt.
  • Nach einer Ausgestaltung wird über die Leistungssteuerung für den Kurzzeit-Energiespeicher eine untere Ladezustandsgrenze und obere Ladezustandsgrenze definiert. Demnach kann sich der Kurzzeit-Energiespeicher bis auf eine festgelegte untere Ladezustandsgrenze entladen, die durch den unteren Spannungsstellbereich des Wechselrichters beziehungsweise den nutzbaren Ladezustandsbereich des Kurzzeit-Energiespeichers definiert ist.
  • Die untere Ladezustandsgrenze ist als 25% der oberen Ladezustandsgrenze definiert. Auch diese Ausgestaltung dient der Wirkungsgradoptimierung, da bei höherer Spannung die Verluste durch den Innenwiderstand des Kurzzeit-Energiespeichers geringer sind. Dem wird Rechnung getragen, wenn der Arbeitsbereich des Kurzzeit-Energiespeichers in möglichst hohen Spannungsbereichen oberhalb der definierten unteren Ladezustandsgrenze für die Entladung liegt.
  • Wenn nach einem weiteren Merkmal der Erfindung die Leistungsabgabe des Kurzzeit-Energiespeichers nahe der Schaltgrenze zwischen Boostbetrieb und Normalbetrieb reduziert wird, lassen sich ebenfalls harte Lastanforderungen an den Verbrennungsmotor beim Abschalten des Kurzzeit-Energiespeichers vermeiden. Dies wirkt sich positiv auf Verbrauch und Abgasverhalten des Verbrennungsmotors aus.
  • Die Rückspeisefähigkeit des Hybridantriebssystems des Krans wird in vorteilhafter Weise dadurch erhöht, dass das Wippwerk einen Hydraulikzylinder und eine Hydraulikpumpe umfasst und der die Hydraulikpumpe antreibende Elektromotor rückspeisefähig ist.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung erläutert. Es zeigt:
    • Figur 1 eine Ansicht eines Hafenmobilkrans und
    • Figur 2 ein Blockschaltbild eines Hybridantriebes des Hafenmobilkranes nach Figur 1.
  • Die Figur 1 zeigt eine Ansicht eines Hafenmobilkrans 1 für den Umschlag von normierten Behältern, insbesondere von ISO-Containern, zwischen Land und Wasser beziehungsweise umgekehrt beziehungsweise innerhalb von Container-Terminals. Auch kann der Hafenmobilkran 1 mit einem Greifer zum Umschlag von Schüttgütern ausgerüstet werden. Der Hafenmobilkran 1 besteht im Wesentlichen aus einem Unterwagen 2 und einem Oberwagen 3 mit einem Turm 4 und einem Ausleger 5. In üblicher Weise wird der Hafenmobilkran 1 über seinem Unterwagen 2 auf dem Land, hier einen Kai 7, abgestützt. Über den Unterwagen 2 mit Radreifenfahrwerken 6 ist der Hafenmobilkran 1 auf dem Kai 7 verfahrbar und wird während des Umschlagbetriebes über Stützen 8 auf diesem abgestützt. Auch ist es möglich, dass der Hafenmobilkrans 1 auf Schienen verfahrbar oder stationär auf einem Schwimmponton befestigt wird. Auf dem Unterwagen 2 ist der Oberwagen 3 gelagert, der von einem Drehwerk d um eine vertikale Drehachse D schwenkbar ist. Das Drehwerk d weist üblicher Weise einen Drehkranz im Eingriff mit einem Antriebszahnrad auf. Der Oberwagen 3 trägt auch ein Hubwerk h und im Rückwärtigen Bereich ein Gegengewicht 9. Auch ist auf dem Oberwagen 3 der sich in Vertikalrichtung erstreckende Turm 4 abgestützt, an dessen Spitze ein Rollenkopf 10 mit Seilscheiben befestigt ist. Des Weiteren ist an dem Turm 4 etwa im Bereich seiner halben Länge und auf der dem Gegengewicht 9 abgewandten Seite der Ausleger 5 angelenkt. Der Ausleger 5 ist um eine horizontale Wippachse W schwenkbar mit dem Turm 4 verbunden und zusätzlich über ein an dem Ausleger 5 und unten an dem Oberwagen 3 angelenktes Wippwerk w, das üblicher Weise als Hydraulikzylinder ausgebildet ist, aus seiner seitlich auskragenden Betriebsstellung in eine aufrechte Ruhestellung verschwenkbar. Außerdem ist der Ausleger 5 in üblicher Weise als Gittermast ausgebildet. An der dem Turm 4 abgewandten Spitze des Auslegers 5 sind weitere Seilscheiben drehbar gelagert, über die ausgehend von dem Hubwerk h Hubseile über den Rollenkopf 10 zu der anzuhebenden Last geführt sind.
  • Die Figur 2 zeigt ein Blockschaltbild eines Hybridantriebes des Hafenmobilkranes 1 nach Figur 1. Wie eingangs beschrieben können derartige Hafenmobilkrane bezüglich ihres Antriebskonzept serielle Hybriden sein, da sie mit einem dieselelektrischen Antrieb 11 arbeiten, in denen die chemische Energie eines Dieselkraftstoffes durch einen Verbrennungsmotor 11 a in mechanische Arbeit umgewandelt wird. Der Verbrennungsmotor 11a treibt einen Drehstromgenerator 11b an, der die mechanische Energie in elektrische Energie umwandelt und in einen Wechselspannungskreis 12 speist. Der Drehstromgenerator 11 b erzeugt einen dreiphasigen Wechselstrom mit einer Spannungsebene von 440 V. Das Versorgungsnetz zur Bereitstellung von Energie für die verschiedenen Elektromotoren des Hafenmobilkranes 1 umfasst neben dem Wechselspannungskreis 12 einen Gleichspannungskreis 17, der über einen Gleichrichter 16 mit dem Wechselspannungskreis 12 verbunden ist. Durch den Gleichrichter 16 ist ein Energieaustausch zwischen dem Wechselspannungskreis 12 und dem Gleichspannungskreis 17 möglich, falls beispielsweise durch generatorisches Bremsen beziehungsweise generatorischen Betrieb eines Elektromotors zurückgewonnene elektrische Energie in einem der Spannungskreise 12, 17 ein Energieüberschuss herrscht und ein anderer Elektromotor Energiebedarf hat. An den Wechselspannungskreis 12 ist der Antrieb des Wippwerks w und an den Gleichspannungskreis 17 sind verschiedene Verbraucher, insbesondere die jeweiligen Antriebe des Hubwerks h und des Drehwerks