EP1657737A2 - Procedure for the production of a multipolar electrode arrangement as well as a multipolar electrode arrangement - Google Patents
Procedure for the production of a multipolar electrode arrangement as well as a multipolar electrode arrangement Download PDFInfo
- Publication number
- EP1657737A2 EP1657737A2 EP05023606A EP05023606A EP1657737A2 EP 1657737 A2 EP1657737 A2 EP 1657737A2 EP 05023606 A EP05023606 A EP 05023606A EP 05023606 A EP05023606 A EP 05023606A EP 1657737 A2 EP1657737 A2 EP 1657737A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- electrodes
- support elements
- elements
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 230000005405 multipole Effects 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 6
- 230000003628 erosive effect Effects 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 238000003754 machining Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- 238000010292 electrical insulation Methods 0.000 claims description 3
- 239000000615 nonconductor Substances 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000007704 transition Effects 0.000 description 4
- 229910001374 Invar Inorganic materials 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/06—Electron- or ion-optical arrangements
- H01J49/068—Mounting, supporting, spacing, or insulating electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/4205—Device types
- H01J49/4255—Device types with particular constructional features
Definitions
- the invention relates to a method for producing a multi-pole electrode arrangement for focusing or mass filtering a charged particle beam, the arrangement comprising a plurality of elongate electrodes arranged parallel to an axis.
- the invention further relates to such a multi-pole electrode arrangement, wherein a plurality of electrodes are attached to one or more support elements separately formed by the electrodes and wherein each electrode has a cross-section with a circular portion and a non-circular, in particular substantially hyperbolic, portion.
- Multi-pole electrode arrangements for the separation or for the separate detection of ions of different specific charge have long been known, for example, from German Patent 944 900, which explains the basic principles of mass spectrometers.
- German Patent Application DT 26 25 660 A1 discloses to provide hyperbolic shaped electrode surfaces in pairs on a ceramic body are arranged, wherein two such ceramic bodies are held together by rings.
- German Patent Application DE 195 11 248 A1 discloses a process for producing a glass quadrupole.
- an electrode arrangement in which two electrodes and a ring-like holder are integrally formed.
- DE 692 07 183 T2 proposes to work out a number of, namely four hyperbolic, electrodes from a cylindrical blank by electroerosion. It is intended to eliminate the time-consuming alignment process associated with other preformed electrodes.
- the manufacturing method described in the latter document has the disadvantage that it is based on electro-erosion, either on wire electrode electrical erosion or electrical erosion by means of a molding.
- a disadvantage of this manufacturing method is the roughness of the surface resulting from the electrical discharge.
- the wire electrode electrical erosion also has the disadvantage of increased inaccuracy in the areas where the wire bulges during machining.
- the electric erosion with a correspondingly shaped fitting has the disadvantage that a lot of material removed by electroerosion and also the fitting must be renewed again and again, which is particularly problematic because the fitting itself can only be made consuming. In addition, the fitting itself can only be made relatively inaccurate. The process is thus extremely complex and costly.
- the invention is therefore based on the technical problem of improving the production of electrodes in electrode arrangements, in particular to propose a process by means of which a precisely aligned electrode arrangement can be provided with little effort.
- the invention solves this problem by means of a method for producing a multipolar electrode arrangement according to claim 1 and by means of an electrode arrangement according to claim 10.
- the starting point is a rod-shaped electrode blank, which is then processed together with one or more further electrode blanks in order to give it a hyperbolic shape in a section.
- a rod-shaped electrode blank is to be understood in addition to a solid solid rod blank and a hollow rod-shaped or hollow rod-like electrode blank, i. an electrode blank which is tube-shaped.
- the blank has a circular cross-section.
- a hollow rod-like or tubular-like blank has the advantage of lower material requirements.
- the wall thickness of a hollow rod-like or tube-like electrode blank is to be dimensioned such that a sufficient thickness remains even after the machining.
- the electrode blank is fastened to one or more carrier elements, so that a later alignment within the electrode arrangement is dispensed with.
- two electrodes are formed on a single support element extending fore and aft, or substantially, or wholly, along the electrodes or part of the electrodes fixed and then processed together, and preferably by grinding the electrode blanks by means of a grindstone, which already has the negative shape of the later hyperbolic shape of the electrodes and of the end portions of the or the support elements.
- two half shells produced in this way are formed consisting of two electrodes and two carrier elements and then connected to one another, in particular screwed.
- each support member has two end portions, one of which is concave and the other convex.
- the convex and concave shapes are adapted to one another in such a way that the convex shape of the one carrier element can be joined with the concave shape of the other carrier element in order to ensure a precisely defined position of the two carrier elements relative to each other.
- the electrode blanks are fastened with the interposition of at least one insulating member on the carrier or elements for the electrical insulation of the electrode blank and the carrier element.
- this insulating member consists of a non-conductor, such as quartz or quartz glass or ceramic.
- each electrode blank and / or each carrier element made of graphite or a metal or an alloy with a low heat or linear expansion coefficient, for example, less than 8 ⁇ 10 -6 K -1 .
- This coefficient of expansion is substantially equal to the coefficient of thermal expansion or expansion coefficient of the insulating member.
- the amount of the difference of the expansion coefficient of the graphite, metal or alloy and the coefficient of expansion of the insulating member is smaller than 2 ⁇ 10 -6 K -1 . In this way, a permanent connection between the metal and the Isolierorgan be prepared, for example. By soldering or gluing.
- the insulating member is made of quartz or quartz glass, preferably, the material is an iron-nickel alloy, for example an alloy with about 36 weight percent nickel and the remaining portion of iron, for example, as a material 1.3912 (German Stahl Whyl) or under the Denomination Invar 36 is sold.
- the insulating member is made of ceramic, the material is preferably an alloy with the main components nickel, iron and cobalt, for example with a share of 29 weight percent nickel, 53 weight percent iron and 17 weight percent cobalt, for example, as the material 1.3981 ( German steel key) or under the name Vacon / Nilo Alloy K is sold.
- An electrode for such a multi-pole electrode arrangement preferably has a cross-section with a circular section and a non-circular, in particular substantially hyperbolic section, wherein for the angle centered on the circular center of the circular section ⁇ between the intersections of the circular section and the non-circular section circular section applies: ⁇ ⁇ 45 ° and for the included angle ⁇ of the tangents in each of these intersections: ⁇ ⁇ 45 ° ,
- This particular angle specification enables a favorable transition of the hyperbolic electrode section into the circular electrode section.
- this transition region is particularly sensitive because field distortions can occur in this area, which can lead to inaccurate analytical measurement results.
- the transition region is advantageously formed without sharp edges.
- Fig. 1 shows a multipolar electrode assembly 1 for focusing or mass filtering a charged particle beam.
- the electrode arrangement has four elongate electrodes 2 arranged parallel to an axis, which are fastened to carrier elements 4 with the interposition of insulating pieces 3.
- each electrode is fastened to two carrier elements 4, namely a front and a rear carrier element with the interposition of an insulating piece 3 in each case. This attachment is done, for example. By gluing or soldering.
- FIG. 2 shows the electrode arrangement from FIG. 1 in an end view.
- Each support member 4 is formed substantially semicircular arc.
- each support element 4 is different, but designed to correspond. That an end portion 6 of a first support member 4 is formed such that an end portion of a second support member is so assembled with the end portion of the first support member that a self-centering of the two support elements occurs.
- a first end portion 6 of a support member 4 is convex, while the other end portion of the same support member has a corresponding concave shape.
