Nothing Special   »   [go: up one dir, main page]

EP2270249A1 - AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen - Google Patents

AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen Download PDF

Info

Publication number
EP2270249A1
EP2270249A1 EP09164221A EP09164221A EP2270249A1 EP 2270249 A1 EP2270249 A1 EP 2270249A1 EP 09164221 A EP09164221 A EP 09164221A EP 09164221 A EP09164221 A EP 09164221A EP 2270249 A1 EP2270249 A1 EP 2270249A1
Authority
EP
European Patent Office
Prior art keywords
hot
strip
aluminum
rolling
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09164221A
Other languages
English (en)
French (fr)
Other versions
EP2270249B1 (de
EP2270249B2 (de
Inventor
Henk-Jan Brinkman
Thomas Dr. Wirtz
Dietmar Schröder
Eike Brünger
Kai-Friedrich Karhausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Aluminium Deutschland GmbH
Original Assignee
Hydro Aluminium Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40910784&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2270249(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hydro Aluminium Deutschland GmbH filed Critical Hydro Aluminium Deutschland GmbH
Priority to EP09164221.5A priority Critical patent/EP2270249B2/de
Priority to ES09164221T priority patent/ES2426226T3/es
Priority to KR1020127001479A priority patent/KR101401060B1/ko
Priority to RU2012102976/02A priority patent/RU2516214C2/ru
Priority to EP10723562.4A priority patent/EP2449145B1/de
Priority to CN201080029594.9A priority patent/CN102498229B/zh
Priority to ES10723562T priority patent/ES2746846T3/es
Priority to JP2012518057A priority patent/JP5981842B2/ja
Priority to CA2766327A priority patent/CA2766327C/en
Priority to PCT/EP2010/057071 priority patent/WO2011000635A1/de
Publication of EP2270249A1 publication Critical patent/EP2270249A1/de
Priority to US13/340,225 priority patent/US10047422B2/en
Publication of EP2270249B1 publication Critical patent/EP2270249B1/de
Priority to US14/928,122 priority patent/US10612115B2/en
Publication of EP2270249B2 publication Critical patent/EP2270249B2/de
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the invention relates to a method for producing a strip from an AlMgSi alloy, in which an ingot of AlMgSi alloy is cast, the roll ingot is subjected to homogenization, the roll bar rolled to rolling temperature is hot rolled and then optionally cold rolled to final thickness. Moreover, the invention relates to an aluminum strip of an AlMgSi alloy and its advantageous use.
  • AlMgSi alloys whose main alloying components are magnesium and Are silicon, have relatively high strength at the same time good forming behavior and excellent corrosion resistance.
  • AlMgSi alloys are the alloy types AA6XXX, for example, the alloy types AA6016, AA6014, AA6181, AA6060 and AA6111.
  • aluminum tapes of AlMgSi alloy are produced by casting a roll bar, homogenizing the roll bar, hot rolling the roll bar, and cold rolling the hot strip. The homogenisation of the rolling ingot takes place at a temperature of 380 to 580 ° C for more than one hour.
  • the tapes can be delivered in condition T4.
  • the state T6 is set after quenching by thermal aging at temperatures between 100 ° C and 220 ° C.
  • the problem is that coarse Mg 2 Si precipitates are present in hot-rolled aluminum strips of AlMgSi alloys, which are broken and reduced in the subsequent cold rolling by high degrees of deformation.
  • Hot strips of AlMgSi alloy are usually produced in thicknesses of 3 mm to 12 mm and fed to a cold rolling with high degrees of deformation. Since the temperature range in which the AlMgSi phases form, is traversed very slowly during conventional hot rolling, these phases form very coarse.
  • the temperature range for forming the above-mentioned phases is alloy-dependent but is between 550 ° C and 230 ° C. It was experimentally proven that these coarse phases in the hot strip negatively influence the elongation of the end product. This means that the forming behavior of Aluminum strips of AlMgSi alloys could not be fully exploited.
  • the present invention is therefore based on the object to provide a method for producing an aluminum strip of an AlMgSi alloy and an aluminum strip available, which has a higher elongation in the state T4 and thus allows higher degrees of deformation in the production of structural components.
  • the present invention is based on the object to propose advantageous uses of a sheet produced from the aluminum strip according to the invention.
  • the above-described object is achieved for a method for producing a strip of an AlMgSi alloy, that the hot strip immediately after the discharge from the last hot roll pass a temperature of 130 ° C, preferably a temperature of has a maximum of 100 ° C and the hot strip is wound at this or a lower temperature.
  • the size of the Mg 2 Si precipitates in a hot strip of an AlMgSi alloy can be significantly reduced by quenching, ie by accelerated cooling. Due to the rapid cooling from a hot strip temperature between 230 ° C and 550 ° C to a maximum of 130 ° C, preferably at most 100 ° C at the outlet of the last hot roll pass, the microstructure state of the hot strip is frozen, so that coarse precipitates can no longer form.
  • the resulting aluminum strip after solution heat treatment and quenching to final thickness, exhibits significantly improved elongation at conventional T4 state strengths and an equal or even improved curability to state T6. This combination of properties has not yet been achieved for strips of AlMgSi alloys.
  • this cooling process takes place within the last two hot rolling passes, i. cooling to 130 ° C and less takes place within seconds, within a maximum of five minutes. It has been shown that in this procedure, the increased elongation values at the usual strength or expansion limits in the condition T4 and the improved hardenability in the condition T6 are achieved particularly reliably.
  • a particularly economical realization of the method is achieved by quenching the hot strip itself to coiling temperature using at least one sinker cooler and the hot rolling passes applied with emulsion.
  • a board cooler consists of an array of coolant or lubricant nozzles which spray a rolling emulsion onto the aluminum strip.
  • the sinker cooler is often present in a hot rolling mill to cool rolled hot strip to roll temperature before hot rolling and to set the coiling temperature.
  • the method according to the invention can thus be used on conventional systems without special ancillary equipment.
  • the hot rolling temperature is above the recrystallization temperature of a metal, that is, above 230 ° C for aluminum.
  • the coiling temperature is 130 ° C but well below these normal process conditions.
  • the hot rolling temperature of the hot strip prior to the penultimate hot rolling pass at least 230 ° C, preferably above 400 ° C is achieved according to a next embodiment of the method that particularly small Mg 2 Si precipitates are present in the quenched hot strip, since the largest proportion of alloying components Magnesium and silicon are present at these temperatures in the dissolved state in the aluminum matrix.
  • This advantageous state of the hot strip is quasi “frozen” by quenching.
  • the thickness of the finished hot strip is 3 mm to 12 mm, preferably 3.5 mm to 8 mm, so that conventional cold rolling stands for cold rolling can be used.
  • the aluminum alloy used is of the alloy type AA6xxx, preferably AA6014, AA6016, AA6060, AA6111 or AA6181.
  • All alloy types AA6xxx have in common that they have a particularly good forming behavior characterized by high elongation values in the state T4 and very high strength or yield strength in use state T6, for example, after a heat aging at 205 ° C / 30 min.
  • An aluminum alloy of the type AA6016 has the following alloy constituents in percent by weight: 0 . 25 % ⁇ mg ⁇ 0 . 6 % . 1 . 0 % ⁇ Si ⁇ 1 . 5 % . Fe ⁇ 0 . 5 % . Cu ⁇ 0 . 2 % . Mn ⁇ 0 . 2 % . Cr ⁇ 0 . 1 % . Zn ⁇ 0 . 1 % . Ti ⁇ 0 . 1 % and residual Al and unavoidable impurities in the sum total of 0.15%, individually a maximum of 0.05%.
  • the manganese content of less than 0.2% by weight reduces the tendency to form coarser manganese precipitates.
  • chromium ensures a fine microstructure, it should be limited to 0.1% by weight in order to avoid coarse precipitation.
  • the presence of manganese improved the weldability by reducing the tendency to crack or quenching sensitivity of the aluminum strip according to the invention.
  • a reduction of the zinc content to a maximum of 0.1% by weight improves in particular the corrosion resistance of the aluminum alloy or of the finished sheet in the respective application.
  • titanium provides grain refining during casting, but should be limited to a maximum of 0.1% by weight to ensure good castability of the aluminum alloy.
  • An aluminum alloy of the type AA6060 has the following alloy constituents in percent by weight: 0 . 35 % ⁇ mg ⁇ 0 . 6 % . 0 . 3 % ⁇ Si ⁇ 0 . 6 % . 0 . 1 % ⁇ Fe ⁇ 0 . 3 % Cu ⁇ 0 . 1 % . Mn ⁇ 0 . 1 % . Cr ⁇ 0 . 05 % . Zn ⁇ 0 . 10 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%.
  • the combination of a precisely predetermined magnesium content with a reduced Si content and narrowly specified Fe content in comparison to the first embodiment results in an aluminum alloy in which the formation of Mg 2 Si precipitates after hot rolling can be prevented particularly well by the method according to the invention, so that a sheet with improved elongation and high yield strengths can be provided compared to conventionally produced sheets.
  • the lower upper limits of the alloy components Cu, Mn and Cr additionally reinforce the effect of the method according to the invention. With regard to the effects of the upper limit of Zn and Ti, reference is made to the comments on the first embodiment of the aluminum alloy.
  • An aluminum alloy of type AA6014 has the following alloy constituents in percent by weight: 0 . 4 % ⁇ mg ⁇ 0 . 8th % . 0 . 3 % ⁇ Si ⁇ 0 . 6 % . Fe ⁇ 0 . 35 % Cu ⁇ 0 . 25 % . 0 . 05 % ⁇ Mn ⁇ 0 . 20 % . Cr ⁇ 0 . 20 % . Zn ⁇ 0 . 10 % . 0 . 05 % ⁇ V ⁇ 0 . 20 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%.
  • An AA6181 aluminum alloy has the following alloy components in weight percent: 0 . 6 % ⁇ mg ⁇ 1 . 0 % . 0 . 8th % ⁇ Si ⁇ 1 . 2 % . Fe ⁇ 0 . 45 % C ⁇ u ⁇ 0 . 10 % . Mn ⁇ 0 . 15 % . Cr ⁇ 0 . 10 % . Zn ⁇ 0 . 20 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%.
  • An AA6111 aluminum alloy has the following alloy components in weight percent: 0 . 5 % ⁇ mg ⁇ 1 . 0 % . 0 . 7 % ⁇ Si ⁇ 1 . 1 % . Fe ⁇ 0 . 40 % 0 . 50 % ⁇ Cu ⁇ 0 . 90 % . 0 . 15 % ⁇ Mn ⁇ 0 . 45 % . Cr ⁇ 0 . 10 % . Zn ⁇ 0 . 15 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%. Due to the increased copper content, the AA6111 alloy generally shows higher strength values in the T6 application, but is to be classified as more susceptible to corrosion.
  • All the aluminum alloys shown are specifically adapted to different applications in their alloy components. As already stated, they show particularly high elongation values in the state T4 paired with a particularly pronounced increase in the yield strength, for example after heat aging at 205 ° C./30 min.
  • the above-described object is achieved by an aluminum strip consisting of an AlMgSi alloy in that the aluminum strip in state T4 has an elongation at break A 80 of at least 30% at a yield strength Rp0.2 of 80 to 140 MPa having.
  • the delivery state T4 is usually achieved by solution treatment with quenching and subsequent storage at room temperature for at least three days, since then the properties of the solution-annealed sheet or strip are stable.
  • the combination of breaking elongation A 80 and yield strength Rp0.2 of the aluminum strip according to the invention has not been achieved with previously known AlMgSi alloys.
  • the aluminum strip according to the invention therefore permits maximum degrees of deformation due to the high elongation values with maximum values for the yield strength Rp0.2 in the finished sheet metal or component.
  • the aluminum strip according to the invention preferably has a yield strength Rp0.2 of greater than 185 MPa at an elongation A 80 of at least 15% in the condition T6, that is to say in the use or application state. These values were measured in the aluminum tapes according to the invention in the condition T6, which have undergone a heat aging at 205 ° C / 30 min. After a solution heat treatment and quenching (state T4). Due to the high yield strengths in the state T6 with very good elongation values in the state T4, the aluminum strip according to the invention is suitable, for example, for use in the Motor vehicle construction particularly well suited.
  • the increase in the yield strength from state T4 to state T6 is particularly high in the case of the aluminum strip according to the invention.
  • the aluminum strip according to the invention can therefore be formed very well in the condition T4 and then be put into a high-strength use state (state T6) by heat aging. With the necessary, complex shapes and the required high strength values or yield strengths, for example in motor vehicle construction, good hardenability for the production of complex components is of particular advantage.
  • the aluminum strips have a thickness of 0.5 mm to 12 mm.
  • Aluminum strips with thicknesses of 0.5 mm to 2 mm are preferably used for body parts, for example in the automotive industry, while aluminum bands with larger thicknesses of 2 to 4.5 mm, for example, find in chassis parts in automotive applications.
  • Individual components can also be manufactured in a cold-rolled strip with a thickness of up to 6 mm.
  • aluminum strips with thicknesses of up to 12 mm can be used. These very thick aluminum strips are usually provided only by hot rolling.
  • the aluminum alloy of the aluminum strip is of the alloy type AA6xxx, preferably AA6014, AA6016, AA6060, AA6111 or AA6181.
  • the above object according to a third teaching of the present invention by the use of a sheet produced from an aluminum strip according to the invention as a component, suspension or structural part and sheet metal in automotive, aircraft or rail vehicle, in particular as a component, chassis part, outer or inner panel in the automotive industry, preferably as a body component solved.
  • visible body parts, such as hoods, fenders, etc., as well as outer skin parts of a rail vehicle or aircraft benefit from the high yield strengths Rp0.2 with good surface properties even after forming with high degrees of deformation.
  • FIG. 1 shows in the only one FIG. 1 a schematic flow diagram of an embodiment of the inventive method for producing a tape from an AlMgSi aluminum alloy comprising the steps of a) producing and homogenizing the rolling ingot, b) hot rolling, c) cold rolling and d) quenching solution annealing.