d, angeschlossen, in denen eine erneute Umwandlung der elektrischen Energie zurück in mechanische Arbeit stattfindet, die zum Wippen des Auslegers 5, zum Heben von Lasten oder zum Drehen des Hafenmobilkranes 1 genutzt wird. Das Hubwerk h und das Drehwerk d weisen elektrische Drehstrommotoren h1, d1, vorzugsweise Asynchronmotoren, auf, die jeweils über einen Wechselrichter h2, d2 mit dem Gleichspannungskreis 17 verbunden sind. In den Wechselrichtern h2, d2 wird die Gleichspannung in Wechselspannung umgewandelt. Ebenso ist es jedoch möglich, die Drehstrommotoren h1, d1 an den Wechselspannungskreis 12 anzuschließen. Für das Wippwerk w ist ein mit konstanter Geschwindigkeit laufender Drehstrommotor w1 an den Wechselspannungskreis 12 angeschlossen, der eine Hydraulikpumpe w2, insbesondere Axialkolbenpumpe, antreibt. Die Hydraulikpumpe w2 ist mit einem Hydraulikzylinder w3 verbunden, über den der Ausleger 5 des Hafenmobilkrans 1 um die Wippachse W geschwenkt werden kann. Die Hydraulikpumpe w2 sowie der Drehstrommotor w1 können derart ausgebildet sein, dass überschüssige Energie nicht zurückführbar ist, sondern beispielsweise über Drosseln abgeführt wird. Es ist jedoch ebenso denkbar, dass die Hydraulikpumpe w2 sowie der Drehstrommotor w1 rückspeisefähig sind, so dass eine Energierückführung in den Wechselspannungskreis 12 beziehungsweise über den Gleichrichter 16 auch in den Gleichspannungskreis 17 erfolgen kann.
  • Des Weiteren sind weitere nicht dargestellte Antriebe vorhanden, die direkt mit dem Verbrennungsmotor 11 a verbunden sind oder an den Wechselspannungskreis 12 angeschlossen sind. Beispielsweise sind hier der Fahrantrieb für den Hafenmobilkran 1 oder etwaige Antriebe zum Schließen und Öffnen eines Vierseil-Schüttgutgreifers zu nennen. Entsprechende mittels Drehstrommotoren betriebene Antriebe können ebenfalls über Gleichrichter an den Gleichspannungskreis 17 angeschlossen werden. Auch ist es möglich diese Antriebe über Gleichstrommotoren zu betreiben und an den Gleichspannungskreis 17 oder über Wechselrichter an den Wechselspannungskreis 12 anzuschließen. Durch die Einrichtung sowohl des Wechselspannungskreises 12 als auch des Gleichspannungskreises 17 ist es also möglich, die für die jeweiligen Antriebe verwendeten Motoren zu variieren.
  • Um die Energie zurück zugewinnen, die beim sogenannten generatorischen Bremsen von den Drehstrommotoren d1, h1, und w1 in den Wechselspannungskreis 12 beziehungsweise in den Gleichspannungskreis 17 zurück gespeist wird, ist an den Gleichspannungskreis 17 ein Kurzzeit-Energiespeicher 13 angeschlossen. Die von diesem Kurzzeit-Energiespeicher 13 wiedergewinnbare Energie entsteht im Wesentlichen beim Absenken und Abbremsen der Last und somit durch das generatorische Bremsen des Drehstrommotors h1 des Hubwerks h. Falls eine rückspeisefähige Hydraulikpumpe w2 und ein rückspeisefähiger Drehstrommotor w1 eingesetzt werden, kann auch die von der Hydraulikpumpe w2 zurückgeführte Energie vom Kurzzeit-Energiespeicher 13 aufgenommen werden. Prinzipiell kann jedoch jeder der Elektromotoren in rückspeisefähiger Art und Weise ausgebildet und an den Wechselspannungskreis 12 oder an den Gleichspannungskreis 17 angeschlossen sein. Somit sind zumindest mittelbar beide Spannungskreise 12 und 17 des Energieversorgungsnetzes an das Energiespeichersystem beziehungsweise den Kurzzeit-Energiespeicher 13 angeschlossen.
  • Für den Fall, dass der Kurzzeit-Energiespeicher 13 keine Energie beziehungsweise weitere Energie speichern kann, ist an den Wechselspannungskreis 12 ein Bremswiderstand 14 angeschlossen. Über diesen Bremswiderstand 14 wird dann die durch das generatorische Bremsen von den Drehstrommotoren d1, h1, und w1 in den Wechselspannungskreis 12 zurück gespeiste Spannung in Wärme umgewandelt und somit vernichtet.
  • Durch die Einbindung des Kurzzeit-Energiespeichers 13 in den Gleichspannungskreis 17 ergeben sich verschiedene neue Betriebszustände für den Hybridantrieb des Hafenmobilkranes 1. Neben dem bisher üblichen Betriebszustand "Normalbetrieb", das heißt der Verbrennungsmotor 11a bedient die während des Betriebes des Hafenmobilkranes 1 auftretenden unterschiedlichen Lastanforderungen, und "Widerstands-Bremsen", in dem die - eventuell über den Gleichspannungskreis 17 - in den Wechselspannungskreis 12 zurück gespeiste Energie in den Bremswiderständen 14 in Wärme umgewandelt wird, kommen weitere Betriebszustände hinzu. Im Einzelnen sind es die Betriebszustände "Lastpunktanhebung", bei dem der Verbrennungsmotor 11 a in einem günstigeren Betriebsbereich mit einem höheren Wirkungsgrad durch Laden des Kurzzeit-Energiespeichers 13 betrieben wird, "Boosten", der die Unterstützung des Verbrennungsmotors 11a durch den Kurzzeit-Energiespeicher 13 betrifft, "Speicher-Bremsen", der das Laden des Speichers durch die in den Wechselspannungszwischenkreis 12 zurück gespeiste Energie betrifft, und "Speicher-/Widerstands-Bremsen", der eine Mischform der Betriebszustände "Speicher-Bremsen" und "Widerstands-Bremsen" ist. Für den Fall, dass der Kurzzeit-Energiespeicher 13 voll geladen ist, erfolgt ein "Widerstands-Bremsen". Der Bremswiderstand 14 ist über einen Gleichrichter 14a mit dem Wechselspannungskreis 12 verbunden, somit kann der Bremswiderstand 14 nach Bedarf geschaltet werden. Eine Steuerung erfolgt über eine Gesamtleistungsmessung. Dies ist energetisch von Vorteil.
