Nothing Special   »   [go: up one dir, main page]

EP1067473B1 - Integrator - Google Patents

Integrator Download PDF

Info

Publication number
EP1067473B1
EP1067473B1 EP00107682A EP00107682A EP1067473B1 EP 1067473 B1 EP1067473 B1 EP 1067473B1 EP 00107682 A EP00107682 A EP 00107682A EP 00107682 A EP00107682 A EP 00107682A EP 1067473 B1 EP1067473 B1 EP 1067473B1
Authority
EP
European Patent Office
Prior art keywords
resistance
capacitance
output
input
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00107682A
Other languages
English (en)
French (fr)
Other versions
EP1067473A1 (de
Inventor
Reiner Bidenbach
Ulrich Dr. Theus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
TDK Micronas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Micronas GmbH filed Critical TDK Micronas GmbH
Publication of EP1067473A1 publication Critical patent/EP1067473A1/de
Application granted granted Critical
Publication of EP1067473B1 publication Critical patent/EP1067473B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/18Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals
    • G06G7/184Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals using capacitive elements
    • G06G7/186Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals using capacitive elements using an operational amplifier comprising a capacitor or a resistor in the feedback loop

Definitions

  • the invention relates to an integrator comprising a transconductance amplifier, the output of which is fed back to its inverting input via an integration capacitor, and a first current source having a parasitic parallel capacitance.
  • Such integrators can be used for example in an analog-to-digital converter.
  • analog-to-digital converters which will be described and explained below.
  • the Indian Fig. 4 Imaged integrator is composed of a transconductance amplifier V whose output is fed back via an integration capacitor Ci to its inverting input and at the non-inverting input a reference voltage V2 is applied.
  • a reference voltage V1 is connected to a series connection of an adjustable resistor R1 and a current source Q1 with a parasitic parallel capacitance Cp.
  • the common connection point of the variable resistor R1 and the current source Q1 is connected to the inverting input of the transconductance amplifier V.
  • FIG. 5 an integrator is shown in which the adjustable resistor is realized as a switched capacitor C1. This integrator can therefore be integrated to save space.
  • the in the 4 and 5 shown integrators are used for example as an analog-to-digital converter.
  • the adjustable resistor R1 and the switched capacitor C1 are adjusted in response to the voltage V0 at the output of the transconductance amplifier so that the current flowing through the adjustable resistor receives the input current from the power source.
  • the analog-to-digital converter is to convert the analog current of an integrated photodiode PD into digital values
  • the unfavorable case arises that the photodiode has a large parasitic parallel capacitance Cp and, due to the low input current, an unfavorable ratio of parasitic parallel capacitance Cp to integration capacity Ci of Cp / Ci of about 100, whereby the amplification bandwidth product is reduced by about this factor, ie by about two powers of ten.
  • the bandwidth should be large enough, while at the same time the DC gain should also be large in order to ensure the integration function even at low frequencies.
  • acceptable bandwidth and DC gain can be achieved.
  • the document FR 2 226 785 A (CORECI CIE REGUL CONTROLE INDL, 1974-11-15) discloses an integrator having a transconductance amplifier whose output is fed back to its inverting input via an integrating capacitance and a parasitic parallel capacitance current source having one terminal at a reference potential and another Terminal is connected via a resistive device to a second reference voltage.
  • the invention solves this problem according to claim 1, characterized in that at a voltage divider of a first and a second resistor and the current source with the parasitic Parallel capacitor is a second reference voltage and that the connection point of the first and the second resistor is connected to the inverting input of the transconductance amplifier.
  • the output of a transconductance amplifier V at which an output voltage Vo is removable, according to the embodiment of Fig. 1 connected via an integration capacitor Ci with its inverting input.
  • a reference voltage V1 At the ends of the series connection of the resistors R1 and R2 and the Current source Q1 formed voltage divider is a reference voltage V1.
  • the additional resistance R2 makes it possible to achieve a significantly higher gain bandwidth product if the resistance R2 is dimensioned accordingly.
  • the additional resistor R2 acts as a decoupling resistor.
  • resistor R2 With a capacitance value of the integration capacitor Ci of about 30.10 -15 F, the value of resistor R2 is about 450 K ⁇ , assuming a 10 MHz bandwidth. Appropriately, R2 is dimensioned slightly larger.
  • a second embodiment of the invention is shown, which differs from the first in the Fig. 1 illustrated embodiment differs in that the additional resistor R2 is replaced by a MOS transistor, which operates in the region of weak inversion.
  • a voltage is applied to the gate electrode of the MOS transistor T1, which is lower than the reference voltage V2 in accordance with V G > V ⁇ 2 + V TH is chosen, where V G. the gate voltage at the Tranwssitor T1 and V TH is the threshold voltage of the Transsitors T1.
  • the resistor R1 may be replaced by a switchable capacitance.
  • the example shown is a first-order sigma-delta analog-to-digital converter which converts analog optical signals into digital electrical signals as a measuring converter with a photodiode input.
  • the output of the transconductance amplifier V is connected via the integration capacitor Ci to its inverting input.
  • a reference voltage V2 At the non-inverting input of the transconductance amplifier V is a reference voltage V2.
  • V1 At the two ends of a voltage divider, which is constructed as a series circuit of a switched capacitor C1, the source-drain path of a MOS transistor T1 and a photodiode PD, there is a reference voltage V1.
  • the source of the MOS transistor T1 is connected to the inverting input of the transconductance amplifier V whose output is connected to the input of a threshold detector D.
  • the gate electrode of the MOS transistor T1 is connected to the gate electrode and the drain electrode of a MOS transistor T2.
  • the photodiode PD is represented by its equivalent circuit diagram drawn as a current source Q1 with a parasitic parallel capacitance Cp whose capacitance value is on the order of 3.10 -12 F. Furthermore, it is expedient to choose a value of, for example, about 30.10 -15 F for the integration capacity CI. This value depends on the capacitance value of the capacitor C1, which in turn depends on the photocurrent and the resolution of the A / D converter.
  • the control circuit S controls in response to the voltage Vo at the output of the transconductance amplifier V, the switched capacitor C1 and the count of the counter Z.
  • the transistor T1 acting as an ohmic resistor R2 is shown connected in series with a switched capacitor C1, the invention is not limited thereto. Rather, the switched capacitor C1 can also be realized by a switched current source, a switched resistor or a resistor itself.
  • "ohmic device” always means the series connection of an ohmic resistor (R2 or T1) to a further circuit part, wherein the circuit part may be an ohmic resistor R2, a switched capacitor C1 or a switched current source.
  • the invention is suitable for integrators that receive their input signal from an analog signal source with a relatively high parasitic parallel capacitance. It is therefore particularly suitable for sigma-delta analog-to-digital converters, which are often also called delta-sigma analog-to-digital converters be designated and their input signals are supplied by a photodiode.
  • Sigma-delta analog-to-digital converters are for example in Herbert Bernstein, Analog Circuit Technology with Discrete and Integrated Components, Wegig Verlag, Heidelberg 1997 (ISBN 3-7785-2296-5) on page 480 to 485 and in David A. Jons, Ken Martin, Analog Integrated Circuit Design, John Wiley and Sons, New York, Toronto 1997 (ISBN 0-471-14448-7) at pages 531-551 described. For purposes of disclosure, this publication is incorporated herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