  • an aluminum alloy ingot 1 having the following alloy components by weight is poured: 0 . 35 % ⁇ mg ⁇ 0 . 6 % . 0 . 3 % ⁇ Si ⁇ 0 . 6 % . 0 . 1 % ⁇ Fe ⁇ 0 . 3 % Cu ⁇ 0 . 1 % . Mn ⁇ 0 . 1 % . Cr ⁇ 0 . 05 % . Zn ⁇ 0 . 1 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%.
  • the ingot produced in this way is homogenized in a furnace 2 for 8 hours at a homogenization temperature of about 550 ° C., so that the alloyed components alloyed in are present in a particularly homogeneous distribution in the rolling ingot.
  • Fig. 1a The ingot produced in this way is homogenized in a furnace 2 for 8 hours at a homogenization temperature of about 550 ° C., so that the alloyed components alloyed in are present in a particularly homogeneous distribution in the rolling ingot.
  • Fig. 1a The ingot produced in this way is homogenized in a furnace 2 for 8 hours at a homogenization temperature of about 550 ° C.
  • the hot strip 4 after leaving the hot rolling mill 3 and before the penultimate hot rolling pass, the hot strip 4 preferably has a temperature of at least 400 ° C.
  • the work rolls of the hot rolling stand 3 are subjected to emulsion and cool the hot strip 4 further down. After the last rolling pass, the hot strip 4 at the outlet of the sinker cooler 5 'in the present embodiment, only a temperature of 95 ° C and will then be wound on the take-up reel 6.
  • the hot strip 4 has a temperature of at most 130 ° C or at most 100 ° C immediately at the outlet of the last hot rolling pass or optionally in the last two hot rolling passes using the sinker 5 and the work rolls of the hot rolling mill 3 to a temperature below 130 ° C or below 100 ° C, the hot strip 4 has a frozen crystal structure state, since no additional energy in the form of heat is available for subsequent precipitation operations.
  • the hot strip with a thickness of 3 to 12 mm, preferably 3.5 to 8 mm is wound on the take-up reel 6.
  • the coiling temperature in the present embodiment is less than 95 ° C.
  • the hot strip 4 has a very favorable for further processing crystal state and can be unwound from the unwinding reel 7, for example, fed to a cold rolling mill 9 and rewound on a take-up reel 8, Fig. 1c ).
  • the resulting cold-rolled strip 11 is wound up. Subsequently, it is supplied to a solution annealing and quenching 10, Fig. 1d ). For this purpose, it is again unwound from the coil 12, solution-annealed in an oven 10 and quenched again wound into a coil 13.
  • the aluminum strip can then be delivered after a cold aging at room temperature in the state T4 with maximum formability. Alternatively (not shown), the aluminum strip 11 can be singulated into individual sheets, which are present after a cold aging in the state T4.
  • the aluminum strip or the aluminum sheet is brought by cold aging at 100 ° C to 220 ° C in order to achieve maximum values for the yield strength. For example, a hot aging at 205 ° C / 30 min. Performed.
  • the aluminum strips produced according to the illustrated embodiment for example, after cold rolling a thickness of 0.5 to 4.5 mm.
  • Tape thicknesses of 0.5 to 2 mm are commonly used for car body applications or tape thicknesses of 2.0 mm to 4.5 mm for chassis parts in the automotive industry.
  • the improved elongation values in the manufacture of the components are of decisive advantage, since in most cases strong deformation of the sheets is carried out and nevertheless high strengths in the operating condition (T6) of the end product are required.
  • Table 1 shows the alloy compositions of aluminum alloys from which aluminum tapes have been produced conventionally or according to the invention.
  • the aluminum strips contain aluminum and impurities as a residual proportion, individually not more than 0.05% by weight and in total not more than 0.15% by weight.
  • Table 1 rehearse Si% by weight Fe% by weight Cu% by weight Mn% by weight Mg% by weight Cr% by weight Zn% by weight Ti% by weight 409 1.29 0.17 0.001 0.057 0.29 ⁇ 0.0005 ⁇ 0.001 0.02 410 1.30 0.17 0.001 0.056 0.29 ⁇ 0.0005 ⁇ 0.001 0.0172 491-1 1.39 0.18 0,002 0.062 0.30 0.0006 0.01 0.0158 491-11 1.40 0.18 0,002 0.063 0.31 0.0006 0.0104 0.0147
  • the belts 409 and 410 were made by a process according to the invention in which the hot strip was cooled and wound up within the last two hot rolling passes from about 400 ° C to 95 ° C using a sinker cooler and the hot rolls themselves. Table 2 shows the measured values of these samples as "Inv.” characterized. Subsequently, a cold rolling to a final thickness of 1.04 mm.
  • Samples 491-1 and 491-11 were made with conventional hot rolling and cold rolling and with a "conv.” characterized.
  • Table 2 rehearse T4 T6 205 ° C / 30 min. thickness (mm) Rp0.2 (MPa) R m (MPa) A 80 (%) Rp0.2 (MPa) R m (MPa) A 80 (%) ⁇ Rp0,2 (MPa) 409 Inv. 1.04 100 220 31.3 187 251 16.2 87 410 Inv. 1.04 98 217 30.3 195 256 15.5 97 491-1 Conv. 1.04 92 202 27.8 180 235 14.7 88 491-11 Conv. 1.04 88 196 27.4 179 232 14.3 91
  • the samples were subjected to solution annealing with subsequent quenching and subsequent cold aging at room temperature.
  • the T6 state was achieved by hot aging at 205 ° C for 30 minutes.
  • the measured values could be verified in state T4 by measurements on other bands.
  • the aluminum alloy of Samples A and B had the following composition: 0 . 25 % ⁇ mg ⁇ 0 . 6 % . 1 . 0 % ⁇ Si ⁇ 1 . 5 % . Fe ⁇ 0 . 5 % . Cu ⁇ 0 . 2 % . Mn ⁇ 0 . 2 % . Cr ⁇ 0 . 1 % . Zn ⁇ 0 . 1 % . Ti ⁇ 0 . 1 % and residual Al and unavoidable impurities in the sum total of 0.15%, individually a maximum of 0.05%.
  • Samples A and B were wound to 95 ° C using the quenching process of the present invention within the last two hot rolling passes and then cold rolled to a final thickness of 1.0 mm and 3.0 mm, respectively.
  • samples A and B were solution annealed and cold-aged after quenching.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bandes aus einer AlMgSi-Legierung, bei welchem ein Walzbarren aus einer AlMgSi-Legierung gegossen wird, der Walzbarren einer Homogenisierung unterzogen wird, der auf Walztemperatur gebrachte Walzbarren warmgewalzt und anschließend optional auf Enddicke kaltgewalzt wird. Die Aufgabe, ein Verfahren zur Herstellung eines Aluminiumbandes aus einer AlMgSi-Legierung sowie ein Aluminiumband zur Verfügung zu stellen, welches bei gleichbleibender Festigkeit eine höhere Bruchdehnung aufweist und insofern höhere Umformgrade bei der Herstellung von Strukturblechen ermöglicht, wird dadurch gelöst, dass das Warmband unmittelbar am Auslauf des letzten Walzstichs eine Temperatur von maximal 130 °C, vorzugsweise auf eine Temperatur maximal als 100 °C aufweist und das Warmband mit dieser oder einer geringeren Temperatur aufgewickelt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Bandes aus einer AlMgSi-Legierung, bei welchem ein Walzbarren aus einer AlMgSi-Legierung gegossen wird, der Walzbarren einer Homogenisierung unterzogen wird, der auf Walztemperatur gebrachte Walzbarren warmgewalzt wird und anschließend optional auf Enddicke kaltgewalzt wird. Darüber hinaus betrifft die Erfindung ein Aluminiumband aus einer AlMgSi-Legierung sowie dessen vorteilhafte Verwendung.
  • Vor allem im Kraftfahrzeugbau aber auch in anderen Anwendungsgebieten, beispielsweise dem Flugzeugbau oder Schienenfahrzeugbau werden Bleche aus Aluminiumlegierungen benötigt, welche sich nicht nur durch besonders hohe Festigkeitswerte auszeichnen, sondern gleichzeitig ein sehr gutes Umformverhalten aufweisen und hohe Umformgrade ermöglichen. Im Kraftfahrzeugbau sind typische Anwendungsgebiete die Karosserie und Fahrwerkteile. Bei sichtbaren, lackierten Bauteilen, beispielsweise außen sichtbaren Karosserieblechen, kommt hinzu, dass das Umformen der Werkstoffe so erfolgen muss, dass die Oberfläche nach der Lackierung nicht durch Fehler wie Fließfiguren oder Zugrilligkeit (Roping) beeinträchtigt ist. Dies ist beispielsweise für die Verwendung von Aluminiumlegierungsblechen zur Herstellung von Motorhauben und anderen Karosseriebauteilen eines Kraftfahrzeuges besonders wichtig. Es schränkt die Werkstoffwahl hinsichtlich der Aluminiumlegierung allerdings ein. Insbesondere AlMgSi-Legierungen, deren Hauptlegierungsbestandteile Magnesium und Silizium sind, weisen relativ hohe Festigkeiten auf bei gleichzeitig gutem Umformverhalten sowie hervorragender Korrosionsbeständigkeit. AlMgSi-Legierungen sind die Legierungstypen AA6XXX, beispielsweise der Legierungstyp AA6016, AA6014, AA6181, AA6060 und AA6111. Üblicherweise werden Aluminiumbänder aus einer AlMgSi-Legierung durch Gießen eines Walzbarrens, Homogenisieren des Walzbarrens, Warmwalzen des Walzbarrens und Kaltwalzen des Warmbandes hergestellt. Die Homogenisierung des Walzbarrens erfolgt bei einer Temperatur von 380 bis 580 °C für mehr als eine Stunde. Durch ein abschließendes Lösungsglühen mit nachfolgendem Abschrecken und Kaltauslagern etwa bei Raumtemperatur für mindestens drei Tage können die Bänder im Zustand T4 ausgeliefert werden. Der Zustand T6 wird nach dem Abschrecken durch eine Warmauslagerung bei Temperaturen zwischen 100 °C und 220 °C eingestellt.
  • Problematisch ist, dass in warmgewalzten Aluminiumbändern aus AlMgSi-Legierungen grobe Mg2Si-Ausscheidungen vorliegen, welche im anschließenden Kaltwalzen durch hohe Umformgrade gebrochen und verkleinert werden. Warmbänder einer AlMgSi-Legierung werden in der Regel in Dicken von 3 mm bis 12 mm hergestellt und einem Kaltwalzen mit hohen Umformgraden zugeführt. Da der Temperaturbereich in dem sich die AlMgSi-Phasen bilden, beim konventionellen Warmwalzen sehr langsam durchlaufen wird, bilden sich diese Phasen sehr grob aus. Der Temperaturbereich zur Bildung der obengenannten Phasen ist legierungsabhängig aber liegt zwischen 550°C und 230°C. Es konnte experimentell nachgewiesen werden, dass diese groben Phasen im Warmband die Dehnung des Endprodukts negativ beeinflussen. Das bedeutet, dass das Umformverhalten von Aluminiumbändern aus AlMgSi-Legierungen bisher nicht vollständig ausgeschöpft werden konnte.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren zur Herstellung eines Aluminiumbandes aus einer AlMgSi-Legierung sowie ein Aluminiumband zur Verfügung zu stellen, welches im Zustand T4 eine höhere Dehnung aufweist und insofern höhere Umformgrade bei der Herstellung von beispielsweise Strukturbauteilen ermöglicht. Darüber hinaus liegt der vorliegenden Erfindung die Aufgabe zu Grunde, vorteilhafte Verwendungen eines aus dem erfindungsgemäßen Aluminiumband hergestellten Blechs vorzuschlagen.
  • Gemäß einer ersten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe für ein Verfahren zur Herstellung eines Bandes aus einer AlMgSi-Legierung dadurch gelöst, dass das Warmband unmittelbar nach dem Auslauf aus dem letzten Warmwalzstich eine Temperatur von maximal 130 °C, vorzugsweise eine Temperatur von maximal 100 °C aufweist und das Warmband mit dieser oder einer geringeren Temperatur aufgewickelt wird.
  • Es hat sich gezeigt, dass die Größe der Mg2Si-Ausscheidungen in einem Warmband einer AlMgSi-Legierung durch ein Abschrecken, d.h. durch eine beschleunigte Abkühlung, deutlich verringert werden kann. Durch das schnelle Abkühlen von einer Warmbandtemperatur zwischen 230 °C und 550 °C auf maximal 130 °C, vorzugsweise maximal 100 °C am Auslauf des letzten Warmwalzstichs wird der Gefügezustand des Warmbandes eingefroren, so dass sich grobe Ausscheidungen nicht mehr bilden können. Das resultierende Aluminiumband weist nach einem Lösungsglühen und Abschrecken an Enddicke eine deutlich verbesserte Dehnung bei üblichen Festigkeiten im Zustand T4 auf und eine gleiche oder sogar verbesserte Aushärtbarkeit zum Zustand T6. Diese Eigenschaftskombination ist bei Bändern aus AlMgSi-Legierungen bisher nicht erreicht worden.
  • Gemäß einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens erfolgt dieser Abkühlvorgang innerhalb der letzten beiden Warmwalzstiche, d.h. die Abkühlung auf 130 °C und weniger erfolgt innerhalb von Sekunden, maximal innerhalb von fünf Minuten. Es hat sich gezeigt, dass bei dieser Vorgehensweise die erhöhten Dehnungswerte bei üblichen Festigkeits- bzw. Dehngrenzwerten im Zustand T4 und die verbesserte Aushärtbarkeit im Zustand T6 besonders prozesssicher erreicht werden.
  • Gemäß einer ersten Ausgestaltung des erfindungsgemäßen Verfahrens wird eine besonders wirtschaftliche Realisierung des Verfahrens dadurch erzielt, dass das Warmband unter Verwendung von mindestens einem Platinenkühler und der mit Emulsion beaufschlagten Warmwalzstiche selbst auf Aufwickeltemperatur abgeschreckt wird. Ein Platinenkühler besteht aus einer Anordnung von Kühl- bzw. Schmiermitteldüsen, welche eine Walzemulsion auf das Aluminiumband sprühen. Der Platinenkühler ist häufig in einem Warmwalzwerk vorhanden, um gewalzte Warmbänder vor dem Warmwalzen auf Walztemperatur zu kühlen und die Aufwickeltemperatur einzustellen. Das erfindungsgemäße Verfahren kann somit auf konventionellen Anlagen ohne spezielle Zusatzeinrichtungen zum Einsatz gebracht werden. Per Definition liegt die Warmwalztemperatur oberhalb der Rekristallisationstemperatur eines Metalls, also bei Aluminium oberhalb ca. 230 °C. Entsprechend der Lehre der vorliegenden Erfindung liegt die Aufwickeltemperatur mit 130 °C aber deutlich unterhalb dieser prozessüblichen Bedingungen.
  • Beträgt die Warmwalztemperatur des Warmbandes vor dem vorletzten Warmwalzstich mindestens 230 °C, vorzugsweise über 400 °C, wird gemäß einer nächsten Ausgestaltung des erfindungsgemäßen Verfahrens erreicht, dass besonders kleine Mg2Si-Ausscheidungen im abgeschreckten Warmband vorhanden sind, da der größte Anteil der Legierungsbestandteile Magnesium und Silizium bei diesen Temperaturen im gelösten Zustand in der Aluminiummatrix vorliegen. Dieser vorteilhafte Zustand des Warmbandes wird durch das Abschrecken quasi "eingefroren".
  • Die Dicke des fertigen Warmbandes beträgt 3 mm bis 12 mm, vorzugsweise 3,5 mm bis 8 mm, so dass übliche Kaltwalzgerüste für das Kaltwalzen verwendet werden können.
  • Vorzugsweise ist die verwendete Aluminiumlegierung vom Legierungstyp AA6xxx, vorzugsweise AA6014, AA6016, AA6060, AA6111 oder AA6181. Allen Legierungstypen AA6xxx ist gemein, dass sie ein besonders gutes Umformverhalten gekennzeichnet durch hohe Dehnungswerte im Zustand T4 sowie sehr hohe Festigkeiten bzw. Dehngrenzen im Einsatzzustand T6, beispielsweise nach einem Warmauslagern bei 205 °C / 30 Min. aufweisen.
  • Eine Aluminiumlegierung vom Typ AA6016 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 25 % Mg 0 , 6 % ,
    Figure imgb0001
    1 , 0 % Si 1 , 5 % ,
    Figure imgb0002
    Fe 0 , 5 % ,
    Figure imgb0003
    Cu 0 , 2 % ,
    Figure imgb0004
    Mn 0 , 2 % ,
    Figure imgb0005
    Cr 0 , 1 % ,
    Figure imgb0006
    Zn 0 , 1 % ,
    Figure imgb0007
    Ti 0 , 1 %
    Figure imgb0008