  • Der Kurzzeit-Energiespeicher 13 ist als Doppelschichtkondensator ausgebildet, der auch als "Ultracap" oder "Supercap" bezeichnet wird. Derartige Doppelschichtkondensatoren sind langlebig, wartungsfrei und leicht sowie weisen eine geringe Energiedichte bei hoher Leistungsdichte auf. Hierdurch eignen sich diese besonders als Kurzzeit-Energiespeicher. Im Vergleich zu Batterien können von den Doppelschichtkondensatoren wesentlich höhere Leistungen aufgenommen beziehungsweise abgegeben werden. Zwar ist der Energieinhalt pro Volumen geringer als der von Batterien, doch gerade durch diese Eigenschaften zeichnen sich Doppelschichtkondensatoren hervorragend als Kurzzeit-Energiespeicher für die Verwendung in Hafenmobilkranen aus, da beim Absenken von Lasten eines Hafenmobilkrans 1 sehr hohe Leistungen jedoch geringe Energien über einen relativ kurzen Zeitraum von einigen Sekunden auftreten sowie für Beschleunigungsvorgänge beim Heben und anderen Kranbewegungen hohe Spitzenleistungen jeweils nur kurzfristig auftreten. Das Drehwerk d speist nur geringe Energiemengen zurück in den Wechselspannungszwischenkreis 12, da die Drehbewegung des Oberwagens 3 des Hafenmobilkrans 1 langsam ist und somit die Beschleunigungs- und Abbremsvorgänge kurz und energiearm sind.
  • Der Kurzzeit-Energiespeicher 13 ist unter Zwischenschaltung eines Gleichspannungswandlers 13a bidirektional an den Gleichspannungskreis 17 angeschlossen. Der Gleichspannungswandler 13a übernimmt die Spannungsanpassung an den Gleichspannungskreis 17.
  • Durch den Kurzzeit-Energiespeicher 13 lassen sich eine Reihe weiterer Funktionalitäten integrieren, mit welchen positiv auf das Betriebsverhalten des Verbrennungsmotors 11 a Einfluss genommen werden kann. Dadurch lassen sich, neben weiteren Kraftstoffeinsparungen auch erheblich die erzeugten Schadstoffemissionen reduzieren. Der Kurzzeit-Energiespeicher 13 kann einen Sanftanlauf des Verbrennungsmotors 11a durch entsprechendes Boosten ermöglichen. Damit werden schlagartige, harte Lastanforderungen an den Verbrennungsmotor 11 a vermeiden. Dieses hat positive Auswirkungen auf den transienten Verbrauch und das Abgasverhalten des Verbrennungsmotors 11a. Auch wird in Phasen positiver Leistungsanforderung eine definierbare Motorgrundlast vorgehalten. Damit wird ein schnelleres Reagieren des Verbrennungsmotors 11a bei plötzlichen Lastanforderungen ermöglicht. Weiterhin wird sichergestellt, dass die Leistung des Kurzzeit-Energiespeichers 13 nahe der Schaltgrenze zwischen "Boost"- und "Normal"-Betrieb allmählich reduziert wird. Dies vermeidet wiederum eine harte Lastanforderung an den Verbrennungsmotor 13, wenn der Boostbetrieb beendet wird.
  • Der Kurzzeit-Energiespeicher 13 wird über eine Leistungssteuerung 15, einen sogenannten Leistungskoordinator, gesteuert, d. h. die Lade- beziehungsweise Entladeleistung des Kurzzeit-Energiespeichers 13 in Betrag und Zeitdauer festgelegt. Die Leistungssteuerung 15 wird durch die verwendete Betriebsstrategie parametriert. Auch steuert der Leistungskoordinator den Übergang vom Laden des Kurzzeit-Energiespeichers 13 zum Nutzen der Bremswiderstände 14. Aufgabe der Leistungssteuerung 15 ist es somit insbesondere, dafür zu sorgen, dass überschüssige Energie direkt den an den Wechselspannungskreis 12 oder den Gleichspannungskreis 17 angeschlossenen Antrieben beziehungsweise Drehstrommotoren d1, h1 und w1 zugeführt wird, um bei einer Zwischenspeicherung im Kurzzeit-Energiespeicher 13 auftretende Verluste zu vermeiden. Erst wenn kein Verbraucher mehr Energiebedarf hat und gleichzeitig der Kurzzeit-Energiespeicher 13 noch freie Lade-Kapazität aufweist, wird eine Zwischenspeicherung vorgenommen. Die Bremswiderstände 14 dienen somit als Notsystem für den Fall, dass weder einer der Antriebsmotoren beziehungsweise Drehstrommotoren d1, h1 und w1 Energiebedarf in Höhe der zurückgespeisten Energie hat noch der Kurzzeit-Energiespeicher 13 eine entsprechende Energiemenge aufnehmen kann.
  • Als Betriebsstrategien kommen wahlweise eine Rekuperationsstrategie oder eine Downsizingstrategie zum Einsatz.
  • Im Zusammenhang mit der Rekuperationsstrategie ist das Hauptziel, die gesamte in den Wechselspannungskreis 12 beziehungsweise in den Gleichspannungskreis 17 zurück gespeiste Energie aufzunehmen und somit eine Nutzung der Bremswiderstände 14 zu vermeiden. Die Lastpunktanhebung wird bei dieser Betriebsstrategie nicht benutzt. Während des regulären Boostens wird der Kurzzeit-Energiespeicher 13 mit konstanter Leistung entladen. Diese Entladeleistung wird so gering gewählt, dass sich der Kurzzeit-Energiespeicher 13 soweit entlädt, um im nächsten Ladezyklus die ganze Rekuperationsenergie aufnehmen zu können. Damit wird ein möglichst hoher Wirkungsgrad des Kurzzeit-Energiespeichers 13 erreicht. In diesem Zusammenhang wird eine untere SOC-Grenze (state of charge, Ladestatus 0: vollständig entleert 1: vollständig geladen) für die Entladung definiert, damit der Arbeitsbereich des Kurzzeit-Energiespeichers 13 in möglichst hohen Spannungsbereichen liegt. Auch dies dient der Wirkungsgradoptimierung, da bei höherer Spannung die Verluste durch den Innenwiderstand des Kurzzeit-Energiespeichers 13 geringer sind. Auch kann während des Boostens von der konstanten Entladeleistung in einigen Fällen abgewichen werden. Es kann beispielsweise bei entsprechender Leistungsanfrage mit maximaler Entladeleistung geboostet werden, wenn der Ladezustand des Kurzzeit-Energiespeichers 13 nach einer Ladephase nahe dem Maximalwert liegt.