  • Die Erfindung betrifft einen Integrator aus einem Transkonduktanzverstärker, dessen Ausgang über eine Integrationskapazität auf seinen invertierenden Eingang rückgekoppelt ist, und einer ersten Stromquelle mit einer parasitären Parallelkapazität.
  • Derartige Integratoren können beispielsweise in einem Analog-Digital-Umsetzer eingesetzt werden. In den Fig. 4 und 5 sind bekannte Analog-Digital-Umsetzer gezeigt, die im folgenden bebeschrieben und erläutert werden.
  • Der in der Fig. 4 abgebildete Integrator ist aus einem Transkonduktanzverstärker V aufgebaut, dessen Ausgang über eine Integrationskapazität Ci auf seinen invertierenden Eingang rückgekoppelt ist und an dessen nichtinvertierendem Eingang eine Referenzspannung V2 anliegt. An einer Reihenschaltung aus einem verstellbaren Widerstand R1 und einer Stromquellen Q1 mit einer parasitären Parallelkapazität Cp liegt eine Referenzspannung V1. Der gemeinsame Verbindungspunkt des einstellbaren Widerstandes R1 und der Stromquelle Q1 ist mit dem invertierenden Eingang des Transkonduktanzverstärkers V verbunden.
  • In der Fig. 5 ist ein Integrator gezeigt, bei dem der einstellbare Widerstand als geschaltete Kapazität C1 realisiert ist. Dieser Integrator ist daher platzsparend integrierbar.
  • Die in den Fig. 4 und 5 dargestellten Integratoren werden beispielsweise als Analog-Digital-Umsetzer eingesetzt. Der einstellbare Widerstand R1 bzw. die geschaltete Kapazität C1 werden in Abhängigkeit der Spannung V0 am Ausgang des Transkonduktanzverstärkers so eingestellt, dass der den einstellbaren Widerstand durchfließende Strom den Eingangsstrom aus der Stromquelle aufnimmt.
  • Wenn der Analog-Digital-Umsetzer zum Beispiel den anlogen Strom einer integrierten Fotodiode PD in digitale Werte umsetzen soll, so tritt der ungünstige Fall auf, dass sich in Folge der großen parasitären Parallelkapazität Cp der Fotodiode und in Folge des niedrigen Eingangsstrom ein ungünstiges Verhältnis von parasitärer Parallelkapazität Cp zu Integrationskapazität Ci von Cp/Ci von etwa 100 ergibt, wodurch das Verstärkungsbandbreitenprodukt um etwa diesen Faktor - also um etwa zwei ZehnerPotenzen - vermindert wird. Jedoch sollte insbesondere bei Einsatz einer geschalteten Kapazität als steuerbarer Widerstand die Bandbreite groß genug sein, während gleichzeitig die Gleichstromverstärkung ebenfalls groß sein sollte, um die Integrationsfunktion auch bei kleinen Frequenzen zu gewährleisten. Weil diese beiden Forderungen aber gegenläufig sind, ist eine akzeptable Bandbreite als auch eine tolerable Gleichstromverstärkung zu erzielen.
  • Das Dokument FR 2 226 785 A (CORECI CIE REGUL CONTROLE INDL, 1974-11-15) offenbart einen Integrator mit einem Transkonduktanzverstärker, dessen Ausgang über eine Integrationskapazität auf seinen invertierenden Eingang rückgekoppelt ist und eine eine parasitäre Parallelkapazität aufweisende Stromquelle, die mit einer Klemme an ein Bezugspotential und mit einer anderen Klemme über eine ohmsche Einrichtung an eine zweite Referenzspannung geschaltet ist.
  • Es ist daher Aufgabe der Erfindung, einen Integrator mit einem Transkonduktanzverstärker und einer Integrationskapazität so zu gestalten, dass der bisherige Stand der Technik weitergebildet wird.
  • Die Erfindung löst diese Aufgabe gemäß Anspruch 1 dadurch, dass an einem Spannungsteiler aus einem ersten und einer zweiten Widerstand und der Stromquelle mit der parasitären Parallelkapazität eine zweite Referenzspannung liegt und daß der Verbindungspunkt des ersten und des zweiten Widerstandes mit dem invertierenden Eingang des Transkonduktanzverstärkers verbunden ist.