    und Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Bei Magnesiumgehalten von weniger als 0,25 Gew.-% ist die Festigkeit des Aluminiumbandes, welches für Strukturanwendungen vorgesehen ist zu gering, andererseits verschlechtert sich die Umformbarkeit bei Magnesiumgehalten oberhalb von 0,6 Gew.-%. Silizium ist im Zusammenspiel mit Magnesium im Wesentlichen für die Aushärtbarkeit der Aluminiumlegierung verantwortlich und somit auch für die hohen Festigkeiten, welche im Anwendungsfall beispielsweise nach einem Lackiereinbrennen erzielt werden können. Bei Si-Gehalten von weniger als 1,0 Gew.-% ist die Aushärtbarkeit des Aluminiumbandes verringert, so dass im Anwendungsfall nur verringerte Festigkeiten bereitgestellt werden können. Si-Gehalte von mehr als 1,5 Gew.-% führen aber zu Gießproblemen im Hinblick auf die Herstellung des Walzbarrens. Der Fe-Anteil sollte auf maximal 0,5 Gew-% begrenzt werden, um grobe Ausscheidungen zu verhindern. Eine Beschränkung des Kupfergehalts auf maximal 0,2 Gew.-% führt vor allem zu einer verbesserten Korrosionsbeständigkeit der Aluminiumlegierung in der spezifischen Anwendung. Der Mangangehalt von weniger als 0,2 Gew.-% verringert die Tendenz zur Bildung von gröberen Mangangausscheidungen. Chrom sorgt zwar für ein feines Gefüge, ist aber auf 0,1 Gew.-% zu beschränken, um ebenfalls grobe Ausscheidungen zu vermeiden. Das Vorhandensein von Mangan verbesserte dagegen die Schweißbarkeit durch Verringerung der Rissneigung beziehungsweise Abschreckempfindlichkeit des erfindungsgemäßen Aluminiumbandes. Eine Reduzierung des Zink-Gehaltes auf maximal 0,1 Gew.-% verbessert insbesondere die Korrosionsbeständigkeit der Aluminiumlegierung bzw. des fertigen Blechs in der jeweiligen Anwendung. Dagegen sorgt Titan für eine Kornfeinung während des Gießens, sollte aber auf maximal 0,1 Gew.-% beschränkt werden, um eine gute Gießbarkeit der Aluminiumlegierung zu gewährleisten.
  • Eine Aluminiumlegierung vom Typ AA6060 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 35 % Mg 0 , 6 % ,
    Figure imgb0009
    0 , 3 % Si 0 , 6 % ,
    Figure imgb0010
    0 , 1 % Fe 0 , 3 %
    Figure imgb0011
    Cu 0 , 1 % ,
    Figure imgb0012
    Mn 0 , 1 % ,
    Figure imgb0013
    Cr 0 , 05 % ,
    Figure imgb0014
    Zn 0 , 10 % ,
    Figure imgb0015
    Ti 0 , 1 %
    Figure imgb0016