  • Die Downsizingstrategie sieht als Hauptziel vor, die Leistungsanforderung an den dieselelektrischen Antrieb 11 so zu begrenzen, dass ein Betrieb des Hafenmobilkrans 1 auch mit einem verkleinerten Verbrennungsmotor 11a und einem verkleinerten Drehstromgenerator 11 b ohne Leistungseinbußen möglich wäre. Um dies sicher zu stellen, nimmt der Kurzzeit-Energiespeicher 13 zusätzlich zu der in den Wechselspannungskreis 12 zurück gespeisten Energie auch durch Lastpunktanhebung des Verbrennungsmotors 11 a Ladung auf. Dieses kann durch eine obere SOC-Grenze gesteuert werden. Der Kurzzeit-Energiespeicher 13 kann sich bis auf eine festgelegte SOC-Untergrenze entladen. Diese ist durch den unteren Spannungsstellbereich des Gleichspannungswandlers 13a - SOC>0.25 - beziehungsweise den nutzbaren SOC-Bereich des Kurzzeit-Energiespeichers 13 definiert. Der Kurzzeit-Energiespeicher 13 wird bei dieser Downsizingstrategie in der Regel nur bei Erreichen der Maximalleistung des Verbrennungsmotors 11 a in den Boostzustand gehen.
  • Neben der Betriebsstrategie bestimmen weitere Faktoren über die eingestellte Leistung des Kurzzeit-Energiespeichers 13. Der verwendete Gleichspannungswandler 13a begrenzt durch seinen möglichen Spannungsstellbereich den Betrag der möglichen Leistung. Darüber hinaus findet eine Temperaturüberwachung des Kurzzeit-Energiespeichers 13 statt, um eine Verkürzung der Lebensdauer durch übermäßige Erwärmung zu verhindern.
  • Die Grundlage der Steuerung des Kurzzeit-Energiespeichers 13 mit der Leistungssteuerung 15 ist die Regelung der gemessenen Wirkleistung des Drehstromgenerators 11 b auf einen definierten Sollwert. Ein Ausregeln erfolgt durch Stellen der Speicherleistung des Kurzzeit-Energiespeichers 13. Weiterhin steuert die Leistungssteuerung 15 auch den Gleichrichter 14a des Bremswiderstands 14. Im Falle unzureichender Ladeleistung des Kurzzeit-Energiespeichers 13 wird die überschüssige Leistung in dem Bremswiderstand 14 in Wärme umgesetzt. Auf diese Weise stellen sich die zuvor beschriebenen Betriebszustände automatisch ein. Des Weiteren weist die Leistungssteuerung 15 einen Begrenzungsbaustein auf, mit dem innerhalb der Leistungssteuerung 15 die gewählte Betriebsstrategie und somit die zugehörigen Parameter realisiert werden. Die vom Kurzzeit-Energiespeicher 13 abhängigen Schaltgrenzen, die Limitierung durch den Spannungsstellbereich des Gleichspannungswandlers 13a und die Temperaturüberwachung sind darin umgesetzt. Der variable Anstieg stellt eine definierbare Rampenzeit für den Gleichspannungswandler 13a des Kurzzeit-Energiespeichers 13 dar. Damit werden der Sanftanlauf des Verbrennungsmotors 11 a und der weiche Austritt aus dem Boostvorgang gewährleistet.
  • Der Kurzzeit-Energiespeiches 13 kann durch seine modulare Bauweise der Baugruppen und Funktionalitäten auch als Erweiterung in bestehende Hafenmobilkrane 1 nachgerüstet werden. Darüber hinaus gewährleistet der Erhalt der Bremswiderstände 14 neben dem Kurzzeit-Energiespeicher 13, dass der Hafenmobilkran 1 bei Ausfall des Kurzzeit-Energiespeichers 13 seinen Betrieb fortsetzen kann.
  • Die Leistungssteuerung 15 und die Betriebsstrategie sind in einer programmierbaren Logiksteuerung (PLC, programmable logic controller) implementiert, die den Gleichspannungswandler 13a und damit den Kurzzeit-Energiespeicher 13 steuert. Die Grundlage für die Leistungssteuerung 15 ist das analoge Signal eines Wirkleistungsmessers 11c, der kontinuierlich die Leistungsabgabe des Drehstromgenerators 11b misst und diese Information dem Gleichrichter 14a der Bremswiderstände 14 und dem Gleichspannungswandler 13a des Kurzzeit-Energiespeichers 13 zur Verfügung stellt. Der Bremswiderstand 14 verbleibt im System und kommt zum Einsatz, wenn falls der Kurzzeit-Energiespeicher 13 nicht die gesamte Bremsenergie aufnehmen kann oder ausfällt.
  • Die Leistungssteuerung 15 kommuniziert über ein Bussystem mit einer übergeordneten und nicht dargestellten Hauptsteuerung des Hafenmobilkranes 1. Je nach dem welche Bussysteme die Steuerungen verwenden, erfolgt die Kommunikation über eine Schnittstelle. Beispielsweise verwendet die Leistungssteuerung 15 zur Kommunikation mit dem Kurzzeit-Energiespeicher 13 einen J1939 BUS und zur Kommunikation mit dem Gleichspannungswandler 13a einen CAN OPEN BUS kommuniziert, der auch von der Hauptsteuerung des Hafenmobilkranes 1 verwendet wird.
  • Bezugszeichenliste
  • 1
    Hafenmobilkran
    2
    Unterwagen
    3
    Oberwagen
    4
    Turm
    5
    Ausleger
    6
    Radreifenfahrwerk
    7
    Kai
    8
    Stützen
    9
    Gegengewicht
    10
    Rollenkopf
    11
    dieselelektrischer Antrieb
    11a
    Verbrennungsmotor
    11b
    Drehstromgenerator
    11c
    Wirkleistungsmesser
    12
    Wechselspannungskreis
    13
    Kurzzeit-Energiespeicher
    13a
    Gleichspannungswandler
    14
    Bremswiderstand
    14a
    Gleichrichter
    15
    Leistungssteuerung
    16
    Gleichrichter
    17
    Gleichspannungskreis
    d
    Drehwerk
    d1
    Drehstrommotor
    d2
    Wechselrichter
    h
    Hubwerk
    h1
    Drehstrommotor
    h2
    Wechselrichter
    w
    Wippwerk
    w1
    Drehstrommotor
    w2
    Hydraulikpumpe
    w3
    Hydraulikzylinder
    D
    Drehachse
    W
    Wippachse