- the convex shaped end portion is roof-shaped, i. formed with two substantially mutually angled, substantially flat surfaces, while the concave-shaped end portion with a corresponding negative mold, i. is formed as a channel with two angularly arranged mutually, substantially flat surfaces.
- one end section of a carrier element 4 has a bore 7, in particular a threadless bore, while the other end section of the carrier element or the opposite end section of the opposing, engaged carrier element has a threaded bore (not shown), in which a screw 8 can be screwed.
- All four support elements 4 are identical. It can thus be worked with a single form of support elements.
- the electrodes 2 are advantageously made of graphite or a metal or an alloy with a low coefficient of expansion, such as iron-nickel alloys or iron-nickel-cobalt alloys, such as Invar, Vacon or a similar material.
- the insulating pieces 3 are formed of a non-conductor, such as quartz or quartz glass, ceramic or plastic.
- the semicircular support members 4 are made of graphite or a metal or alloy, advantageously with a low coefficient of expansion, such as iron-nickel alloys or iron-nickel-cobalt alloys, e.g. Invar or a similar material made. In particular, they are made of the same material as the electrodes 2.
- the electrodes 2 of a half-shell 5 have first been glued or soldered onto the front and rear support element 4 with the interposition of the insulating pieces 3, the electrodes and preferably also the end sections 6 of the support elements 4 are machined. Machining takes place by shaping grinding, erosion and / or other shaping methods in such a way that in a single operation on the first round electrode blanks a substantially hyperbolic or similar curved surface and at the end portions 6 of the support elements 4 each have a convex and a concave contour arises.
- Fig. 3 shows one of the two half-shells in an enlarged view.
- Fig. 3A shows this half-shell and a grindstone S for processing the electrodes 2 and the end portions 6 of the support elements 4.
- This grindstone S is placed on the electrodes 2 and the end portions 6 and for grinding the grindstone S relative to the electrodes 2 and End sections 6 in the longitudinal direction of the electrodes and pushed back until the electrodes 2 and the end portions 6 of the support elements have received the desired shape.
- FIG. 3B shows a further embodiment of an electrode arrangement 1 'according to the invention which, like the embodiment shown in the figures described above, comprises four elongate electrodes 2 arranged in parallel, which are fastened to support elements 4' by means of insulating pieces 3 '.
- a support member 4 ' it is sufficient for each half-shell only a support member 4 'to be provided on which then, for example, two electrodes 2 are attached.
- the electrodes 2 can be readily attached to a plurality of further locations, in particular with the interposition of further insulating pieces 3' on the respective carrier element 4 '.
- the upper support element 4 ' has an opening A, which, however, serves only to illustrate the interior of this electrode arrangement 1'. Thanks to this outbreak A, it can be seen that the electrodes 2 are fastened to the respective carrier element 4 'by means of further insulating pieces 3', for example in the middle of the electrode arrangement 1 '.
- the outbreak A has purely actorial reasons. That is, the support elements 4 'are preferably without such breakthroughs (apart from holes or tapped holes for attachment of the support elements 4' together or breakthroughs to improve Abpumpeigenschaften and thus a vacuum within the electrode assembly) is formed.
- the support elements 4 'shown in FIG. 3B do not differ substantially from the support elements 4 shown in FIGS. 1 to 3A, so that reference is made to the statements with respect to the other figures.
- a quadrupole with two half-shells was described above.
- other multi-pole electrode arrangements can also be formed by means of the described method with a corresponding structure.
- a hexapol can also be produced by means of the described method, which consists either of two half shells with three electrodes each or three third shells with two electrodes each.
- an octopole can also be produced by means of the described method be that then either consists of four quarter-shells with two electrodes or two half-shells with four electrodes.
- Electrodes 2 are arranged at equal angles with respect to the central axis of the electrode arrangement. In this way one achieves a high symmetry of the field forming between the electrodes.
- the described method results in an electrode arrangement with extremely straight electrode rods, which have a very high parallelism to each other, wherein the overall arrangement can be mounted substantially completely symmetrically due to the formation of the end portions.
- the accuracies of the electrode surfaces which can be achieved with one another thanks to this production method are in the range of less than 1 ⁇ m. Despite these high accuracies, the production of the individual partial shells (half shells, third shells, quarter shells, etc.) can be carried out with little effort.
- a round rod electrode blank 9 is shown, which has a circular contour.
- This blank 9 is - in the orientation shown in FIG. 4 - ground prior to machining on its right side, so that it receives a hyperbolic shape 10.
- the corresponding hyperbolic section HA is defined by the angle ⁇ , which refers to the circle center of the electrode blank 9 and between the intersections P, P 'of the through refers to the grinding forming circular portion KA and the hyperbolic portion HA.
- This angle ⁇ is advantageously greater than or equal to 45 °.
- the angle ⁇ is between 45 ° and 90 °.
- a tangent can be placed both on the circle K circumscribing the blank and a further tangent on the hyperbola of the hyperbolic section HA.
- Both tangents include an angle ⁇ , which is preferably less than or equal to 45 °, in particular less than or equal to 30 °. In the examples shown in FIGS. 3 and 4, the angle ⁇ is about 90 ° and the angle ⁇ is about 14 °.
- the hyperbola symptoms are also shown in dashed lines. Their intersection is denoted by M. Preferably, this point of intersection coincides with the center M of the electrode arrangement.
- the smallest distance of the finished ground electrode, ie the distance between the hyperbolic section HA of the electrode to the center M of the electrode arrangement is shown in FIG. 4 as r 0 .
- Fig. 4 schematically illustrates only one quadrant of a quadrupole with the center M.
- FIGS. 5 to 7 show further examples of processed or ground round rods.
- Electrodes ground as shown in Figs. 5 and 6 have the advantage of smooth transition of the hyperbolic section HA to the circular section KA of the electrode. Furthermore, only a small part of the electrode blank has to be removed. In addition, cost-effective Round rods are used as starting material. In this way, inexpensive electrodes for multi-pole electrode assemblies can be produced with high dimensional accuracy.
- the invention is not limited to the above-described ratios of the hyperbolic portion HA to the circular portion KA.
- the invention also allows a shift of the illustrated ratios in favor of the hyperbolic section HA.
- An example of this is shown in FIG. 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Tubes For Measurement (AREA)
- Particle Accelerators (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung einer mehrpoligen Elektrodenanordnung zur Fokussierung oder Massenfilterung eines Strahls geladener Teilchen, wobei die Anordnung eine Mehrzahl langgestreckter, parallel zu einer Achse angeordneter Elektroden aufweist.The invention relates to a method for producing a multi-pole electrode arrangement for focusing or mass filtering a charged particle beam, the arrangement comprising a plurality of elongate electrodes arranged parallel to an axis.
Die Erfindung betrifft ferner eine derartige mehrpolige Elektrodenanordnung, wobei mehrere Elektroden an einem oder mehreren von den Elektroden separat gebildeten Trägerelementen befestigt sind und wobei jede Elektrode einen Querschnitt mit einem kreisförmigen Abschnitt und einem nicht-kreisförmigen, insbesondere im wesentlichen hyperbelförmigen, Abschnitt aufweist.The invention further relates to such a multi-pole electrode arrangement, wherein a plurality of electrodes are attached to one or more support elements separately formed by the electrodes and wherein each electrode has a cross-section with a circular portion and a non-circular, in particular substantially hyperbolic, portion.
Mehrpolige Elektrodenanordnungen zur Trennung bzw. zum getrennten Nachweis von Ionen verschiedener spezifischer Ladung sind seit langem bspw. aus der deutschen Patentschrift 944 900 bekannt, welche die Grundprinzipien von Massenspektrometern erläutert.Multi-pole electrode arrangements for the separation or for the separate detection of ions of different specific charge have long been known, for example, from German Patent 944 900, which explains the basic principles of mass spectrometers.