  • Der zweite nicht beim Stand der Technik vorgesehene Widerstand ist so dimensioniert, daß die Verhältnisse des Rückkoppelnetzwerkes jωCi/ (R2 + jωCp) so geändert sind, daß ein wesentlich höheres Verstärkungsbandbreiteprodukt erzielt wird. Es zeigen:
  • Fig. 1
    ein erstes Ausführungsbeispiel der Erfindung,
    Fig. 2
    ein zweites Ausführungsbeispiel der Erfindung,
    Fig. 3
    den Einsatz der Erfindung in einem Meßumsetzer,
    Fig. 4
    ein erstes Ausführungsbeispiel eines bekannten Integrators, und
    Fig. 5
    ein zweites Ausführungsbeispiels eines bekannten Integrators.
  • Der Ausgang eines Transkonduktanzverstärkers V, an dem eine Ausgangsspannung Vo abnehmbar ist, ist gemäß dem Ausführungsbeispiel von Fig. 1 über eine Integrationskapazität Ci mit seinem invertierenden Eingang verbunden. Der gemeinsame Verbindungspunkt zweier Widerstände R1 und R2, die zusammen mit einer in Reihe geschalteten Stromquelle Q1 mit einer parasitären Parallelkapazität Cp einen Spannungsteiler bilden, ist ebenfalls mit dem invertierenden Eingang des Transkonduktanzverstärkers V verbunden. An den Enden des als Reihenschaltung aus den Widerständen R1 und R2 sowie der Stromquelle Q1 gebildeten Spannungsteilers liegt eine Referenzspannung V1. Am nichtinvertierenden Eingang des Transkonduktanzverstärkers V liegt eine Referenzspannung V2. Wie bereits erwähnt, ist es durch den zusätzlichen Widerstand R2 möglich, ein wesentlich höheres Verstärkungsbandbreiteprodukt zu erzielen, wenn der Widerstand R2 entsprechend dimensioniert wird. Der zusätzliche Widerstand R2 wirkt als Entkopplungswiderstand.
  • Der Widerstand R2 wird mindestens so groß dimensioniert, wie das Verstärkungsbandbreitenprodukt multipliziert mit dem Kapazitätswert des Integrationskondensators Ci ist. Die Formel hierfür lautet: R 2 2 π f Ci
    Figure imgb0001
    wobei
    • Ci = Kapazitätswert der Integrationskapazität,
    • f = Bandbreite (z.B. 10 MHz).
  • Bei einem Kapazitätswert des Integrationskondensators Ci von etwa 30.10-15 F ergibt sich für den Widerstand R2 ein Wert von etwa 450 KΩ, wenn 10 MHz Bandbreite angenommen wird. Zweckmäßigerweise wird R2 etwas größer dimensioniert.
  • In Fig. 2 ist ein zweites Ausführungsbeispiel der Erfindung gezeigt, das sich vom ersten in der Fig. 1 abgebildeten Ausführungbeispiel dadurch unterscheidet, daß der zusätzliche Widerstand R2 durch einen MOS-Transistor ersetzt ist, der im Bereich schwacher Inversion arbeitet. Hierzu wird eine Spannung an die Gate-Elektrode des MOS-Transistors T1 gelegt, die niedriger als die Referenzspannung V2 gemäß V G > V 2 + V TH
    Figure imgb0002
    gewählt ist, wobei VG. die Gatespannung an dem Tranwssitor T1 und VTH die Schwellspannung des Transsitors T1 ist.
  • Sowohl bei dem ersten in der Fig. 1 gezeigten als auch bei dem zweiten in der Fig. 2 abgebildeten Ausführungsbeispiel der Erfindung kann der Widerstand R1 durch eine schaltbare Kapazität ersetzt sein.
  • Bei dem in Fig. 3 gezeigten Beispiel handelt es sich um einen Sigma-Delta-Analog-DigitalUmsetzer erster Ordnung, der als MeßUmsetzer mit einem Fotodiodeneingang analoge optische Signale in digitale elektrische Signale umsetzt.