    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Die Kombination aus genau vorgegebenem Magnesiumgehalt mit einem im Vergleich zur ersten Ausführungsform reduzierten Si-Gehalt und eng spezifiziertem Fe-Gehalt ergibt eine Aluminiumlegierung, bei welcher besonders gut die Bildung Mg2Si Ausscheidungen nach dem Warmwalzen mit dem erfindungsgemäßen Verfahren verhindert werden kann, so dass ein Blech mit einer verbesserten Dehnung und hohen Dehngrenzen im Vergleich zu konventionell hergestellten Blechen bereitgestellt werden kann. Die geringeren Obergrenzen der Legierungsbestandteile Cu, Mn und Cr verstärken den Effekt des erfindungsgemäßen Verfahrens zusätzlich. Hinsichtlich der Auswirkungen der Obergrenze von Zn und Ti wird auf die Ausführungen zur ersten Ausführungsform der Aluminiumlegierung verwiesen.
  • Eine Aluminiumlegierung vom Typ AA6014 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 4 % Mg 0 , 8 % ,
    Figure imgb0017
    0 , 3 % Si 0 , 6 % ,
    Figure imgb0018
    Fe 0 , 35 %
    Figure imgb0019
    Cu 0 , 25 % ,
    Figure imgb0020
    0 , 05 % Mn 0 , 20 % ,
    Figure imgb0021
    Cr 0 , 20 % ,
    Figure imgb0022
    Zn 0 , 10 % ,
    Figure imgb0023
    0 , 05 % V 0 , 20 % ,
    Figure imgb0024
    Ti 0 , 1 %
    Figure imgb0025

    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Eine Aluminiumlegierung vom Typ AA6181 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 6 % Mg 1 , 0 % ,
    Figure imgb0026
    0 , 8 % Si 1 , 2 % ,
    Figure imgb0027
    Fe 0 , 45 %
    Figure imgb0028
    C u 0 , 10 % ,
    Figure imgb0029
    Mn 0 , 15 % ,
    Figure imgb0030
    Cr 0 , 10 % ,
    Figure imgb0031
    Zn 0 , 20 % ,
    Figure imgb0032
    Ti 0 , 1 %
    Figure imgb0033

    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Eine Aluminiumlegierung vom Typ AA6111 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 5 % Mg 1 , 0 % ,
    Figure imgb0034
    0 , 7 % Si 1 , 1 % ,
    Figure imgb0035
    Fe 0 , 40 %
    Figure imgb0036
    0 , 50 % Cu 0 , 90 % ,
    Figure imgb0037
    0 , 15 % Mn 0 , 45 % ,
    Figure imgb0038
    Cr 0 , 10 % ,
    Figure imgb0039
    Zn 0 , 15 % ,
    Figure imgb0040
    Ti 0 , 1 %
    Figure imgb0041