Claims (14)

  1. Kran, insbesondere Hafenmobilkran (1), mit einem dieselelektrischen Antrieb (11), dessen Drehstromgenerator (11 b) einen Wechselspannungskreis (12) speist, mit einem an dem Wechselspannungskreis (12) angeschlossenen Gleichspannungskreis (17), mit Elektromotoren, die mindestens ein Drehwerk (d), ein Hubwerk (h) und ein Wippwerk (w) des Krans antreiben, mit mindestens einem Bremswiderstand (14) und mit einem Kurzzeit-Energiespeicher (13), der zur Zwischenspeicherung von überschüssiger Energie an den Wechselspannungskreis (12) oder an den Gleichspannungskreis (17) angeschlossen ist, dadurch gekennzeichnet, dass mindestens einer der Elektromotoren an dem Wechselspannungskreis (12) angeschlossen ist, mindestens einer der Elektromotoren an dem Gleichspannungskreis (17) angeschlossen ist und der Wechselspannungskreis (12) mit dem Gleichspannungskreis (17) über einen Gleichrichter (16) derart verbunden ist, dass ein Energieaustausch zwischen dem Wechselspannungskreis (12) und dem Gleichspannungskreis (17) möglich ist.
  2. Kran nach Anspruch 1, dadurch gekennzeichnet, dass zumindest die Elektromotoren (h1, w1) des Hubwerks (h) und des Wippwerks (w) zur Rückspeisung von elektrischer Energie in den Wechselspannungskreis (12) beziehungsweise in den Gleichspannungskreis (17) generatorisch betreibbar sind.
  3. Kran nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Elektromotoren (d1, h1, w1) als Drehstrommotoren ausgebildet sind.
  4. Kran nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Kurzzeit-Energiespeicher (13) über einen Gleichspannungswandler (13a) an den Gleichspannungskreis (17) angeschlossen ist.
  5. Kran nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Kurzzeit-Energiespeicher (13) als Doppelschichtkondensator ausgebildet ist.
  6. Kran nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Bremswiderstand (14) über einen Gleichrichter (14a) an den Wechselspannungskreis (12) angeschlossen ist.
  7. Kran nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest der Elektromotor (w1) des Wippwerks (w) an den Wechselspannungskreis (12) angeschlossen ist.
  8. Kran nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Drehwerk (d) einen Drehstrommotor (d1) aufweist, der über einen Wechselrichter (d2) an den Gleichspannungskreis (17) angeschlossen ist, das Hubwerk (h) einen Drehstrommotor (h1) aufweist, der über einen Wechselrichter (h2) an den Gleichspannungskreis (17) angeschlossen ist, und das Wippwerk (w) einen Drehstrommotor (w1) aufweist, der direkt an den Wechselspannungskreis (12) angeschlossen ist.
  9. Kran nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass eine Leistungssteuerung (15), die über eine Betriebsstrategie eingestellt ist, mit dem dieselelektrischen Antrieb (11), dem Bremswiderstand (14) beziehungsweise dessen Gleichrichter (14a), dem Kurzzeit-Energiespeicher (13) und dem Gleichspannungswandler (13a) des Kurzzeit-Energiespeicher (13) verbunden ist und auf der Grundlage der Daten eines dem Drehstromgenerator (11b) zugeordneten Wirkleistungsmessers (11c) und dem Ladezustand des Kurzzeit-Energiespeichers (13) den Kurzzeit-Energiespeicher (13) und bei Bedarf den Bremswiderstand (14) ansteuert.
  10. Kran nach Anspruch 9, dadurch gekennzeichnet, dass über die Leistungssteuerung (15) der Kurzzeit-Energiespeicher (13) während eines regulären Boostens des dieselelektrischen Antriebs (11) auf eine konstante Entladeleistung eingestellt ist oder über die Leistungssteuerung (15) derart eingestellt ist, dass während des Boostens des dieselelektrischen Antriebs (11) bei entsprechender Leistungsanfrage abweichend von der konstanten Entladeleistung eine höhere Entladeleistung zur Verfügung gestellt wird, wenn der Ladezustand des Kurzzeit-Energiespeichers (13) nach einer Ladephase nahe dem Maximalwert liegt.
  11. Kran nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass über die Leistungssteuerung (15) für den Kurzzeit-Energiespeicher (13) eine untere Ladezustandsgrenze und obere Ladezustandsgrenze definiert ist.
  12. Kran nach Anspruch 11, dadurch gekennzeichnet, dass die untere Ladezustandsgrenze als 25% der oberen Ladezustandsgrenze definiert ist.
  13. Kran nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass über die Leistungssteuerung (15) die Leistungsabgabe des Kurzzeit-Energiespeichers (13) nahe der Schaltgrenze zwischen Boostbetrieb und Normalbetrieb des dieselelektrischen Antriebs (11) reduziert wird.
  14. Kran nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Wippwerk (w) einen Hydraulikzylinder (w3) und eine Hydraulikpumpe (w2) umfasst und der die Hydraulikpumpe (w2) antreibende Elektromotor (w1) rückspeisefähig ist.
EP11703451.2A 2010-02-11 2011-02-10 Kran, insbesondere hafenmobilkran, mit einem hybridantriebssystem Active EP2534085B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11703451T PL2534085T3 (pl) 2010-02-11 2011-02-10 Żuraw, a zwłaszcza ruchomy żuraw portowy z układem napędu hybrydowego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010007545A DE102010007545A1 (de) 2010-02-11 2010-02-11 Kran, insbesondere Hafenmobilkran, mit einem Hybridantriebssystem
PCT/EP2011/051999 WO2011098542A1 (de) 2010-02-11 2011-02-10 Kran, insbesondere hafenmobilkran, mit einem hybridantriebssystem