Aus EP 0 572 687 A1 ist ferner ein spezieller Aufbau eines Massenfilters bekannt, das hyperbolisch geformte, aus vorgeformten Gusskörpern geschliffene Elektroden aufweist, die unter Zwischenschaltung von Isolierstücken miteinander verschraubt sind.From EP 0 572 687 A1 a special construction of a mass filter is also known, which has hyperbolically shaped, ground from preformed castings electrodes, which are bolted together with the interposition of insulating pieces.
Ferner ist aus der deutschen Offenlegungsschrift DT 26 25 660 A1 bekannt, hyperbolisch geformte Elektrodenflächen vorzusehen, die paarweise an einem Keramikkörper angeordnet sind, wobei zwei derartige Keramikkörper durch Ringe zusammengehalten werden.Furthermore, from German Patent Application DT 26 25 660 A1 discloses to provide hyperbolic shaped electrode surfaces in pairs on a ceramic body are arranged, wherein two such ceramic bodies are held together by rings.
Ferner ist aus der japanischen Offenlegungsschrift JP 58204464A bekannt, Elektroden mit einem besonderen Querschnitt in einen Halter einzusetzen. Hierzu werden zunächst Ausnehmungen innerhalb des Halters gebildet. Anschließend werden die Elektroden an den Ausnehmungen befestigt. Der Halter ist ringförmig ausgebildet und umschließt sämtliche vier Elektroden der Elektrodenanordnung.Furthermore, it is known from Japanese Patent Application JP 58204464A to use electrodes with a special cross section in a holder. For this purpose, first recesses are formed within the holder. Subsequently, the electrodes are attached to the recesses. The holder is annular and encloses all four electrodes of the electrode assembly.
Ferner ist aus der deutschen Offenlegungsschrift DE 195 11 248 A1 ein Verfahren zur Herstellung eines Glas-Quadropols bekannt.Furthermore, German Patent Application DE 195 11 248 A1 discloses a process for producing a glass quadrupole.
Aus US 2003/0178564 A1 ist ferner eine Elektrodenanordnung bekannt, bei der zwei Elektroden und ein ringartiger Halter einstückig ausgebildet sind.From US 2003/0178564 A1, an electrode arrangement is also known, in which two electrodes and a ring-like holder are integrally formed.
Die genannten Elektrodenanordnungen haben jedoch den Nachteil, dass die Elektroden in einem sehr aufwändigen Ausrichtprozess exakt ausgerichtet werden müssen, wobei bereits geringste Abweichungen bzgl. der Parallelität der Elektroden zu unerwünschten Ungenauigkeiten und analytischen Messfehlern führen.The above-mentioned electrode arrangements, however, have the disadvantage that the electrodes must be precisely aligned in a very complex alignment process, with even the slightest deviations with respect to the parallelism of the electrodes leading to undesired inaccuracies and analytical measurement errors.
Zur Lösung dieses Problems schlägt DE 692 07 183 T2 vor, mehrere, nämlich vier hyperbolisch geformte Elektroden aus einem zylinderförmigen Rohling durch Elektroerosion herauszuarbeiten. Es soll dabei der zeitaufwändige Ausrichtprozess beseitigt werden, der mit anderen vorgeformten Elektroden einhergeht.To solve this problem, DE 692 07 183 T2 proposes to work out a number of, namely four hyperbolic, electrodes from a cylindrical blank by electroerosion. It is intended to eliminate the time-consuming alignment process associated with other preformed electrodes.
Das in der letztgenannten Schrift beschriebene Herstellungsverfahren hat jedoch den Nachteil, dass es auf Elektroerosion beruht und zwar entweder auf Drahtelektrodenelektroerosion oder Elektroerosion mittels eines Formstücks. Ein Nachteil dieses Herstellungsverfahrens besteht in der Rauhigkeit der sich durch die Elektroerosion ergebenden Oberfläche. Die Drahtelektrodenelektroerosion hat ferner den Nachteil einer erhöhten Ungenauigkeit in den Bereichen, in denen sich der Draht während der Bearbeitung ausbaucht. Die Elektroerosion mit einem entsprechend geformten Formstück hat demgegenüber den Nachteil, dass sehr viel Material durch die Elektroerosion entfernt und ferner das Formstück immer wieder erneuert werden muss, was insbesondere deshalb problematisch ist, da das Formstück selbst nur aufwendig hergestellt werden kann. Darüber hinaus kann auch das Formstück selbst nur relativ ungenau hergestellt werden. Der Prozess wird somit äußerst aufwändig und kostspielig.However, the manufacturing method described in the latter document has the disadvantage that it is based on electro-erosion, either on wire electrode electrical erosion or electrical erosion by means of a molding. A disadvantage of this manufacturing method is the roughness of the surface resulting from the electrical discharge. The wire electrode electrical erosion also has the disadvantage of increased inaccuracy in the areas where the wire bulges during machining. The electric erosion with a correspondingly shaped fitting has the disadvantage that a lot of material removed by electroerosion and also the fitting must be renewed again and again, which is particularly problematic because the fitting itself can only be made consuming. In addition, the fitting itself can only be made relatively inaccurate. The process is thus extremely complex and costly.
Der Erfindung liegt daher das technische Problem zugrunde, die Herstellung von Elektroden in Elektrodenanordnungen zu verbessern, insbesondere einen Prozess vorzuschlagen, mittels dessen mit geringem Aufwand eine präzise ausgerichtete Elektrodenanordnung bereitgestellt werden kann.The invention is therefore based on the technical problem of improving the production of electrodes in electrode arrangements, in particular to propose a process by means of which a precisely aligned electrode arrangement can be provided with little effort.
Die Erfindung löst dieses Problem mittels eines Verfahrens zur Herstellung einer mehrpoligen Elektrodenanordnung nach Anspruch 1 sowie mittels einer Elektrodenanordnung nach Anspruch 10.The invention solves this problem by means of a method for producing a multipolar electrode arrangement according to
Erfindungsgemäß wird von einem rundstabförmigen Elektrodenrohling ausgegangen, der dann zusammen mit einem oder mehreren weiteren Elektrodenrohlingen bearbeitet wird, um ihm in einem Teilabschnitt eine hyperbolische Form zu geben. Unter einem stabförmigen Elektrodenrohling ist neben einem massiven Vollstabelektrodenrohling auch ein hohlstabförmiger bzw. hohlstabartiger Elektrodenrohling zu verstehen, d.h. ein Elektrodenrohling, der rohrartig gestaltet ist. Der Rohling weist einen kreisrunden Querschnitt auf. Ein hohlstabartig bzw. rohrartig ausgebildeter Rohling hat den Vorteil geringeren Materialbedarfs. Die Wandstärke eines hohlstabartigen bzw. rohrartigen Elektrodenrohlings ist jedoch so zu bemessen, dass auch nach der Bearbeitung eine ausreichende Dicke verbleibt. Vor der Bearbeitung wird der Elektrodenrohling an einem oder mehreren Trägerelementen befestigt, so dass eine spätere Ausrichtung innerhalb der Elektrodenanordnung entfällt.According to the invention, the starting point is a rod-shaped electrode blank, which is then processed together with one or more further electrode blanks in order to give it a hyperbolic shape in a section. Under a rod-shaped electrode blank is to be understood in addition to a solid solid rod blank and a hollow rod-shaped or hollow rod-like electrode blank, i. an electrode blank which is tube-shaped. The blank has a circular cross-section. A hollow rod-like or tubular-like blank has the advantage of lower material requirements. However, the wall thickness of a hollow rod-like or tube-like electrode blank is to be dimensioned such that a sufficient thickness remains even after the machining. Before processing, the electrode blank is fastened to one or more carrier elements, so that a later alignment within the electrode arrangement is dispensed with.