    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %. Die Legierung AA6111 zeigt grundsätzlich augrund des erhöhten Kupfergehaltes höhere Festigkeitswerte im Einsatzzustand T6, ist aber als korrosionsanfälliger anzustufen.
  • Alle aufgezeigten Aluminiumlegierungen sind spezifisch in ihren Legierungsbestandteilen auf unterschiedliche Anwendungen angepasst. Wie bereits ausgeführt, zeigen sie besonders hohe Dehnungswerte im Zustand T4 gepaart mit einer besonders ausgeprägten Steigerung der Dehngrenze beispielsweise nach einem Warmauslagern bei 205 °C / 30 Min..
  • Gemäß einer zweiten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein Aluminiumband bestehend aus einer AlMgSi-Legierung, dadurch erreicht, dass das Aluminiumband im Zustand T4 eine Bruchdehnung A80 von mindestens 30 % bei einer Dehngrenze Rp0,2 von 80 bis 140 MPa aufweist. Der Auslieferungszustand T4 wird üblicherweise durch ein Lösungsglühen mit Abschrecken und einer anschließenden Lagerung bei Raumtemperatur für mindestens drei Tage erreicht, da dann die Eigenschaften der lösungsgeglühten Bleche oder Bänder stabil sind. Die Kombination aus Bruchdehnung A80 und Dehngrenze Rp0,2 des erfindungsgemäßen Aluminiumbandes ist mit bisher bekannten AlMgSi-Legierungen nicht erreicht worden. Das erfindungsgemäße Aluminiumband ermöglicht daher maximale Umformgrade aufgrund der hohen Dehnungswerte mit maximalen Werten für die Dehngrenze Rp0,2 im fertigen Blech bzw. Bauteil.
  • Vorzugsweise weist das erfindungsgemäße Aluminiumband im Zustand T6, also im Einsatzzustand bzw. Anwendungszustand, eine Dehngrenze Rp0,2 von mehr als 185 MPa bei einer Dehnung A80 von mindestens 15 % auf. Diese Werte wurden bei erfindungsgemäß hergestellten Aluminiumbändern im Zustand T6 gemessen, welche eine Warmauslagerung bei 205 °C/30 Min. nach einem Lösungsglühen und Abschrecken (Zustand T4) durchlaufen haben. Aufgrund der hohen Dehngrenzen im Zustand T6 bei sehr guten Dehnungswerten im Zustand T4 ist das erfindungsgemäße Aluminiumband beispielsweise für die Verwendung im Kraftfahrzeugbau besonders gut geeignet.
  • Gemäß einer weiteren Ausführungsform der Erfindung weist das lösungsgeglühte und abgeschreckte Aluminiumband nach einer Warmauslagerung bei 205 °C / 30 Min. im Zustand T6 eine Dehngrenzendifferenz ΔRp0,2 zwischen Zustand T6 und T4 von mindestens 80 MPa auf. Die Steigerung der Dehngrenze vom Zustand T4 in den Zustand T6 ist bei dem erfindungsgemäßen Aluminiumband besonders hoch. Das erfindungsgemäße Aluminiumband kann deshalb im Zustand T4 sehr gut umgeformt und anschließend durch ein Warmauslagern in einen hochfesten Einsatzzustand (Zustand T6) versetzt werden kann. Bei den notwendigen, komplexen Formgebungen und den geforderten hohen Festigkeitswerten bzw. Dehngrenzen, beispielsweise im Kraftfahrzeugbau, ist eine gute Aushärtbarkeit für die Herstellung komplexer Bauteile von besonderem Vorteil.
  • Vorzugsweise weisen die Aluminiumbänder eine Dicke von 0,5 mm bis 12 mm auf. Aluminiumbänder mit Dicken von 0,5 mm bis 2 mm werden vorzugsweise für Karosserieteile beispielsweise im Kraftfahrzeugbau verwendet, während Aluminiumbänder mit größeren Dicken von 2 bis 4,5 mm beispielsweise in Fahrwerksteilen im Kraftfahrzeugbau Anwendungen finden. Einzelne Komponenten können im Kaltband auch mit einer Dicke von bis 6 mm gefertigt werden. Daneben können in spezifischen Anwendungen auch Aluminiumbänder mit Dicken von bis zu 12 mm verwendet werden. Diese Aluminiumbänder mit sehr großer Dicke werden üblicherweise nur durch Warmwalzen bereitgestellt.
  • Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Aluminiumbandes ist die Aluminiumlegierung des Aluminiumbandes vom Legierungstyp AA6xxx, vorzugsweise AA6014, AA6016, AA6060, AA6111 oder AA6181. Hinsichtlich der Vorteile dieser Aluminiumlegierungen wird auf die Ausführungen zum erfindungsgemäßen Verfahren verwiesen.
  • Aufgrund der hervorragenden Kombination zwischen guter Umformbarkeit im Zustand T4, hoher Korrosionsbeständigkeit sowie hohen Werten für die Dehngrenze Rp0,2 im Einsatzzustand (Zustand T6) wird die oben aufgeführte Aufgabe gemäß einer dritten Lehre der vorliegenden Erfindung durch die Verwendung eines aus einem erfindungsgemäßen Aluminiumband hergestellten Blechs als Bauteil, Fahrwerks- oder Strukturteil und -blech im Kraftfahrzeug-, Flugzeug- oder Schienenfahrzeugbau, insbesondere als Komponente, Fahrwerksteil, Außen- oder Innenblech im Kraftfahrzeugbau, vorzugsweise als Karosseriebauelement, gelöst. Vor allem sichtbare Karosserieteile, beispielsweise Motorhauben, Kotflügel etc. sowie Außenhautteile eines Schienenfahrzeugs oder Flugzeugs profitieren von den hohen Dehngrenzen Rp0,2 bei guten Oberflächeneigenschaften auch nach einem Umformen mit hohen Umformgraden.
  • Es gibt nun eine Vielzahl von Möglichkeiten das erfindungsgemäße Verfahren sowie das erfindungsgemäße Aluminiumband und die Verwendung eines daraus hergestellten Blechs auszugestalten und weiterzubilden. Hierzu wird verwiesen einerseits auf die in den Patentansprüchen 1 und 6 nachgeordneten Patentansprüche sowie auf die Beschreibung von Ausführungsbeispielen in Verbindung mit der Zeichnung.
  • Die Zeichnung zeigt in der einzigen Figur 1 ein schematisches Ablaufdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Herstellung eines Bandes aus einer AlMgSi-Aluminiumlegierung mit den Schritten a) Herstellen und Homogenisieren des Walzbarrens, b) Warmwalzen, c) Kaltwalzen und d) mit Lösungsglühen mit Abschrecken.
  • Zunächst wird ein Walzbarren 1 aus einer Aluminiumlegierung mit den folgenden Legierungsbestandteilen in Gewichtsprozent gegossen: 0 , 35 % Mg 0 , 6 % ,
    Figure imgb0042
    0 , 3 % Si 0 , 6 % ,
    Figure imgb0043
    0 , 1 % Fe 0 , 3 %
    Figure imgb0044
    Cu 0 , 1 % ,
    Figure imgb0045
    Mn 0 , 1 % ,
    Figure imgb0046
    Cr 0 , 05 % ,
    Figure imgb0047
    Zn 0 , 1 % ,
    Figure imgb0048
    Ti 0 , 1 %
    Figure imgb0049