Publications (2)

Publication Number Publication Date
EP2534085A1 EP2534085A1 (de) 2012-12-19
EP2534085B1 true EP2534085B1 (de) 2013-12-04

Family

ID=43896795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11703451.2A Active EP2534085B1 (de) 2010-02-11 2011-02-10 Kran, insbesondere hafenmobilkran, mit einem hybridantriebssystem

Country Status (11)

Country Link
US (1) US9056752B2 (de)
EP (1) EP2534085B1 (de)
JP (1) JP5778186B2 (de)
KR (1) KR101823168B1 (de)
DE (1) DE102010007545A1 (de)
DK (1) DK2534085T3 (de)
ES (1) ES2448419T3 (de)
PL (1) PL2534085T3 (de)
PT (1) PT2534085E (de)
SG (1) SG182796A1 (de)
WO (1) WO2011098542A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743465A (zh) * 2015-03-27 2015-07-01 河南机电高等专科学校 一种起重机刹车蓄能机构

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484442B (zh) * 2009-09-11 2016-02-24 东芝三菱电机工业系统有限公司 燃油高效起重机系统
JP5682744B2 (ja) * 2010-03-17 2015-03-11 コベルコ建機株式会社 作業機械の旋回制御装置
JP5686715B2 (ja) * 2011-10-18 2015-03-18 住友重機械搬送システム株式会社 昇降装置
DE102012010759A1 (de) * 2012-05-31 2013-12-05 Wolffkran Holding Ag Elektrohydraulische Vorrichtung zur Verstellung eines Auslegers
DE102012010760A1 (de) * 2012-05-31 2013-12-05 Wolffkran Holding Ag Elektrohydraulische Vorrichtung mit Drehstromasynchronmotor zur Verstellung eines Ausleger
DE102013215750A1 (de) 2013-08-09 2015-02-12 Robert Bosch Gmbh Ventilblock zur Bewegung eines Kran-Auslegers
DE102014202784A1 (de) * 2014-02-17 2015-08-20 Robert Bosch Gmbh Ventilblock zur Bewegung eines Kran-Auslegers
DE102015202734A1 (de) 2015-02-16 2016-08-18 Terex Cranes Germany Gmbh Kran und Verfahren zum Beeinflussen einer Verformung eines Auslegersystems eines derartigen Krans
NO343495B1 (en) 2015-07-14 2019-03-25 Mhwirth As A hybrid winch system
DE102015119381B3 (de) 2015-11-10 2017-04-27 Terex Global Gmbh Mobilkran und Verfahren zum Abwinkeln einer Hauptauslegerverlängerung relativ zu einem Hauptausleger eines Mobilkrans
DE102015119379B3 (de) 2015-11-10 2017-03-30 Terex Global Gmbh Mobilkran und Verfahren zum Abwinkeln einer Hauptauslegerverlängerung relativ zu einem Hauptausleger eines Mobilkrans
DE102015120350B3 (de) 2015-11-24 2017-05-24 Terex Global Gmbh Mobilkran zum Abwinkeln einer Hauptauslegerverlängerung relativ zu einem Hauptausleger eines Mobilkrans
CN106672818A (zh) * 2016-10-26 2017-05-17 泰富重工制造有限公司 一种门座式起重机
IT201800003793A1 (it) 2018-03-20 2019-09-20 Soilmec Spa Macchina perforatrice dotata di un dispositivo di movimentazione della batteria di perforazione a frenata elettrica.
CN108313892B (zh) * 2018-04-16 2023-11-28 中国装饰股份有限公司 一种石材就位运输车
DE102018127125A1 (de) * 2018-10-30 2020-04-30 Konecranes Global Corp. Hafenkran mit einem verbesserten Antriebssystem
DE102018127124A1 (de) 2018-10-30 2020-04-30 Konecranes Global Corp. Hafenmobilkran mit einem verbesserten Energieversorgungssystem
CN110371864B (zh) * 2019-07-02 2021-04-20 福建诚恒意建设有限公司 一种稳定性高的具有调节功能的吊车
DE102019133048A1 (de) 2019-12-04 2021-06-10 Liebherr-Werk Nenzing Gmbh Vorrichtung zur Notversorgung eines Hochvoltbordnetzes
DE102020109511A1 (de) 2020-04-06 2021-10-07 Konecranes Global Corporation Verfahren zum Heben und/oder Senken einer Last mittels eines Hubwerks