Vorteilhafterweise werden zwei Elektroden an einem vorderen und an einem hinteren oder einem sich im wesentlichen teilweise oder vollständig längs der Elektroden oder eines Teils der Elektroden erstreckenden, einzelnen Trägerelement befestigt und dann gemeinsam bearbeitet und zwar bevorzugterweise durch Beschleifen der Elektrodenrohlinge mittels eines Schleifsteins, der bereits die Negativform der späteren hyperbolischen Form der Elektroden und von den Endabschnitten des bzw. der Trägerelemente aufweist.Advantageously, two electrodes are formed on a single support element extending fore and aft, or substantially, or wholly, along the electrodes or part of the electrodes fixed and then processed together, and preferably by grinding the electrode blanks by means of a grindstone, which already has the negative shape of the later hyperbolic shape of the electrodes and of the end portions of the or the support elements.
Bevorzugterweise werden zwei auf diese Weise hergestellte Halbschalen bestehend aus zwei Elektroden und zwei Trägerelementen gebildet und dann miteinander verbunden, insbesondere verschraubt.Preferably, two half shells produced in this way are formed consisting of two electrodes and two carrier elements and then connected to one another, in particular screwed.
Bei einer bevorzugten Ausführungsform ist vorgesehen, dass jedes Trägerelement zwei Endabschnitte aufweist, von denen einer konkav und der andere konvex geformt ist. Die konvexe und die konkave Form ist dabei derart aneinander angepasst, dass die konvexe Form des einen Trägerelements mit der konkaven Form des anderen Trägerelements zusammengefügt werden kann, um auf diese Weise eine exakt definierte Position beider Trägerelemente zueinander zu gewährleisten. Besonders bevorzugt wird beim Bearbeiten der Elektrodenrohlinge zugleich eine Bearbeitung der Endabschnitte der Trägerelemente durchgeführt, so dass diese Formen gebildet werden.In a preferred embodiment it is provided that each support member has two end portions, one of which is concave and the other convex. The convex and concave shapes are adapted to one another in such a way that the convex shape of the one carrier element can be joined with the concave shape of the other carrier element in order to ensure a precisely defined position of the two carrier elements relative to each other. During the processing of the electrode blanks, it is particularly preferred to simultaneously process the end sections of the carrier elements so that these shapes are formed.
Bei einer besonders bevorzugten Ausführungsform werden die Elektrodenrohlinge unter Zwischenschaltung wenigstens eines Isolierorgans an dem bzw. den Trägerelementen zur elektrischen Isolation von Elektrodenrohling und Trägerelement befestigt. Vorteilhafterweise besteht dieses Isolierorgan aus einem Nicht-Leiter, wie Quarz bzw. Quarzglas oder Keramik.In a particularly preferred embodiment, the electrode blanks are fastened with the interposition of at least one insulating member on the carrier or elements for the electrical insulation of the electrode blank and the carrier element. Advantageously, this insulating member consists of a non-conductor, such as quartz or quartz glass or ceramic.
Besonders bevorzugt besteht jeder Elektrodenrohling und/oder jedes Trägerelement aus Graphit oder einem Metall bzw. einer Legierung mit geringem Wärme- bzw. Längenausdehnungskoeffizienten, z.B. kleiner als 8 · 10-6 K-1. Dieser Ausdehnungskoeffizient ist im wesentlichen gleich dem Wärme- bzw. Längenausdehnungskoeffizienten des Isolierorgans. Insbesondere ist der Betrag der Differenz des Ausdehnungskoeffizienten des Graphits, Metalls bzw. der Legierung und des Ausdehnungskoeffizienten des Isolierorgans kleiner als 2 · 10-6 K-1. Auf diese Weise kann eine dauerhafte Verbindung zwischen dem Metall und dem Isolierorgan hergestellt werden, bspw. durch Löten oder Kleben. Sofern das Isolierorgan aus Quarz bzw. Quarzglas hergestellt ist, ist bevorzugterweise das Material eine Eisen-Nickel Legierung, z.B. eine Legierung mit ca. 36 Gewichtsprozent Nickel und dem restlichen Anteil Eisen, die bspw. als Werkstoff 1.3912 (Deutscher Stahlschlüssel) bzw. unter der Bezeichnung Invar 36 vertrieben wird. Sofern bei einer Ausführungsform das Isolierorgan aus Keramik hergestellt ist, ist das Material bevorzugterweise eine Legierung mit den Hauptbestandteilen Nickel, Eisen und Kobalt, z.B. mit einem Anteil von 29 Gewichtsprozent Nickel, 53 Gewichtsprozent Eisen und 17 Gewichtsprozent Kobalt, die bspw. als Werkstoff 1.3981 (Deutscher Stahlschlüssel) bzw. unter der Bezeichnung Vacon/Nilo Alloy K vertrieben wird.Particularly preferably, each electrode blank and / or each carrier element made of graphite or a metal or an alloy with a low heat or linear expansion coefficient, for example, less than 8 · 10 -6 K -1 . This coefficient of expansion is substantially equal to the coefficient of thermal expansion or expansion coefficient of the insulating member. In particular, the amount of the difference of the expansion coefficient of the graphite, metal or alloy and the coefficient of expansion of the insulating member is smaller than 2 × 10 -6 K -1 . In this way, a permanent connection between the metal and the Isolierorgan be prepared, for example. By soldering or gluing. If the insulating member is made of quartz or quartz glass, preferably, the material is an iron-nickel alloy, for example an alloy with about 36 weight percent nickel and the remaining portion of iron, for example, as a material 1.3912 (German Stahlschlüssel) or under the Denomination Invar 36 is sold. If, in one embodiment, the insulating member is made of ceramic, the material is preferably an alloy with the main components nickel, iron and cobalt, for example with a share of 29 weight percent nickel, 53 weight percent iron and 17 weight percent cobalt, for example, as the material 1.3981 ( German steel key) or under the name Vacon / Nilo Alloy K is sold.
Eine Elektrode für eine derartige mehrpolige Elektrodenanordnung weist vorzugsweise einen Querschnitt mit einem kreisförmigen Abschnitt und einem nicht-kreisförmigen, insbesondere im wesentlichen hyperbelförmigen Abschnitt auf, wobei für den auf den Kreismittelpunkt des kreisförmigen Abschnitts bezogenen Winkel α zwischen den Schnittpunkten des kreisförmigen Abschnitts und des nicht-kreisförmigen Abschnitts gilt:
und für den eingeschlossenen Winkel β der Tangenten im jeweiligen dieser Schnittpunkte gilt:
and for the included angle β of the tangents in each of these intersections:
Diese besondere Winkelvorgabe ermöglicht einen günstigen Übergang des hyperbolischen Elektrodenabschnitts in den kreisförmigen Elektrodenabschnitt. Dieser Übergangsbereich ist grundsätzlich besonders sensibel, da es in diesem Bereich zu Feldverzerrungen kommen kann, die zu ungenauen analytischen Messergebnissen führen können. Der Übergangsbereich ist dabei vorteilhafterweise ohne spitze Kanten ausgebildet.This particular angle specification enables a favorable transition of the hyperbolic electrode section into the circular electrode section. In principle, this transition region is particularly sensitive because field distortions can occur in this area, which can lead to inaccurate analytical measurement results. The transition region is advantageously formed without sharp edges.
Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen sowie aus den anhand der beigefügten Zeichnungen näher erläuterten Ausführungsbeispiele. In den Zeichnungen zeigen:
- Fig. 1
- eine perspektivische Ansicht einer mehrpoligen Elektrodenanordnung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
- Fig. 2
- eine stirnseitige Ansicht der in Fig. 1 gezeigten Elektrodenanordnung;
- Fig. 3
- eine stirnseitige Ansicht einer von zwei in Fig. 2 gezeigten Halbschalen;
- Fig. 3A
- die stirnseitige Ansicht gemäß Fig. 3 zusammen mit einem Schleifstein zur Bearbeitung der Elektrodenanordnung;
- Fig. 3B
- eine perspektivische Ansicht einer mehrpoligen Elektrodenanordnung gemäß einem weiteren Ausführungsbeispiel der Erfindung;
- Fig. 4
- eine schematische Querschnittsansicht eines Elektrodenrohlings mit Veranschaulichung der nach der Bearbeitung entstehenden hyperbolischen Fläche an der Elektrode und
- Fig. 5 bis 7
- schematische Querschnittsansichten weiterer Elektrodenrohlinge.
- Fig. 1
- a perspective view of a multi-pole electrode assembly according to an embodiment of the present invention;
- Fig. 2
- an end view of the electrode assembly shown in Figure 1;
- Fig. 3
- an end view of one of two shells shown in Figure 2;
- Fig. 3A
- the front view of Figure 3 together with a grindstone for processing the electrode assembly.
- Fig. 3B
- a perspective view of a multi-pole electrode assembly according to another embodiment of the invention;
- Fig. 4
- a schematic cross-sectional view of an electrode blank illustrating the resulting after processing hyperbolic surface at the electrode and
- Fig. 5 to 7
- schematic cross-sectional views of other electrode blanks.
Fig. 1 zeigt eine mehrpolige Elektrodenanordnung 1 zur Fokussierung oder Massenfilterung eines Strahls geladener Teilchen. Die Elektrodenanordnung weist vier langgestreckte, parallel zu einer Achse angeordnete Elektroden 2 auf, die unter Zwischenschaltung von Isolierstücken 3 an Trägerelementen 4 befestigt sind. Dabei ist jede Elektrode an zwei Trägerelementen 4, nämlich einem vorderen und einem hinteren Trägerelement unter Zwischenschaltung jeweils eines Isolierstücks 3 befestigt. Diese Befestigung erfolgt bspw. mittels Kleben oder Löten.Fig. 1 shows a
Fig. 2 zeigt die Elektrodenanordnung aus Fig. 1 in einer stirnseitigen Ansicht. Jedes Trägerelement 4 ist im wesentlichen halbkreisbogenförmig ausgebildet.FIG. 2 shows the electrode arrangement from FIG. 1 in an end view. Each
Auf diese Weise bilden jeweils zwei Elektroden 2, die jeweils über Isolierstücke 3 mit einem Trägerelement 4 verbunden sind, eine Halbschale der Elektrodenanordnung 1. Mehrere derartige Trägerelemente 4 - im dargestellten Beispiel sind es zwei derartige Trägerelemente 4 - werden anschließend derart zusammengefügt, dass sie einen geschlossenen mehrteiligen Tragkörper 5 bilden, der die Elektroden 2 umschließt.In this way, in each case two
Die Endabschnitte 6 jedes Trägerelementes 4 sind unterschiedlich, dabei aber korrespondierend ausgebildet. D.h. ein Endabschnitt 6 eines ersten Trägerelements 4 ist derart ausgebildet, dass ein Endabschnitt eines zweiten Trägerelements derart mit dem Endabschnitt des ersten Trägerelements zusammenfügbar ist, dass eine Selbstzentrierung der beiden Trägerelemente eintritt. Zu diesem Zweck ist ein erster Endabschnitt 6 eines Trägerelements 4 konvex geformt, während der andere Endabschnitt desselben Trägerelements eine korrespondierende konkave Form aufweist. Beispielsweise ist der konvex geformte Endabschnitt dachförmig, d.h. mit zwei winklig zueinander angeordneten, im Wesentlichen ebenen Flächen ausgebildet, während der konkav geformte Endabschnitt mit entsprechender Negativform, d.h. als Kanal mit zwei winklig zueinander angeordneten, im Wesentlichen ebenen Flächen ausgebildet ist.The
Wie in Fig.1 angedeutet, weist ein Endabschnitt eines Trägerelements 4 eine Bohrung 7, insbesondere eine gewindelose Bohrung, auf, während der andere Endabschnitt des Trägerelements bzw. der gegenüberliegende Endabschnitt des gegenüberliegenden, im Eingriff stehenden Trägerelements eine Gewindebohrung aufweist (nicht dargestellt), in die eine Schraube 8 eingeschraubt werden kann. Alle vier Trägerelemente 4 sind identisch ausgebildet. Es kann somit mit einer einzigen Form von Trägerelementen gearbeitet werden.As indicated in FIG. 1, one end section of a
Die Elektroden 2 sind vorteilhafterweise aus Graphit oder einem Metall bzw. einer Legierung mit einem geringen Ausdehnungskoeffizienten, wie Eisen-Nickel Legierungen oder Eisen-Nickel-Kobalt Legierungen, z.B. Invar, Vacon oder einem ähnlichen Material gebildet. Die Isolierstücke 3 sind aus einem Nicht-Leiter, wie z.B. Quarz bzw. Quarzglas, Keramik oder Kunststoff gebildet.The
Auch die halbkreisförmigen Trägerelemente 4 sind aus Graphit oder einem Metall bzw. einer Legierung, vorteilhafterweise mit einem geringen Ausdehnungskoeffizienten, wie Eisen-Nickel Legierungen oder Eisen-Nickel-Kobalt Legierungen, z.B. Invar oder einem ähnlichen Material gefertigt. Insbesondere sind sie aus dem gleichen Material gefertigt wie die Elektroden 2.Also, the
Nachdem zunächst die Elektroden 2 einer Halbschale 5 unter Zwischenschaltung der Isolierstücke 3 auf das vordere und das hintere Trägerelement 4 aufgeklebt oder aufgelötet worden sind, werden die Elektroden und vorzugsweise auch die Endabschnitte 6 der Trägerelemente 4 bearbeitet. Die Bearbeitung erfolgt durch Formschleifen, Erodieren und/oder andere formgebende Verfahren und zwar in der Weise, dass in einem einzigen Arbeitsgang auf den zunächst runden Elektrodenrohlingen eine im wesentlichen hyperbolische oder ähnlich gekrümmte Fläche und an den Endabschnitten 6 der Trägerelemente 4 jeweils eine konvexe und eine konkave Kontur entsteht.After the
Auf die beschriebene Weise werden zwei Halbschalen gebildet und dann mittels der Schrauben 8 und der Bohrung 7 und den nicht dargestellten Gewindebohrungen zu einem Quadropolmassenfilter verschraubt. Fig. 3 zeigt eine der beiden Halbschalen in einer vergrößerten Ansicht. Fig. 3A zeigt diese Halbschale sowie einen Schleifstein S zur Bearbeitung der Elektroden 2 und der Endabschnitte 6 der Trägerelemente 4. Dieser Schleifstein S wird auf die Elektroden 2 und die Endabschnitte 6 aufgesetzt und zum Schleifen wird der Schleifstein S relativ zu den Elektroden 2 und den Endabschnitten 6 in Längsrichtung der Elektroden hin- und hergeschoben, bis die Elektroden 2 und die Endabschnitte 6 der Trägerelemente die gewünschte Form erhalten haben.In the manner described, two half-shells are formed and then screwed by means of the screws 8 and the