  • Der Ausgang des Transkonduktanzverstärkers V, an dem die Ausgangsspannung Vo abgreifbar ist, ist über die Integrationskapazität Ci mit seinem invertierenden Eingang verbunden. Am nichtinvertierenden Eingang des Transkonduktanzverstärkers V liegt eine Referenzspannung V2. An den beiden Enden eines Spannungsteilers, der als Reihenschaltung aus einer geschalteten Kapazität C1, der Source-Drain-Strecke eines MOS-Transistors T1 und einer Fotodiode PD aufgebaut ist, liegt eine Referenzspannung V1. Die Source des MOS-Transistors T1 ist mit dem invertierenden Eingang des Transkonduktanzverstärkes V verbunden, dessen Ausgang mit dem Eingang eines Schwellwertdetektors D verbunden ist. Die Gate-Elektrode des MOS-Transistors T1 ist mit der Gate-Elektrode und der Drain-Elektrode eines MOS-Transistors T2 verbunden. An der Source des MOS-Transistors T2 liegt die Referenzspannung V2, während der Kollektor des MOS-Transistors T2 über eine Stromquelle Q2 an ein Bezugspotential angeschlossen ist. Der Ausgang des Schwellwertdetektors D ist mit dem Eingang einer Steuerschaltung S verbunden, deren erster Ausgang mit dem Eingang eines Zählers Z und deren zweiter Ausgang mit dem Schalteingang der geschalteten Kapazität C1 verbunden ist. Die Fotodiode PD ist durch ihr Ersatzschaltbild dargestellt, das als Stromquelle Q1 mit einer parasitären Parallelkapazität Cp gezeichnet ist, deren Kapazitätswert in der Größenordnung von 3.10-12 F liegt. Des weiteren ist es zweckmässig, für die Integrationskapazität CI einen Wert von beipielsweise etwa 30.10-15 F zu wählen. Dieser Wert hängt vom Kapazitätswert des Kondensators C1 und dieser wiederum vom Photostrom und der Auflösung des A/D-Umsetzers ab.
  • Die Steuerschaltung S steuert in Abhängigkeit von der Spannung Vo am Ausgang des Transkonduktanzverstärkers V die geschaltete Kapazität C1 sowie den Zählerstand des Zählers Z.
  • Wenngleich im Zusammenhang mit dem Ausführungsbeispiel von Fig. 3 der als ohmscher Widerstand R2 wirkende Transistor T1 in Reihe zu einer geschalteten Kapazität C1 geschaltet gezeigt ist, so ist die Erfindung hierauf nicht beschränkt. Vielmehr kann die geschaltete Kapazität C1 auch durch eine geschaltete Stromquelle, einen geschalteten Widerstand oder einen Widerstand selbst realisiert sein. Mit "ohmscher Einrichtung" ist im Sinne der oben beschriebenen Erfindung immer die Reihenschaltung eines ohmschen Widerstandes (R2 oder T1) mit einem weiteren Schaltungsteil gemeint, wobei der Schaltungsteil ein ohmscher Widerstand R2, eine geschaltete Kapazität C1 oder eine geschaltete Stromquelle sein kann.
  • Die Erfindung ist für Integratoren geeignet, die ihr Eingangssignal von einer analogen Signalquelle mit einer verhältnismässig hohen parasitären Parallelkapazität erhalten. Sie ist daher insbesondere für Sigma-Delta-Analog-Digital-Umsetzer geeignet, die häufig auch als Delta-Sigma-Analog-Digital-Umsetzer bezeichnet werden und deren Eingangssignale von einer Fotodiode geliefert werden.
  • Sigma-Delta-Analog-Digital-Umsetzer sind beispielsweise in Herbert Bernstein, Analoge Schaltungstechnik mit diskreten und integrierten Bauelementen, Hüthig Verlag, Heidelberg 1997 (ISBN 3-7785-2296-5) auf Seite 480 bis 485 und in David A. Jons, Ken Martin, Analog Integrated Circuit Design, John Wiley and Sons, New York, Toronto 1997 (ISBN 0-471-14448-7) auf Seite 531 bis 551 beschrieben. Zum Zwecke der Offenbarung wird auf diese Veröffentlichung vollinhaltlich Bezug genommen.
  • Bezugszeichenliste
  • R1
    Widerstand
    R2
    Widerstand
    Ci
    Integrationskapazität
    C1
    geschaltete Kapazität
    Cp
    parasitäre Parallelkapazität
    V
    Transkonduktanzverstärker
    V1
    Referenzspannung
    V2
    Referenzspannung
    Vo
    Ausgangsspannung
    Q1
    Stromquelle
    Q2
    Stromquelle
    PD
    Fotodiode
    D
    Schwellwertdetektor
    S
    Steuerschaltung
    Z
    Zähler
    T1
    Transistor
    T2
    Transistor