DE102020118885A1 (de) 2020-07-16 2022-01-20 Konecranes Global Corporation Kran mit verbessertem Blendschutz für dessen Bedienperson und Verfahren zur Anwendung des verbesserten Blendschutzes
DE102020120699A1 (de) 2020-08-05 2022-02-10 Konecranes Global Corporation Auslegerdrehkran mit einer Kamera sowie Verfahren zur Reduzierung von Lastpendelungen im Kranbetrieb
CN112610568B (zh) * 2020-12-08 2023-03-28 沈阳建筑大学 一种塔机动臂势能回收及再利用液压系统
CN114336713A (zh) * 2022-01-06 2022-04-12 长沙中塔智能科技有限公司 一种基于塔吊的供电系统
EP4215717B1 (de) * 2022-01-19 2023-12-06 BAUER Maschinen GmbH Baumaschine und verfahren zum betreiben einer baumaschine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319723A (ja) * 1992-05-18 1993-12-03 Mitsubishi Electric Corp 油圧エレベータの制御装置
DE19530110C2 (de) * 1995-08-16 1998-09-17 Vulkan Kocks Gmbh Antriebssystem für Hebezeuge mit Energieausgleichseinrichtung
JPH10164862A (ja) * 1996-12-02 1998-06-19 Toshiba Corp 電力変換装置
JP2000201492A (ja) * 1998-12-28 2000-07-18 Ishikawajima Transport Machinery Co Ltd 電動機の駆動方法及び装置
JP2004180467A (ja) * 2002-11-29 2004-06-24 Hitachi Home & Life Solutions Inc 系統連系形電源システム
JP2004289950A (ja) * 2003-03-24 2004-10-14 Toshiba Elevator Co Ltd 電源システム
JP2005218229A (ja) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp 風力発電設備
DE102004010988A1 (de) 2004-03-03 2005-09-29 Noell Mobile Systems & Cranes Gmbh Hybridantriebssystem für einen Portalhubstapler
US7378808B2 (en) * 2004-05-25 2008-05-27 Caterpillar Inc. Electric drive system having DC bus voltage control
DE102004028353A1 (de) * 2004-06-11 2006-01-12 Siemens Ag Energiemanagementsystem einer Transporteinrichtung
JP2006238515A (ja) * 2005-02-22 2006-09-07 Ishikawajima Harima Heavy Ind Co Ltd 負荷駆動装置
JP4756877B2 (ja) * 2005-02-25 2011-08-24 大阪瓦斯株式会社 発電システム
JP4723881B2 (ja) 2005-03-08 2011-07-13 三成研機株式会社 ジブクレーン
WO2006109415A1 (ja) * 2005-04-11 2006-10-19 Fujitec Co., Ltd. 昇降機の制御装置
JP2007192031A (ja) * 2006-01-17 2007-08-02 Nachi Fujikoshi Corp インバータ駆動液圧装置
CN100408466C (zh) * 2006-01-27 2008-08-06 上海振华港口机械(集团)股份有限公司 轮胎式龙门集装箱起重机的节能控制系统
WO2007143841A1 (en) * 2006-06-13 2007-12-21 Railpower Technologies Corp. Load-lifting apparatus and method of storing energy for the same
JP4417948B2 (ja) * 2006-11-24 2010-02-17 株式会社日立製作所 鉄道車両の駆動制御装置
DE102006055749A1 (de) * 2006-11-25 2008-05-29 Noell Mobile Systems Gmbh Portalhubstapler mit einem emissions- und wartungsarmen Turbinenantrieb
JP2009242088A (ja) 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd クレーン装置
JP5704676B2 (ja) * 2008-06-25 2015-04-22 住友重機械工業株式会社 ハイブリッド型作業機械
CN102484442B (zh) * 2009-09-11 2016-02-24 东芝三菱电机工业系统有限公司 燃油高效起重机系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743465A (zh) * 2015-03-27 2015-07-01 河南机电高等专科学校 一种起重机刹车蓄能机构

Also Published As

Publication number Publication date
EP2534085A1 (de) 2012-12-19
PL2534085T3 (pl) 2014-05-30
JP5778186B2 (ja) 2015-09-16
US9056752B2 (en) 2015-06-16
KR20120130084A (ko) 2012-11-28
ES2448419T3 (es) 2014-03-13
JP2013520147A (ja) 2013-05-30
WO2011098542A1 (de) 2011-08-18
PT2534085E (pt) 2014-02-17
DK2534085T3 (en) 2014-02-24
SG182796A1 (en) 2012-08-30
KR101823168B1 (ko) 2018-01-29
US20120305513A1 (en) 2012-12-06
DE102010007545A1 (de) 2011-08-11