Fig. 3B zeigt eine weitere Ausführungsform einer erfindungsgemäßen Elektrodenanordnung 1', die - wie die in den vorstehend beschriebenen Figuren gezeigte Ausführungsform - vier langgestreckte, parallel angeordnete Elektroden 2 aufweist, die unter Zwischenschaltung von Isolierstücken 3' an Trägerelementen 4' befestigt sind. Im Unterschied zu der in Fig. 1 gezeigten Ausführungsform sind die Trägerelemente 4' jedoch wesentlich länger und erstrecken sich über einen weiten Teil der Elektroden 2. Deshalb reicht es bei dieser Ausführungsform aus, bei jeder Halbschale nur ein Trägerelement 4' vorzusehen, an dem dann bspw. zwei Elektroden 2 befestigt werden. Durch diese langgestreckten Trägerelemente 4' können die Elektroden 2 ohne weiteres auch an mehreren weiteren Stellen, insbesondere unter Zwischenschaltung weiterer Isolierstücke 3' an dem jeweiligen Trägerelement 4' befestigt werden. Hierdurch erreicht man eine weitere Lagefixierung der Elektroden 2 und kann insbesondere einen Verzug der Elektroden 2 verhindern bzw. substantiell reduzieren. Im in Fig. 3B gezeigten Ausführungsbeispiel weist das obere Trägerelement 4' einen Ausbruch A auf, der jedoch nur zur Veranschaulichung des Inneren dieser Elektrodenanordnung 1' dient. Dank dieses Ausbruchs A ist erkennbar, dass die Elektroden 2 mittels weiterer Isolierstücke 3', bspw. in der Mitte der Elektrodenanordnung 1' an dem jeweiligen Trägerelement 4' befestigt sind. Der Ausbruch A hat jedoch rein darstellerische Gründe. D.h., die Trägerelemente 4' sind vorzugsweise ohne derartige Durchbrüche (abgesehen von Bohrungen bzw. Gewindebohrungen zur Befestigung der Trägerelemente 4' miteinander oder Durchbrüchen zur Verbesserung von Abpumpeigenschaften und damit eines Vakuums innerhalb der Elektrodenanordnung) ausgebildet.3B shows a further embodiment of an electrode arrangement 1 'according to the invention which, like the embodiment shown in the figures described above, comprises four
Abgesehen von der Länge unterscheiden sich jedoch die in Fig. 3B dargestellten Trägerelemente 4' nicht substantiell von den in Fig. 1 bis 3A dargestellten Trägerelementen 4, so dass insoweit auf die Ausführungen in Bezug auf die übrigen Figuren Bezug genommen wird.However, apart from the length, the support elements 4 'shown in FIG. 3B do not differ substantially from the
Zwar wurde vorstehend die Bildung eines Quadropols mit zwei Halbschalen beschrieben. Es können jedoch auch andere mehrpolige Elektrodenanordnungen mittels des beschriebenen Verfahrens mit entsprechendem Aufbau gebildet werden. Bspw. kann alternativ auch ein Hexapol mittels des beschriebenen Verfahrens hergestellt werden, das entweder aus zwei Halbschalen mit jeweils drei Elektroden oder drei Drittelschalen mit jeweils zwei Elektroden besteht.Although the formation of a quadrupole with two half-shells was described above. However, other multi-pole electrode arrangements can also be formed by means of the described method with a corresponding structure. For example. Alternatively, a hexapol can also be produced by means of the described method, which consists either of two half shells with three electrodes each or three third shells with two electrodes each.
Alternativ kann mittels des beschriebenen Verfahrens auch ein Oktopol hergestellt werden, dass dann entweder aus vier Viertelschalen mit jeweils zwei Elektroden oder aus zwei Halbschalen mit jeweils vier Elektroden besteht.Alternatively, an octopole can also be produced by means of the described method be that then either consists of four quarter-shells with two electrodes or two half-shells with four electrodes.
Allen derartigen Elektrodenanordnungen ist gemein, dass die Elektroden 2 in gleichen Winkeln bzgl. der Mittelachse der Elektrodenanordnung angeordnet sind. Auf diese Weise erreicht man eine hohe Symmetrie des sich zwischen den Elektroden bildenden Feldes.All such electrode arrangements have in common that the
Durch das beschriebene Verfahren ergibt sich eine Elektrodenanordnung mit extrem geraden Elektrodenstäben, die eine sehr hohe Parallelität zueinander aufweisen, wobei die Gesamtanordnung aufgrund der Ausbildung der Endabschnitte im wesentlichen vollständig symmetrisch montiert werden kann. Die dank dieses Herstellungsverfahrens erzielbaren Genauigkeiten der Elektrodenoberflächen zueinander liegen im Bereich von kleiner als 1 µm. Trotz dieser hohen Genauigkeiten ist die Fertigung der einzelnen Teilschalen (Halbschalen, Drittelschalen, Viertelschalen etc.) mit geringem Aufwand durchführbar.The described method results in an electrode arrangement with extremely straight electrode rods, which have a very high parallelism to each other, wherein the overall arrangement can be mounted substantially completely symmetrically due to the formation of the end portions. The accuracies of the electrode surfaces which can be achieved with one another thanks to this production method are in the range of less than 1 μm. Despite these high accuracies, the production of the individual partial shells (half shells, third shells, quarter shells, etc.) can be carried out with little effort.
Es wurde ferner herausgefunden, dass eine hyperbolische Form der Elektroden nur dann sehr gute Resultate liefert, wenn die Elektrodenkörper relativ breit sind, damit die Feldverzerrungen, die durch scharfes Abschneiden des Feldes hervorgerufen werden können, nicht störend wirken. Demgegenüber haben Rundelektroden im Zentrum der Anordnung einen großen Feldfehler, der jedoch zum Rand der jeweiligen Elektroden abnimmt, wo der Feldfehler geringer wird, weil dort das Feld nicht abrupt aufhört, sondern durch die Rundung harmonisch ausläuft.It has also been found that a hyperbolic shape of the electrodes only gives very good results if the electrode bodies are relatively wide, so that the field distortions which can be caused by sharp cutting off of the field do not interfere. In contrast, round electrodes in the center of the arrangement have a large field error, which, however, decreases to the edge of the respective electrodes, where the field error becomes smaller, because there the field does not abruptly stop, but runs smoothly through the rounding.
Angesichts dieser Erkenntnis wurde eine Elektrodenform gefunden, die in Fig. 4 näher dargestellt ist. In Fig. 4 ist ein Rundstabelektrodenrohling 9 dargestellt, der eine kreisförmige Kontur aufweist. Dieser Rohling 9 wird - in der Ausrichtung gemäß Fig. 4 - vor der Bearbeitung an seiner rechten Seite beschliffen, so dass er eine hyperbolische Form 10 erhält. Der entsprechende hyperbolische Abschnitt HA wird durch den Winkel α definiert, der sich auf den Kreismittelpunkt des Elektrodenrohlings 9 bezieht und zwischen den Schnittpunkten P, P' des sich durch das Beschleifen bildenden kreisförmigen Abschnitts KA und des hyperbolischen Abschnitts HA bezieht. Dieser Winkel α ist vorteilhafterweise größer gleich 45°. Bevorzugterweise liegt der Winkel α zwischen 45° und 90°.In view of this finding, an electrode shape was found which is shown in Fig. 4 in more detail. 4, a round
An jedem dieser Schnittpunkte P bzw. P' kann eine Tangente sowohl an dem den Rohling umschreibenden Kreis K sowie eine weitere Tangente an die Hyperbel des hyperbolischen Abschnitts HA gelegt werden. Beide Tangenten schließen einen Winkel β ein, der vorzugsweise kleiner gleich 45° ist, insbesondere kleiner gleich 30° ist. In den in Fig. 3 und 4 gezeigten Beispielen beträgt der Winkel α ca. 90° und der Winkel β ca. 14°.At each of these points of intersection P or P ', a tangent can be placed both on the circle K circumscribing the blank and a further tangent on the hyperbola of the hyperbolic section HA. Both tangents include an angle β, which is preferably less than or equal to 45 °, in particular less than or equal to 30 °. In the examples shown in FIGS. 3 and 4, the angle α is about 90 ° and the angle β is about 14 °.