    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Der so hergestellte Walzbarren wird bei einer Homogenisierungstemperatur von etwa 550 °C für 8 h in einem Ofen 2 homogenisiert, so dass die zulegierten Legierungsbestandteile besonders homogen verteilt im Walzbarren vorliegen, Fig 1a).
  • In Fig 1b) ist dargestellt, wie der Walzbarren 1 in dem vorliegenden Ausführungsbeispiel des erfindungsgemäßes Verfahrens durch ein Warmwalzgerüst 3 reversierend warmgewalzt wird, wobei der Walzbarren 1 eine Temperatur von 230 bis 550 °C während des Warmwalzens aufweist. In diesem Ausführungsbeispiel hat nach Verlassen des Warmwalzgerüsts 3 und vor dem vorletzten Warmwalzstich das Warmband 4 vorzugsweise eine Temperatur von mindestens 400 °C. Vorzugsweise erfolgt bei dieser Warmbandtemperatur von mindestens 400 °C die Abschreckung des Warmbandes 4 unter Verwendung eines Platinenkühlers 5 und der Arbeitswalzen des Warmwalzgerüstes 3. Der Platinenkühler 5, nur schematisch dargestellt, besprüht das Warmband 4 mit kühlender Walzemulsion und sorgt für eine beschleunigte Abkühlung des Warmbandes 4. Die Arbeitswalzen des Warmwalzgerüstes 3 sind mit Emulsion beaufschlagt und kühlen das Warmband 4 weiter herunter. Nach dem letzten Walzstich hat das Warmband 4 am Ausgang des Platinenkühlers 5' im vorliegenden Ausführungsbeispiel lediglich eine Temperatur von 95 °C und wird anschließend über die Aufwickelhaspel 6 aufgewickelt werden.
  • Dadurch, dass das Warmband 4 unmittelbar am Auslauf des letzten Warmwalzstichs eine Temperatur von maximal 130 °C bzw. maximal 100 °C aufweist bzw. optional in den letzten beiden Warmwalzstichen unter Verwendung des Platinenkühlers 5 und der Arbeitswalzen des Warmwalzgerüstes 3 auf eine Temperatur unterhalb von 130 °C bzw. unter 100°C gebracht wird, weist das Warmband 4 einen eingefrorenen Kristallgefügezustand auf, da keine zusätzliche Energie in Form von Wärme für nachfolgende Ausscheidungsvorgänge zur Verfügung steht. Das Warmband mit einer Dicke von 3 bis 12 mm, vorzugsweise 3,5 bis 8 mm wird über die Aufwickelhaspel 6 aufgewickelt. Wie bereits ausgeführt, beträgt die Aufwickeltemperatur im vorliegenden Ausführungsbeispiel weniger als 95 °C.
  • Bei dem erfindungsgemäßen Verfahren können sich in dem aufgewickelten Warmband 4 jetzt keine oder nur wenige grobe Mg2Si-Ausscheidungen bilden. Das Warmband 4 hat einen für die Weiterverarbeitung sehr günstigen Kristallzustand und kann von der Abwickelhaspel 7 abgewickelt beispielsweise einem Kaltwalzgerüst 9 zugeführt und wieder auf einer Aufwickelhaspel 8 aufgewickelt werden, Fig. 1c).
  • Das resultierende, kaltgewalzte Band 11 wird aufgewickelt. Anschließend wird es einem Lösungsglühen und Abschrecken 10 zugeführt, Fig. 1d). Hierzu wird es erneut vom Coil 12 abgewickelt, in einem Ofen 10 lösungsgeglüht und abgeschreckt wieder zu einem Coil 13 aufgewickelt. Das Aluminiumband kann dann nach einer Kaltauslagerung bei Raumtemperatur im Zustand T4 mit maximaler Umformbarkeit ausgeliefert werden. Alternativ (nicht dargestellt) kann das Aluminiumband 11 in einzelne Bleche vereinzelt werden, welche nach einem Kaltauslagern im Zustand T4 vorliegen.
  • Bei größeren Aluminiumbanddicken, beispielsweise bei Fahrwerksanwendungen oder Komponenten wie beispielsweise Bremsankerplatten können auch alternativ durch eine Stückglühungen durchgeführt werden und die Bleche anschließend abgeschreckt werden.
  • Im Zustand T6 wird das Aluminiumband oder das Aluminiumblech durch eine Warmauslagerung bei 100 °C bis 220 °C gebracht, um maximale Werte für die Dehngrenze zu erzielen. Beispielsweise kann eine Warmauslagerung bei 205 °C/ 30 Min. durchgeführt.
  • Die gemäß dem dargestellten Ausführungsbeispiel hergestellten Aluminiumbänder weisen nach dem Kaltwalzen beispielsweise eine Dicke von 0,5 bis 4,5 mm auf. Banddicken von 0,5 bis 2 mm werden übicherweise für Karroserieanwendungen bzw. Banddicken von 2,0 mm bis 4,5 mm für Fahrwerksteile im Kraftfahrzeugsbau verwendet. In beiden Anwendungsbereichen sind die verbesserten Dehnungswerte bei der Herstellung der Bauteile von entscheidendem Vorteil, da zumeist starke Umformungen der Bleche durchgeführt werden und trotzdem hohe Festigkeiten im Einsatzzustand (T6) des Endprodukt benötigt werden.
  • In Tabelle 1 sind die Legierungszusammensetzungen von Aluminiumlegierungen angegeben, aus welchen konventionell oder erfindungsgemäß Aluminiumbänder hergestellt wurden. Neben den gezeigten Gehalten an Legierungsbestandteilen enthalten die Aluminiumbänder als Restanteil Aluminium und Verunreinigungen, einzeln maximal 0,05 Gew.-% und in Summe maximal 0,15 Gew.-%. Tabelle 1
    Proben Si Gew.-% Fe Gew.-% Cu Gew.-% Mn Gew.-% Mg Gew.-% Cr Gew.-% Zn Gew.-% Ti Gew.-%
    409 1,29 0,17 0,001 0,057 0,29 <0,0005 <0,001 0,02
    410 1,30 0,17 0,001 0,056 0,29 <0,0005 <0,001 0,0172
    491-1 1,39 0,18 0,002 0,062 0,30 0,0006 0,01 0,0158
    491-11 1,40 0,18 0,002 0,063 0,31 0,0006 0,0104 0,0147
  • Die Bänder 409 und 410 wurden mit einem erfindungsgemäßen Verfahren hergestellt, bei welchem das Warmband innerhalb der letzten beiden Warmwalzstiche von etwa 400°c auf 95 °C unter Verwendung eines Platinenkühlers sowie der Warmwalzen selbst abgekühlt und aufgewickelt wurde. In Tabelle 2 sind die Messwerte dieser Proben mit "Inv." gekennzeichnet. Anschließend erfolgte ein Kaltwalzen auf eine Enddicke von 1,04 mm.
  • Die Proben 491-1 und 491-11 wurden mit einem konventionellen Warmwalzen und Kaltwalzen hergestellt und mit einem "Konv." gekennzeichnet.
  • Die in Tabelle 2 dargestellten Resultate der mechanischen Eigenschaften zeigen deutlich den Unterschied in den erzielbaren Dehnungswerten A80. Tabelle2
    Proben T4 T6
    205 °C / 30 Min.
    Dicke
    (mm)
    Rp0,2
    (MPa)
    Rm
    (MPa)
    A80
    (%)
    Rp0,2
    (MPa)
    Rm
    (MPa)
    A80
    (%)
    ΔRp0,2
    (MPa)
    409 Inv. 1,04 100 220 31,3 187 251 16,2 87
    410 Inv. 1,04 98 217 30,3 195 256 15,5 97
    491-1 Konv. 1,04 92 202 27,8 180 235 14,7 88
    491-11 Konv. 1,04 88 196 27,4 179 232 14,3 91
  • Zur Erzielung des T4-Zustands wurden die Proben einem Lösungsglühen mit nachfolgender Abschreckung und einer anschließender Kaltauslagerung bei Raumtemperatur unterworfen. Der T6-Zustand wurde durch eine Warmauslagerung bei 205 °C für 30 Minuten erreicht.
  • Es zeigte sich, dass das vorteilhafte Gefüge, welches über das erfindungsgemäße Verfahren in den Proben 409 und 410 eingestellt wurde, bei gestiegener Dehngrenze Rp0,2 und Festigkeit Rm eine Steigerung der Dehnung A80 ermöglichte. Dieses Gefüge führt zu der besonders vorteilhaften Kombination aus hoher Bruchdehnung A80 von mindestens 30 % bzw. mindestens 30 % bei sehr hohen Werten für die Dehngrenze Rp0,2 von 80 bis 140 MPa. Im Zustand T6 kann die Dehngrenze bis auf über 185 MPa ansteigen, wobei die Dehnung A80 weiterhin bei mehr als 15 % verbleibt. Die Aushärtbarkeit mit einem ΔRp0,2 von 87 bzw. 97 MPa zeigt, dass die erfindungsgemäßen Ausführungsbeispiele trotz der erhöhten Dehnungswerte von mehr als 15 % eine sehr gute Steigerung der Dehngrenze im warmausgelagerten Zustand T6 bei einer Warmauslagerung bei 205 °C / 30 Min. erreichen.
  • Die Bruchdehnungswerte A80, die Dehngrenzwerte Rp0,2 und die Zugfestigkeitswerte Rm in den nachfolgenden Tabellen wurden nach DIN EN gemessen.
  • Die Messwerte konnten im Zustand T4 durch Messungen an weiteren Bändern verifiziert werden. Die Aluminiumlegierung der Proben A und B wiesen folgende Zusammensetzung auf: 0 , 25 % Mg 0 , 6 % ,
    Figure imgb0050
    1 , 0 % Si 1 , 5 % ,
    Figure imgb0051
    Fe 0 , 5 % ,
    Figure imgb0052
    Cu 0 , 2 % ,
    Figure imgb0053
    Mn 0 , 2 % ,
    Figure imgb0054
    Cr 0 , 1 % ,
    Figure imgb0055
    Zn 0 , 1 % ,
    Figure imgb0056
    Ti 0 , 1 %
    Figure imgb0057

    und Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Die Proben A und B wurden unter Verwendung des erfindungsgemäßen Verfahrens mit einem Abschrecken des Warmbandes innerhalb der letzten zwei Warmwalzstiche auf 95 °C aufgewickelt und anschließend auf eine Enddicke von 1,0 mm respektive 3,0 mm kaltgewalzt. Um den Zustand T4 zu erreichen wurden die Proben A und B lösungsgeglüht und nach einem Abschrecken kalt ausgelagert.
  • Folgende Messwerte konnten an beiden Proben ermittelt werden: Tabelle 3
    Proben T4
    Dicke
    (mm)
    Rp0,2
    (MPa)
    Rm
    (MPa)
    A80
    (%)
    A 1,0 107 221 31,1
    B 3,0 108 212 32,0
  • Die noch einmal gesteigerten Dehnungswerte A80 zeigen die herausragende Eignung dieser Aluminiumbänder für die Herstellung von Bauteilen, bei welchen sehr hohe Umformgrade während der Herstellung im Zustand T4 mit maximalen Zugfestigkeiten Rm und Dehngrenzen Rp0,2 im Zustand T6 kombiniert werden müssen.