Similar Documents

Publication Publication Date Title
EP2534085B1 (de) Kran, insbesondere hafenmobilkran, mit einem hybridantriebssystem
EP1753637B1 (de) Energiemanagementsystem einer transporteinrichtung
EP3350111B1 (de) Elektrisch angetriebene arbeitsmaschine mit rückleistungsspeicherung sowie verfahren
DE102010063911A1 (de) Kran
EP3313770B1 (de) Kran sowie verfahren zu dessen steuerung
EP2539989A2 (de) Antriebssystem und arbeitsmaschine
EP1526980B8 (de) Elektrische antriebsquelle für motorischen antrieb und fahrzeug mit einer solchen antriebsquelle
DE102004010988A1 (de) Hybridantriebssystem für einen Portalhubstapler
US20210175741A1 (en) Device for the emergency supply of a high voltage onboard network
EP3873843B1 (de) Hafenmobilkran mit einem verbesserten energieversorungssystem
DE10346796A1 (de) Dieselektrischer Portalhubstapler mit vermindertem Kraftstoffverbrauch und Energiespeicher
AT525170B1 (de) Regelungsverfahren für eine Regelung eines Ladestandes einer Batterievorrichtung in einem Hybrid-Antriebssystem
EP2514706B1 (de) Hebezeug und Verfahren zum Betreiben des Hebezeugs
WO2020089151A1 (de) Hafenkran mit einem verbesserten antriebssystem
WO2024256053A1 (de) Baumaschine mit gleichspannungsbordnetz
DE102022127920A1 (de) Elektrifizierte Bau- und/oder Materialumschlagsmaschine, insbesondere Kran
DE202004021457U1 (de) Hybridantrieb für einen Portalhubstapler
DE102021212830A1 (de) Kran, insbesondere Mobilkran
EP4292972A1 (de) Kran für ein schiff sowie schiff mit einem solchen
DE102011106538A1 (de) Arbeitsmaschine
DE20321122U1 (de) Dieselelektrischer Portalhubstapler mit vermindertem Kraftstoffverbrauch und Energiespeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 643454

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001752

Country of ref document: DE

Effective date: 20140130

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140210

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140220

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2448419

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140313

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20140400144

Country of ref document: GR

Effective date: 20140224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001752

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TEREX MHPS GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140210

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

26N No opposition filed

Effective date: 20140905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001752

Country of ref document: DE

Effective date: 20140905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011001752

Country of ref document: DE

Representative=s name: MOSER GOETZE & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011001752

Country of ref document: DE

Owner name: KONECRANES GLOBAL CORP., FI

Free format text: FORMER OWNER: GOTTWALD PORT TECHNOLOGY GMBH, 40597 DUESSELDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011001752

Country of ref document: DE

Owner name: KONECRANES GLOBAL CORPORATION, FI

Free format text: FORMER OWNER: GOTTWALD PORT TECHNOLOGY GMBH, 40597 DUESSELDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011001752

Country of ref document: DE

Owner name: TEREX MHPS GMBH, DE

Free format text: FORMER OWNER: GOTTWALD PORT TECHNOLOGY GMBH, 40597 DUESSELDORF, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110210

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011001752

Country of ref document: DE

Representative=s name: MOSER GOETZE & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011001752

Country of ref document: DE

Owner name: KONECRANES GLOBAL CORP., FI

Free format text: FORMER OWNER: TEREX MHPS GMBH, 40597 DUESSELDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011001752

Country of ref document: DE

Owner name: KONECRANES GLOBAL CORPORATION, FI

Free format text: FORMER OWNER: TEREX MHPS GMBH, 40597 DUESSELDORF, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180531 AND 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: KONECRANES GLOBAL CORPORATION; FI

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), FUSION; FORMER OWNER NAME: DEMAG CRANES & COMPONENTS GMBH

Effective date: 20180516

Ref country code: BE

Ref legal event code: PD

Owner name: TEREX MHPS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), FUSION; FORMER OWNER NAME: GOTTWALD PORT TECHNOLOGY GMBH

Effective date: 20180516

Ref country code: BE

Ref legal event code: HC

Owner name: DEMAG CRANES & COMPONENTS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: TEREX MHPS GMBH

Effective date: 20180516

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 643454

Country of ref document: AT

Kind code of ref document: T

Owner name: KONECRANES GLOBAL CORPORATION, FI

Effective date: 20180716

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: KONECRANES GLOBAL CORPORATION; FI

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: GOTTWALD PORT TECHNOLOGY GMBH

Effective date: 20180712

Ref country code: NL

Ref legal event code: HC

Owner name: DEMAG CRANES & COMPONENTS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: TEREX MHPS GMBH

Effective date: 20180712

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: KONECRANES GLOBAL CORPORATION

Effective date: 20181024

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: KONECRANES GLOBAL CORPORATION

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20200219

Year of fee payment: 10

Ref country code: GB

Payment date: 20200219

Year of fee payment: 10

Ref country code: ES

Payment date: 20200322

Year of fee payment: 10

Ref country code: GR

Payment date: 20200211

Year of fee payment: 10

Ref country code: SE

Payment date: 20200220

Year of fee payment: 10

Ref country code: FI

Payment date: 20200220

Year of fee payment: 10

Ref country code: PT

Payment date: 20200205

Year of fee payment: 10

Ref country code: PL

Payment date: 20200123

Year of fee payment: 10

Ref country code: DK

Payment date: 20200224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200219

Year of fee payment: 10

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210906

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20250220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20250217

Year of fee payment: 15

Ref country code: BE

Payment date: 20250218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20250228

Year of fee payment: 15