In Fig. 4 sind ferner die Hyperbelasymptoten gestrichelt dargestellt. Ihr Schnittpunkt ist mit M bezeichnet. Vorzugsweise fällt dieser Schnittpunkt mit dem Zentrum M der Elektrodenanordnung zusammen. Der geringste Abstand der fertig geschliffenen Elektrode, d.h. der Abstand zwischen dem hyperbolischen Abschnitt HA der Elektrode zum Zentrum M der Elektrodenanordnung ist in Fig. 4 mit r0 dargestellt. Fig. 4 veranschaulicht schematisch lediglich einen Quadranten eines Quadropols mit dem Zentrum M.In Fig. 4, the hyperbola symptoms are also shown in dashed lines. Their intersection is denoted by M. Preferably, this point of intersection coincides with the center M of the electrode arrangement. The smallest distance of the finished ground electrode, ie the distance between the hyperbolic section HA of the electrode to the center M of the electrode arrangement is shown in FIG. 4 as r 0 . Fig. 4 schematically illustrates only one quadrant of a quadrupole with the center M.
Die Fig. 5 bis 7 zeigen weitere Beispiele bearbeiteter bzw. beschliffener Rundstäbe. In dem Beispiel gemäß Fig. 5 ist der Rundstabrohling 9 derart beschliffen, dass der hyperbolische Abschnitt HA einen Winkel α =54,4° aufweist. Bei einem derartigen Winkel ergibt sich der Winkel β zu 3,3°.FIGS. 5 to 7 show further examples of processed or ground round rods. In the example according to FIG. 5, the
In dem Beispiel gemäß Fig. 6 ist der Rundstabrohling 9 derart beschliffen, dass der hyperbolische Abschnitt HA einen Winkel α =87,4° aufweist. Bei einem derartigen Winkel ergibt sich der Winkel β zu 14°.In the example according to FIG. 6, the
Elektroden, die wie in den Fig. 5 und 6 dargestellt beschliffen sind, haben den Vorteil eines weichen Übergangs des hyperbolischen Abschnitts HA zu dem kreisförmigen Abschnitt KA der Elektrode. Ferner muss lediglich ein geringer Teil des Elektrodenrohlings entfernt werden. Darüber hinaus können kostengünstige Rundstäbe als Ausgangsmaterial benutzt werden. Auf diese Weise können kostengünstige Elektroden für mehrpolige Elektrodenanordnungen bei hoher Maßhaltigkeit hergestellt werden.Electrodes ground as shown in Figs. 5 and 6 have the advantage of smooth transition of the hyperbolic section HA to the circular section KA of the electrode. Furthermore, only a small part of the electrode blank has to be removed. In addition, cost-effective Round rods are used as starting material. In this way, inexpensive electrodes for multi-pole electrode assemblies can be produced with high dimensional accuracy.
Die Erfindung ist aber nicht auf die vorstehend beschriebenen Verhältnisse des hyperbolischen Abschnitts HA zum kreisförmigen Abschnitt KA beschränkt. Die Erfindung erlaubt auch eine Verschiebung der dargestellten Verhältnisse zu Gunsten des hyperbolischen Abschnitts HA. Ein Beispiel hierfür ist in Fig. 7 dargestellt. Bei diesem Beispiel beträgt der Winkel des hyperbolischen Abschnitts HA α=171,1°. Hieraus ergibt sich ein Winkel β=57,1°.However, the invention is not limited to the above-described ratios of the hyperbolic portion HA to the circular portion KA. The invention also allows a shift of the illustrated ratios in favor of the hyperbolic section HA. An example of this is shown in FIG. 7. In this example, the angle of the hyperbolic section HA α = 171.1 °. This results in an angle β = 57.1 °.
Alle vorstehend genannten Zahlenwerte bedeuten keinerlei Beschränkung der Erfindung auf derartige Zahlenwerte. Insbesondere sind Abweichungen von +/-10 bis 30% dieser Zahlenwerte als ebenfalls offenbart anzusehen.All numerical values mentioned above do not limit the invention to such numerical values. In particular, deviations of +/- 10 to 30% of these numerical values are also to be regarded as disclosed.
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004054835A DE102004054835A1 (en) | 2004-11-12 | 2004-11-12 | Method for producing an electrode or multi-pole electrode arrangement as well as multi-pole electrode arrangement and electrode for a multi-pole electrode arrangement |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1657737A2 true EP1657737A2 (en) | 2006-05-17 |
EP1657737A3 EP1657737A3 (en) | 2008-05-07 |
EP1657737B1 EP1657737B1 (en) | 2012-09-19 |
Family
ID=35999501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05023606A Active EP1657737B1 (en) | 2004-11-12 | 2005-10-28 | Procedure for the production of a multipolar electrode arrangement as well as a multipolar electrode arrangement |
Country Status (3)
Country | Link |
---|---|
US (1) | US7348552B2 (en) |
EP (1) | EP1657737B1 (en) |
DE (1) | DE102004054835A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104716010A (en) * | 2013-12-13 | 2015-06-17 | 中国科学院大连化学物理研究所 | Vacuum ultraviolet photoionization and chemical ionization compound ionization source based on radio frequency electric field enhancement of quadrupole rod |
EP3385979A1 (en) * | 2017-04-03 | 2018-10-10 | Vacutec Hochvakuum- & Präzisionstechnik GmbH | Multipole with a holding device for holding the multipole, holding device of a multipole, mass spectrometer with such a multipole, mounting unit for positioning the multipole and method for positioning a holding device relative to a multipole |
WO2024069125A1 (en) * | 2022-09-28 | 2024-04-04 | Micromass Uk Limited | A multipole rod support and a multipole rod assembly comprising the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2645464T3 (en) * | 2006-06-09 | 2017-12-05 | Rapiscan Laboratories, Inc. | Miniaturized ionic mobility spectrometer |
PL2099584T3 (en) | 2006-07-18 | 2018-01-31 | Kistler Holding Ag | Joining unit |
US20100276063A1 (en) * | 2009-05-02 | 2010-11-04 | Henry Hoang Xuan Bui | Methods of manufacturing quadrupole mass filters |
US8173976B2 (en) * | 2009-07-24 | 2012-05-08 | Agilent Technologies, Inc. | Linear ion processing apparatus with improved mechanical isolation and assembly |
US8492713B2 (en) * | 2011-07-14 | 2013-07-23 | Bruker Daltonics, Inc. | Multipole assembly and method for its fabrication |
DE102013111254B4 (en) | 2013-10-11 | 2019-04-25 | VACUTEC Hochvakuum- & Präzisionstechnik GmbH | Electrode device with pre- and / or post-filter and manufacturing method for this purpose and mass spectrometer with such an electrode device |
DE102013111253A1 (en) | 2013-10-11 | 2015-04-16 | VACUTEC Hochvakuum- & Präzisionstechnik GmbH | Electrode device and method of production thereof and mass spectrometer with such an electrode device |
DE102014208729A1 (en) * | 2014-05-09 | 2015-11-12 | Incoatec Gmbh | Two-part high-voltage vacuum feed-through for an electron tube |
JP6911948B2 (en) * | 2018-02-07 | 2021-07-28 | 株式会社島津製作所 | Mass spectrometer |
US11043371B2 (en) * | 2018-02-07 | 2021-06-22 | Shimadzu Corporation | Mass spectrometer |
DE102020128646B4 (en) * | 2020-10-30 | 2024-10-24 | VACUTEC Hochvakuum- & Präzisionstechnik GmbH | Multipole with receiving rings arranged on its front sides and such receiving ring |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2625660A1 (en) * | 1976-06-08 | 1977-12-22 | Leybold Heraeus Gmbh & Co Kg | METHOD OF MANUFACTURING AN ION FILTER FOR A MASS ANALYZER |