Claims (11)

  1. Verfahren zur Herstellung eines Bands aus einer AlMgSi-Legierung, bei welchem ein Walzbarren aus einer AlMgSi-Legierung gegossen wird, der Walzbarren einer Homogenisierung unterzogen wird, der auf Warmwalztemperatur gebrachte Walzbarren warmgewalzt wird und anschließend optional auf Enddicke kaltgewalzt,
    dadurch gekennzeichnet, dass
    das Warmband unmittelbar nach dem Auslauf aus dem letzten Warmwalzstich eine Temperatur von maximal 130 °C, vorzugsweise eine Temperatur von maximal 100 °C aufweist und das Warmband mit dieser oder einer geringeren Temperatur aufgewickelt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Warmband unter Verwendung von mindestens einem Platinenkühler und der emulsionsbeaufschlagten Warmwalzstiche selbst auf die Auslauftemperatur abgeschreckt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Warmwalztemperatur des Warmbandes vor dem Abkühlprozess während des Warmwalzens, insbesondere vor vorletzten Warmwalzstich mindestens 230 °C, vorzugsweise über 400 °C liegt.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    die Dicke des fertigen Warmbandes 3 mm bis 12 mm, vorzugsweise 3,5 mm bis 8 mm beträgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung vom Legierungstyp AA6xxx, vorzugsweise AA6014, AA6016, AA6060, AA6111 oder AA6181 ist.
  6. Aluminiumband bestehend aus einer AlMgSi-Legierung mit, insbesondere hergestellt mit einem Verfahren gemäß einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    das Aluminiumband im Zustand T4 eine Bruchdehnung A80 von mindestens 30 % bei einer Dehngrenze von Rp0,2 von 80 bis 140 MPa aufweist.
  7. Aluminiumband nach Anspruch 6,
    dadurch gekennzeichnet, dass
    das lösungsgelühte und abgeschreckte Aluminiumband nach einer Warmauslagerung bei 205 °C / 30 Minuten im Zustand T6 eine Dehngrenze von Rp0,2 von mehr als 185 MPa. Beschreibung: bei einer Dehnung von A80 von mindestens 15 % aufweist.
  8. Aluminiumband nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass
    das lösungsgelühte und abgeschreckte Aluminiumband nach einer Warmauslagerung bei 205 °C / 30 Minuten im Zustand T6 eine Dehngrenzendifferenz ΔRp0,2 zwischen Zustand T6 und T4 von mindestens 80 MPa aufweist.
  9. Aluminiumband nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet, dass Aluminiumband eine Dicke von 0,5 bis 12 mm aufweist.
  10. Aluminiumband einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung vom Legierungstyp AA6xxx, vorzugsweise AA6014, AA6016, AA6060, AA6111 oder AA6181 ist.
  11. Verwendung eines Blechs hergestellt aus einem Aluminiumband nach einem der Ansprüche 6 bis 10 als Bauteil, Fahrwerks- oder Strukturteil bzw. Blech im Kraftfahrzeug-, Flugzeug- oder Schienenfahrzeugbau, insbesondere als Komponente, Fahrwerksteil, Außen- oder Innenblech im Kraftfahrzeugbau, vorzugsweise als Karosseriebauelement.
EP09164221.5A 2009-06-30 2009-06-30 AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen Active EP2270249B2 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP09164221.5A EP2270249B2 (de) 2009-06-30 2009-06-30 AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
ES09164221T ES2426226T3 (es) 2009-06-30 2009-06-30 Banda de AlMgSi para aplicaciones con altos requisitos de conformación
CA2766327A CA2766327C (en) 2009-06-30 2010-05-21 Almgsi strip for applications having high plasticity requirements
PCT/EP2010/057071 WO2011000635A1 (de) 2009-06-30 2010-05-21 Almgsi-band für anwendungen mit hohen umformungsanforderungen
EP10723562.4A EP2449145B1 (de) 2009-06-30 2010-05-21 AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
CN201080029594.9A CN102498229B (zh) 2009-06-30 2010-05-21 用于高变形要求的铝镁硅带材
ES10723562T ES2746846T3 (es) 2009-06-30 2010-05-21 Banda de AlMgSi para aplicaciones con altos requerimientos de conformación
JP2012518057A JP5981842B2 (ja) 2009-06-30 2010-05-21 高い成形性要求を有する用途のためのAlMgSiストリップ
KR1020127001479A KR101401060B1 (ko) 2009-06-30 2010-05-21 높은 소성 요구에 적용하기 위한 almgsi 스트립
RU2012102976/02A RU2516214C2 (ru) 2009-06-30 2010-05-21 Al-Mg-Si-ПОЛОСА ДЛЯ ПРИМЕНЕНИЙ С ВЫСОКИМИ ТРЕБОВАНИЯМИ К ФОРМУЕМОСТИ
US13/340,225 US10047422B2 (en) 2009-06-30 2011-12-29 AlMgSi strip for applications having high formability requirements
US14/928,122 US10612115B2 (en) 2009-06-30 2015-10-30 AlMgSi strip for applications having high formability requirements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09164221.5A EP2270249B2 (de) 2009-06-30 2009-06-30 AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen

Publications (3)

Publication Number Publication Date
EP2270249A1 true EP2270249A1 (de) 2011-01-05
EP2270249B1 EP2270249B1 (de) 2013-05-29
EP2270249B2 EP2270249B2 (de) 2020-05-27

Family

ID=40910784

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09164221.5A Active EP2270249B2 (de) 2009-06-30 2009-06-30 AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
EP10723562.4A Revoked EP2449145B1 (de) 2009-06-30 2010-05-21 AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10723562.4A Revoked EP2449145B1 (de) 2009-06-30 2010-05-21 AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen

Country Status (9)

Country Link
US (2) US10047422B2 (de)
EP (2) EP2270249B2 (de)
JP (1) JP5981842B2 (de)
KR (1) KR101401060B1 (de)
CN (1) CN102498229B (de)
CA (1) CA2766327C (de)
ES (2) ES2426226T3 (de)
RU (1) RU2516214C2 (de)
WO (1) WO2011000635A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570257A1 (de) 2011-09-15 2013-03-20 Hydro Aluminium Rolled Products GmbH Aluminiumverbundwerkstoff mit AlMgSi-Kernlegierungsschicht
EP2570509A1 (de) 2011-09-15 2013-03-20 Hydro Aluminium Rolled Products GmbH Herstellverfahren für AlMgSi-Aluminiumband
EP3060358B1 (de) 2013-10-25 2017-11-15 SMS group GmbH Aluminium-warmbandwalzstrasse und verfahren zum warmwalzen eines aluminium-warmbandes
EP3622096B1 (de) 2017-05-11 2021-09-22 Aleris Aluminum Duffel BVBA Verfahren zur herstellung eines walzblechprodukts aus einer al-si-mg-legierung mit ausgezeichneter formbarkeit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2426226T3 (es) 2009-06-30 2013-10-22 Hydro Aluminium Deutschland Gmbh Banda de AlMgSi para aplicaciones con altos requisitos de conformación
DE112012004236A5 (de) * 2011-10-11 2014-08-21 Ksm Castings Group Gmbh Gussstück
EP2700727B1 (de) 2012-08-23 2014-12-17 KSM Castings Group GmbH Al-Gusslegierung
WO2014121785A1 (de) 2013-02-06 2014-08-14 Ksm Castings Group Gmbh Al-GUSSLEGIERUNG
FR3008427B1 (fr) 2013-07-11 2015-08-21 Constellium France Tole en alliage d'aluminium pour structure de caisse automobile
EP3497256B1 (de) * 2016-08-15 2020-07-01 Hydro Aluminium Rolled Products GmbH Aluminiumlegierung und aluminiumlegierungsband für den fussgängeraufprallschutz
MX2020011512A (es) * 2018-05-15 2020-12-09 Novelis Inc Productos de aleacion de aluminio en temple f* y w y metodos para fabricar los mismos.
EP3825428B1 (de) * 2019-11-25 2022-11-16 AMAG casting GmbH Druckgussbauteil und verfahren zur herstellung eines druckgussbauteils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808247A (en) * 1986-02-21 1989-02-28 Sky Aluminium Co., Ltd. Production process for aluminum-alloy rolled sheet
WO1996007768A1 (en) * 1994-09-06 1996-03-14 Alcan International Limited Heat treatment process for aluminum alloy sheet
EP1533394A1 (de) * 2003-11-20 2005-05-25 Alcan Technology &amp; Management Ltd. Automobilkarosseriebauteil