Claims (6)

  1. Integrator mit
    einem Transkonduktanzverstärker (V), dessen Ausgang über eine Integrationskapazität (Ci) auf seinen invertierenden Eingang rückgekoppelt ist und an dessen nichtinvertierenden Eingang eine erste Referenzspannung (V2) geschaltet ist, und mit,
    einer eine parasitäre Parallelkapazität (Cp) aufweisende erste Stromquelle (Q1), die mit einer Klemme an ein Bezugspotential und mit einer anderen Klemme über eine ohmsche Einrichtung an eine zweite Referenzspannung (V1) geschaltet ist,
    dadurch gekennzeichnet, dass
    die ohmsche Einrichtung ein Spannungsteiler mit einem ersten Widerstand (R1) und einem zweiten Widerstand (R2) ist, und dass der Verbindungspunkt des ersten Widerstandes (R1) mit dem zweiten Widerstand (R2) unmittelbar mit dem invertierenden Eingang des Transkonduktanzverstärkers (V) verbunden ist.
  2. Integrator nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die erste Stromquelle (Q1) mit der parasitären Parallelkapazität (Cp) eine Fotodiode (PD) ist.
  3. Integrator nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß für der zweiten Widerstand (R2) ein erster MOS-Transistor (T1) vorgesehen ist, der im Bereich schwacher Inversion betrieben wird.
  4. Integrator nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß der erste Widerstand (R1) als geschaltete Kapazität (C1), als geschaltete Stromquelle oder als steuerbarer Widerstand
  5. Integrator nach Anspruch 3 und 4,
    dadurch gekennzeichnet,
    daß die Gate-Elektrode des ersten MOS-Transistors (T1) mit der Gate-Elektrode und der Drain-Elektrode eines zweiten MOS-Transistors (T2) verbunden ist, an dessen Source die erste Referenzspannung (V2) liegt und dessen Drain über eine zweite Stromquelle (Q2) an ein Bezugspotential angeschlossen ist, daß der Ausgang des Transkonduktanzverstärkers (V) mit dem Eingang eines Schwellwertdetektors (D) verbunden ist, dessen Ausgang mit dem Eingang einer Steuerschaltung (S) verbunden ist, deren erster Ausgang mit dem Eingang eines Zählers (Z) und deren zweiter Ausgang mit dem Steuereingang der geschalteten Kapazität (C1) oder dem steuerbaren Widerstand verbunden ist.
  6. Integrator nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß der zweite Widerstand (R2) mindestens so groß dimensioniert wird, wie das 2π-fache des Verstärkungsbandbreitenprodukt multipliziert mit dem Kapazitätswert der Integrationskapazität (Ci) ist.
EP00107682A 1999-07-09 2000-04-10 Integrator Expired - Lifetime EP1067473B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19931879A DE19931879A1 (de) 1999-07-09 1999-07-09 Integrator
DE19931879 1999-07-09