JPS58204464A (en) * | 1982-05-21 | 1983-11-29 | Shimadzu Corp | Tetrode mass spectrograph |
EP0572687A1 (en) * | 1992-05-26 | 1993-12-08 | Finnigan Corporation | Ion filter, especially for a mass spectrometer, and method of manufacturing said filter |
US5315120A (en) * | 1993-06-07 | 1994-05-24 | Accsys Technology, Inc. | Univane RFQ |
US20040245460A1 (en) * | 2003-06-05 | 2004-12-09 | Tehlirian Berg A. | Integrated shield in multipole rod assemblies for mass spectrometers |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT528250A (en) * | 1953-12-24 | |||
GB9110207D0 (en) * | 1991-05-10 | 1991-07-03 | Fisons Plc | Process for the manufacture of a multipolar elongate-electrode lens or mass filter |
US5525084A (en) * | 1994-03-25 | 1996-06-11 | Hewlett Packard Company | Universal quadrupole and method of manufacture |
IL157558A0 (en) * | 2001-02-23 | 2004-03-28 | Scripps Research Inst | TRYPTOPHANYL-tRNA SYNTHETASE DERIVED POLYPEPTIDES USEFUL FOR THE REGULATION OF ANGIOGENESIS |
US6723986B2 (en) * | 2002-03-15 | 2004-04-20 | Agilent Technologies, Inc. | Apparatus for manipulation of ions and methods of making apparatus |
-
2004
- 2004-11-12 DE DE102004054835A patent/DE102004054835A1/en not_active Withdrawn
-
2005
- 2005-10-28 EP EP05023606A patent/EP1657737B1/en active Active
- 2005-11-11 US US11/270,985 patent/US7348552B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2625660A1 (en) * | 1976-06-08 | 1977-12-22 | Leybold Heraeus Gmbh & Co Kg | METHOD OF MANUFACTURING AN ION FILTER FOR A MASS ANALYZER |
JPS58204464A (en) * | 1982-05-21 | 1983-11-29 | Shimadzu Corp | Tetrode mass spectrograph |
EP0572687A1 (en) * | 1992-05-26 | 1993-12-08 | Finnigan Corporation | Ion filter, especially for a mass spectrometer, and method of manufacturing said filter |
US5315120A (en) * | 1993-06-07 | 1994-05-24 | Accsys Technology, Inc. | Univane RFQ |
US20040245460A1 (en) * | 2003-06-05 | 2004-12-09 | Tehlirian Berg A. | Integrated shield in multipole rod assemblies for mass spectrometers |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104716010A (en) * | 2013-12-13 | 2015-06-17 | 中国科学院大连化学物理研究所 | Vacuum ultraviolet photoionization and chemical ionization compound ionization source based on radio frequency electric field enhancement of quadrupole rod |
EP3385979A1 (en) * | 2017-04-03 | 2018-10-10 | Vacutec Hochvakuum- & Präzisionstechnik GmbH | Multipole with a holding device for holding the multipole, holding device of a multipole, mass spectrometer with such a multipole, mounting unit for positioning the multipole and method for positioning a holding device relative to a multipole |
US10504710B2 (en) | 2017-04-03 | 2019-12-10 | Vacutec Hochvakuum- & Praezisionstechnik Gmbh | Multipole with a holding device for holding the multipole, holding device of a multipole, mass spectrometer with such a multipole, mounting unit for positioning the multipole and method for positioning a holding device relative to a multipole |
WO2024069125A1 (en) * | 2022-09-28 | 2024-04-04 | Micromass Uk Limited | A multipole rod support and a multipole rod assembly comprising the same |
Also Published As
Publication number | Publication date |
---|---|
EP1657737A3 (en) | 2008-05-07 |
US20060102835A1 (en) | 2006-05-18 |
DE102004054835A1 (en) | 2006-05-24 |
EP1657737B1 (en) | 2012-09-19 |
US7348552B2 (en) | 2008-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1657737B1 (en) | Procedure for the production of a multipolar electrode arrangement as well as a multipolar electrode arrangement | |
DE69227825T2 (en) | Four-pole electrode and manufacturing method of the same. | |
DE69207183T2 (en) | METHOD FOR PRODUCING A MULTIPOLAR LENS OR A MULTIPOLAR MASS FILTER WITH LONG ELECTRODES | |
DE102004037511B4 (en) | Multipole by wire erosion | |
DE2936887C2 (en) | ||
DE69203140T2 (en) | Displacement amplification mechanism with piezoelectric element. | |
EP0572687B1 (en) | Ion filter, especially for a mass spectrometer, and method of manufacturing said filter | |
EP0353436A1 (en) | Adjusting device, especially for tools | |
DE832022C (en) | Crystal contact device and method for making the same | |
DE2915256A1 (en) | STRETCHING MATRIX ARRANGEMENT | |
DE3225216C2 (en) | ||
DE102016103565A1 (en) | Cutting plate, tool holder and tool for machining a workpiece | |
EP3105459A1 (en) | Method for fastening components | |
DE8915750U1 (en) | Contact arrangement for a vacuum interrupter | |
DE1929539B2 (en) | Process for the production of a drawing tool and tool produced according to this process | |
EP2860752B1 (en) | Electrode device with pre- and/or postfilters and manufacturing method therefor, as well as a mass spectrometer with such an electrode device | |
DE2333033B2 (en) | Method for producing and attaching a holding device for a piezoelectric resonator and a resonator provided with such a holding device | |
DE3711226C2 (en) | Process for producing a delay line for traveling wave tubes | |
CH691717A5 (en) | Condenser with cold heading pressed electrodes. | |
DE102020128646B4 (en) | Multipole with receiving rings arranged on its front sides and such receiving ring | |
DE60309277T2 (en) | Encapsulated high voltage capacitor with high temperature stability | |
DE2215763C3 (en) | Method of manufacturing a body for an ion filter of a mass spectrometer | |
DE935447C (en) | Semiconductor element in the form of a cylinder | |
EP0753363A1 (en) | Method of producing hollow bodies | |
DE102021128644B3 (en) | Electrical feedthrough |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080919 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20111005 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 576378 Country of ref document: AT Kind code of ref document: T Effective date: 20121015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005013106 Country of ref document: DE Effective date: 20121115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120919 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 |
|
BERE | Be: lapsed |
Owner name: VACUTEC HOCHVAKUUM- & PRAZISIONSTECHNIK G.M.B.H. Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121230 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130121 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20130620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005013106 Country of ref document: DE Effective date: 20130620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051028 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230519 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231025 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231023 Year of fee payment: 19 Ref country code: DE Payment date: 20230717 Year of fee payment: 19 Ref country code: CH Payment date: 20231102 Year of fee payment: 19 Ref country code: AT Payment date: 20231019 Year of fee payment: 19 |