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA545439A (en) 1957-08-27 Hercules Powder Company Dipropylene glycol plasticized cellulose ether compositions
CH480883A (de) 1964-08-27 1969-11-15 Alusuisse Verfahren zur Herstellung aushärtbarer Bänder und Bleche aus aushärtbaren Aluminiumlegierungen mit Kupfergehalten unter 1%
US4808824A (en) 1987-09-17 1989-02-28 Sinnar Abbas M Compositional state detection system and method
JPH03291347A (ja) * 1990-01-27 1991-12-20 Kobe Steel Ltd 感光ドラム用アルミニウム板材
JPH05306440A (ja) 1992-04-30 1993-11-19 Furukawa Alum Co Ltd 焼付硬化性に優れた成形用アルミニウム合金板の製造方法
US5919323A (en) * 1994-05-11 1999-07-06 Aluminum Company Of America Corrosion resistant aluminum alloy rolled sheet
US5772804A (en) 1995-08-31 1998-06-30 Kaiser Aluminum & Chemical Corporation Method of producing aluminum alloys having superplastic properties
US5718780A (en) * 1995-12-18 1998-02-17 Reynolds Metals Company Process and apparatus to enhance the paintbake response and aging stability of aluminum sheet materials and product therefrom
JP2001503473A (ja) * 1996-06-14 2001-03-13 アルミナム カンパニー オブ アメリカ 成形性の高いアルミニウム合金製圧延シート
US6060438A (en) * 1998-10-27 2000-05-09 D. A. Stuart Emulsion for the hot rolling of non-ferrous metals
JP4248796B2 (ja) * 2001-09-27 2009-04-02 住友軽金属工業株式会社 曲げ加工性および耐食性に優れたアルミニウム合金板およびその製造方法
JP4633993B2 (ja) * 2002-03-20 2011-02-16 住友軽金属工業株式会社 曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板および製造方法
US6780259B2 (en) 2001-05-03 2004-08-24 Alcan International Limited Process for making aluminum alloy sheet having excellent bendability
JP2003129156A (ja) * 2001-10-22 2003-05-08 Kobe Steel Ltd 伸びフランジ性に優れたAl合金板とその製法
WO2003066927A1 (en) 2002-02-08 2003-08-14 Nichols Aluminium Method and apparatus for producing a solution heat treated sheet
AU2003303311A1 (en) 2002-12-03 2004-08-30 Prodigene, Inc. Methods for selecting and screening for trasformants
JP2003291347A (ja) 2003-05-16 2003-10-14 Seiko Epson Corp 液体噴射装置、及びそれを備えた画像記録装置
FR2856368B1 (fr) * 2003-06-18 2005-07-22 Pechiney Rhenalu Piece de peau de carrosserie automobile en tole d'alliage ai-si-mg fixee sur structure acier
US20060032560A1 (en) 2003-10-29 2006-02-16 Corus Aluminium Walzprodukte Gmbh Method for producing a high damage tolerant aluminium alloy
JP4200082B2 (ja) * 2003-11-18 2008-12-24 古河スカイ株式会社 成形加工用アルミニウム合金板およびその製造方法
DE102004022817A1 (de) * 2004-05-08 2005-12-01 Erbslöh Ag Dekorativ anodisierbare, gut verformbare, mechanisch hoch belastbare Aluminiumlegierung, Verfahren zu deren Herstellung und Aluminiumprodukt aus dieser Legierung
JP4752764B2 (ja) * 2004-10-14 2011-08-17 東芝三菱電機産業システム株式会社 圧延、鍛造又は矯正ラインの材質制御方法及びその装置
JP4495623B2 (ja) * 2005-03-17 2010-07-07 株式会社神戸製鋼所 伸びフランジ性および曲げ加工性に優れたアルミニウム合金板およびその製造方法
ES2426226T3 (es) 2009-06-30 2013-10-22 Hydro Aluminium Deutschland Gmbh Banda de AlMgSi para aplicaciones con altos requisitos de conformación
EP2570509B1 (de) 2011-09-15 2014-02-19 Hydro Aluminium Rolled Products GmbH Herstellverfahren für AlMgSi-Aluminiumband

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808247A (en) * 1986-02-21 1989-02-28 Sky Aluminium Co., Ltd. Production process for aluminum-alloy rolled sheet
WO1996007768A1 (en) * 1994-09-06 1996-03-14 Alcan International Limited Heat treatment process for aluminum alloy sheet
EP1533394A1 (de) * 2003-11-20 2005-05-25 Alcan Technology &amp; Management Ltd. Automobilkarosseriebauteil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570257A1 (de) 2011-09-15 2013-03-20 Hydro Aluminium Rolled Products GmbH Aluminiumverbundwerkstoff mit AlMgSi-Kernlegierungsschicht
EP2570509A1 (de) 2011-09-15 2013-03-20 Hydro Aluminium Rolled Products GmbH Herstellverfahren für AlMgSi-Aluminiumband
WO2013037918A1 (de) 2011-09-15 2013-03-21 Hydro Aluminium Rolled Products Gmbh ALUMINIUMVERBUNDWERKSTOFF MIT AlMgSi-KERNLEGIERUNGSSCHICHT
WO2013037919A1 (de) 2011-09-15 2013-03-21 Hydro Aluminium Rolled Products Gmbh HERSTELLVERFAHREN FÜR AlMgSi-ALUMINIUMBAND
KR20150126975A (ko) * 2011-09-15 2015-11-13 하이드로 알루미늄 롤드 프로덕츠 게엠베하 Almgsi 알루미늄 스트립 제조 방법
RU2576976C2 (ru) * 2011-09-15 2016-03-10 Гидро Алюминиум Ролд Продактс Гмбх СПОСОБ ПРОИЗВОДСТВА AlMgSi ПОЛОСЫ
US9796157B2 (en) 2011-09-15 2017-10-24 Hydro Aluminium Rolled Products Gmbh Aluminium composite material with AlMgSi core layer
KR101974624B1 (ko) 2011-09-15 2019-05-02 하이드로 알루미늄 롤드 프로덕츠 게엠베하 Almgsi 알루미늄 스트립 제조 방법
US10471684B2 (en) 2011-09-15 2019-11-12 Hydro Aluminium Rolled Products Gmbh Aluminium composite material with AlMgSi core layer
EP3060358B1 (de) 2013-10-25 2017-11-15 SMS group GmbH Aluminium-warmbandwalzstrasse und verfahren zum warmwalzen eines aluminium-warmbandes
EP3622096B1 (de) 2017-05-11 2021-09-22 Aleris Aluminum Duffel BVBA Verfahren zur herstellung eines walzblechprodukts aus einer al-si-mg-legierung mit ausgezeichneter formbarkeit

Also Published As

Publication number Publication date
EP2449145A1 (de) 2012-05-09
EP2449145B1 (de) 2019-08-07
KR101401060B1 (ko) 2014-05-29
EP2270249B1 (de) 2013-05-29
US10612115B2 (en) 2020-04-07
CA2766327A1 (en) 2011-01-06
CN102498229A (zh) 2012-06-13
KR20120057607A (ko) 2012-06-05
EP2270249B2 (de) 2020-05-27
US20120222783A1 (en) 2012-09-06
JP5981842B2 (ja) 2016-08-31
WO2011000635A1 (de) 2011-01-06
JP2012531521A (ja) 2012-12-10
CN102498229B (zh) 2014-03-12
US20160068939A1 (en) 2016-03-10
ES2746846T3 (es) 2020-03-09
ES2426226T3 (es) 2013-10-22
RU2012102976A (ru) 2013-08-10
CA2766327C (en) 2016-02-02
RU2516214C2 (ru) 2014-05-20
US10047422B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
EP2270249B1 (de) AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
EP2770071B1 (de) Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
EP2570509B1 (de) Herstellverfahren für AlMgSi-Aluminiumband
EP2570257B1 (de) Aluminiumverbundwerkstoff mit AlMgSi-Kernlegierungsschicht
EP3314031B1 (de) Hochfestes und gut umformbares almg-band sowie verfahren zu seiner herstellung
DE69516297T2 (de) Verfahren zur herstellung eines grobbleches aus aluminium-legierung zur umformung
EP2888382B1 (de) Gegen interkristalline korrosion beständiges aluminiumlegierungsband und verfahren zu seiner herstellung
DE69304009T2 (de) Verfahren zur Herstellung von Blech aus Al-Mg - Legierung für Pressformen
DE3829911A1 (de) Aluminiumblech mit verbesserter schweissfaehigkeit, filiformer korrosionsfestigkeit, waermebehandlungshaertbarkeit und verformbarkeit sowie verfahren zur herstellung desselben
DE112008003052T5 (de) Produkt aus Al-Mg-Zn-Knetlegierung und Herstellungsverfahren dafür
DE202007018795U1 (de) Plattiertes Blechprodukt
EP2888383B1 (de) Hochumformbares und ik-beständiges almg-band
EP2192202B1 (de) Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit
DE112019000856T5 (de) Verfahren zur Herstellung von Aluminiumlegierungsbauelementen
DE602004005529T2 (de) Schmiedealuminiumlegierung
EP2703508A1 (de) Gegen interkristalline Korrosion beständige Aluminiumlegierung
EP3690076A1 (de) Verfahren zur herstellung eines blechs oder bands aus einer aluminiumlegierung sowie ein dadurch hergestelltes blech, band oder formteil
EP1748088B1 (de) Verfahren zur Herstellung eines Halbzeugs oder Bauteils von Fahrwerk- oder Strukturanwendungen im Kraftfahrzeug
DE69702133T2 (de) Aluminium - silizium - magnesium - legierung für fahrzeugkarrosserieblech
DE60310381T2 (de) Blech oder band aus al-mg-legierung zur herstellung von gebogenen teilen mit kleinem biegeradius
EP2924135B1 (de) Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen
EP3970964A1 (de) Aluminiumverbundwerkstoff für crashanwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110704

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HYDRO ALUMINIUM DEUTSCHLAND GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 614455

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007197

Country of ref document: DE

Effective date: 20130725

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2426226

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131022

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130829

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130830

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26 Opposition filed

Opponent name: NOVELIS INC.

Effective date: 20140227

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009007197

Country of ref document: DE

Effective date: 20140227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130829

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090630

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 614455

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: NOVELIS INC.

Effective date: 20140227

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

27A Patent maintained in amended form

Effective date: 20200527

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502009007197

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200824

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: SPEIRA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: HYDRO ALUMINIUM DEUTSCHLAND GMBH

Effective date: 20220426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009007197

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM DEUTSCHLAND GMBH, 41515 GREVENBROICH, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240619

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240620

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240701

Year of fee payment: 16