Publications (2)

Publication Number Publication Date
EP1067473A1 EP1067473A1 (de) 2001-01-10
EP1067473B1 true EP1067473B1 (de) 2012-02-22

Family

ID=7914114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00107682A Expired - Lifetime EP1067473B1 (de) 1999-07-09 2000-04-10 Integrator

Country Status (3)

Country Link
US (1) US6501322B1 (de)
EP (1) EP1067473B1 (de)
DE (1) DE19931879A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131635B4 (de) * 2001-06-29 2004-09-30 Infineon Technologies Ag Vorrichtung und Verfahren zur Kalibrierung der Pulsdauer einer Signalquelle
US6650177B1 (en) * 2001-08-07 2003-11-18 Globespanvirata, Inc. System and method for tuning an RC continuous-time filter
US7173230B2 (en) * 2001-09-05 2007-02-06 Canesta, Inc. Electromagnetic wave detection arrangement with capacitive feedback
DE102009015586A1 (de) 2009-03-30 2010-10-14 Perkinelmer Optoelectronics Gmbh & Co.Kg Sensorausleseschaltung, Sensor und Verfahren zum Auslesen eines Sensorelements
US7924194B2 (en) * 2009-08-27 2011-04-12 Texas Instruments Incorporated Use of three phase clock in sigma delta modulator to mitigate the quantization noise folding
CN103197122B (zh) * 2013-04-12 2015-04-08 矽力杰半导体技术(杭州)有限公司 一种电流检测电路以及应用其的开关型调节器
CN110081991B (zh) * 2019-05-05 2021-02-09 聚辰半导体股份有限公司 一种可用于温度传感器的小数倍信号放大装置及方法
US12015427B2 (en) 2022-04-05 2024-06-18 Stmicroelectronics (Research & Development) Limited Photodiode current compatible input stage for a sigma-delta analog-to-digital converter

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2226785A1 (en) * 1973-04-17 1974-11-15 Coreci Cie Regul Controle Indl Function controller based on amplitude - for electronic regulators, uses FET integration
US3902139A (en) * 1974-01-14 1975-08-26 Mobil Oil Corp Temperature compensated pulse generator
DE2732298A1 (de) * 1977-07-16 1979-02-01 Bosch Gmbh Robert Vorrichtung zur erzeugung einer impulsfolge mit in abhaengigkeit von einer steuerspannung einstellbarem tastverhaeltnis
JPH0828054B2 (ja) 1983-11-30 1996-03-21 ソニー株式会社 デイスク状記録媒体
JPS60181981A (ja) * 1984-02-29 1985-09-17 Nec Corp スイツチド・キヤパシタ−・積分器
DE477537T1 (de) * 1990-09-28 1992-08-13 Yokogawa Electric Corp., Musashino, Tokio/Tokyo Zeitgeber.
US5473326A (en) 1990-12-14 1995-12-05 Ceram Incorporated High speed lossless data compression method and apparatus using side-by-side sliding window dictionary and byte-matching adaptive dictionary
US5237460A (en) 1990-12-14 1993-08-17 Ceram, Inc. Storage of compressed data on random access storage devices
US5627995A (en) 1990-12-14 1997-05-06 Alfred P. Gnadinger Data compression and decompression using memory spaces of more than one size
US5490260A (en) 1990-12-14 1996-02-06 Ceram, Inc. Solid-state RAM data storage for virtual memory computer using fixed-sized swap pages with selective compressed/uncompressed data store according to each data size
DE4214360C2 (de) * 1992-04-30 2002-11-07 Perkinelmer Optoelectronics Lichtdetektorschaltung
US5727037A (en) * 1996-01-26 1998-03-10 Silicon Graphics, Inc. System and method to reduce phase offset and phase jitter in phase-locked and delay-locked loops using self-biased circuits
US5832085A (en) 1997-03-25 1998-11-03 Sony Corporation Method and apparatus storing multiple protocol, compressed audio video data
US5949225A (en) * 1998-03-19 1999-09-07 Astec International Limited Adjustable feedback circuit for adaptive opto drives
KR100280492B1 (ko) * 1998-08-13 2001-02-01 김영환 적분기 입력회로

Also Published As

Publication number Publication date
US6501322B1 (en) 2002-12-31
DE19931879A1 (de) 2001-01-18
EP1067473A1 (de) 2001-01-10

Similar Documents

Publication Publication Date Title
DE102018221294A1 (de) LDO-Regler mit Schaltungen zur Reduzierung von Rauschen
DE3017669C2 (de) Verstärkerschaltungsanordnung
DE102004027298B4 (de) Auf dem Chip ausgeführter Hochpassfilter mit großer Zeitkonstanten
EP1067473B1 (de) Integrator
EP0986039B1 (de) Anordnung zur Stromversorgung einer Stromschleifesendestation
EP3042167B1 (de) Vorrichtung zum betreiben passiver infrarotsensoren
WO2003005561A2 (de) Schnittstellenschaltung zum anschluss an einen ausgang eines frequenzumsetzers
DE2317253C3 (de) Eimerkettenschaltung
DE4033856C2 (de)
DE4223274A1 (de) Treiberschaltung fuer induktive lasten
DE2839123C2 (de) Spannungs-Frequenz-Wandler
DE3437923C1 (de) Spannungsgesteuerter Oszillator
DE2635574B2 (de) Stromspiegelschaltung
DE1487395B2 (de)
DE2543090C3 (de) Verstärker mit steuerbarer Verstärkung, der mindestens einen Transistor in Emitterschaltung enthält
DE2613761A1 (de) Niederfrequenzleistungsverstaerker
DE916091C (de) Anordnung zur Kompensation des Anodenruhestromes
DE3612378C2 (de)
DE102013022378B3 (de) Vorrichtung zum Betreiben passiver Infrarotsensoren
DE2600594C3 (de) Transistorverstärker
DE726042C (de) Verstaerkerschaltung mit gleichzeitiger Strom- und Spannungsgegenkopplung
DE2716038B2 (de) Phasenschieberschaltung
WO2021069071A1 (de) Elektrische schaltung
DE2318587C2 (de)
DE202013012209U1 (de) Vorrichtung zum Betreiben passiver Infrarotsensoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010216

AKX Designation fees paid

Free format text: DE FR GB IT NL

17Q First examination report despatched

Effective date: 20071011

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50016206

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50016206

Country of ref document: DE

Effective date: 20121123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150420

Year of fee payment: 16

Ref country code: DE

Payment date: 20150421

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150421

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50016206

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160410

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160410