Nothing Special   »   [go: up one dir, main page]

EP0986039B1 - Anordnung zur Stromversorgung einer Stromschleifesendestation - Google Patents

Anordnung zur Stromversorgung einer Stromschleifesendestation Download PDF

Info

Publication number
EP0986039B1
EP0986039B1 EP98116881A EP98116881A EP0986039B1 EP 0986039 B1 EP0986039 B1 EP 0986039B1 EP 98116881 A EP98116881 A EP 98116881A EP 98116881 A EP98116881 A EP 98116881A EP 0986039 B1 EP0986039 B1 EP 0986039B1
Authority
EP
European Patent Office
Prior art keywords
voltage
output
regulator
current
charging pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98116881A
Other languages
English (en)
French (fr)
Other versions
EP0986039A1 (de
Inventor
Robert Dr. Lalla
Ronald. Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Priority to EP98116881A priority Critical patent/EP0986039B1/de
Priority to DE59814313T priority patent/DE59814313D1/de
Priority to CA002281156A priority patent/CA2281156C/en
Priority to US09/387,998 priority patent/US6703943B1/en
Priority to JP25309399A priority patent/JP3348051B2/ja
Publication of EP0986039A1 publication Critical patent/EP0986039A1/de
Application granted granted Critical
Publication of EP0986039B1 publication Critical patent/EP0986039B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage

Definitions

  • the invention relates to an arrangement for signal transmission between a receiving station and a transmitting station and to the power supply of the transmitting station.
  • the transmitting station in this case has a circuit which generates a constant operating voltage for the transmitting station, and it contains a controllable current source, which determines the current flowing through the two-wire line in dependence on the measured value and which is fed from a supply voltage source in the receiving station.
  • the transmitting station finds a voltage at its two inputs, which can vary within wide ranges depending on the choice of the supply voltage source.
  • the transmitting station controls its input current in an ideal way so that it is dependent only on the measured value.
  • the supply of the transmitting station takes place exclusively via the two-wire line, wherein the input voltage is generally greater than the internally required supply voltage. In the transmitting station, therefore, the input voltage is reduced by a linear regulator to the internally required supply voltage. But so that the available supply current is limited by the input current of the transmitting station.
  • this limitation limits the flexibility with regard to the use of the sensors and signal evaluation circuits in the transmitting station, since it may well also be desirable to use sensors which require a larger current than can be supplied via the two-wire line.
  • WO88 / 02528A1 discloses a digital converter for improving the output of a two-wire transducer. Parts of the analog control circuit for controlling the signal current are replaced by digitally operating components.
  • EP0591926 A2 discloses an arrangement for signal transmission between a receiving station and a transmitting station and to the power supply of the transmitting station, wherein these two stations are interconnected by a two-wire line through which a variable between two thresholds analog signal stream is transmitted, which is detected in the transmitting station by a sensor measured value represents and which forms the supply current required for the operation of the transmitting station, wherein the transmitting station has a circuit which generates a constant operating voltage for the transmitting station, and wherein in the transmitting station, a controllable current source is provided which the flowing over the two-wire line current in dependence of the Measured value and which is fed from a supply voltage source in the receiving station, wherein the current source is a series current regulator, which is fed from the supply voltage source in the receiving station, with the output d he power source is connected to a charge pump, which generates from the voltage occurring at the output of the power source required for the operation of the sensor and a signal processing circuit connected thereto operating voltage, and with the input or the output of
  • the invention is further based on the object to provide a signal transmission and Stromdorgungsdnowski which is very flexible in terms of usable sensors and signal processing units in the transmitting station and can be adapted to the respective conditions with respect to the power supply.
  • an arrangement for signal transmission between a receiving station and a transmitting station and the power supply of the transmitting station is provided by the invention, in which these two stations are connected to each other by a two-wire line through which a variable between two thresholds analog signal stream is transmitted represents a measured value detected in the transmitting station by a sensor and forms the supply current required for the operation of the transmitting station, wherein the transmitting station has a circuit which generates a constant operating voltage for the transmitting station, and wherein in the transmitting station a controllable current source is provided which the determined over the two-wire line current as a function of the measured value and determined from a supply voltage source in the receiving station is fed, wherein the power source is a series current regulator, which is fed from the supply voltage source in the receiving station, to the output of the power source, a charge pump is connected, from the voltage occurring at the output of the power source for the operation of the sensor and one connected thereto Signaling circuit generates required operating voltage, and to the input or the output of the charge pump,
  • a further parallel regulator is provided in addition to the parallel regulator at the input or at the output of the charge pump on the other side of the charge pump.
  • a longitudinal regulator is provided in addition to the parallel regulator at the entrance or at the outlet of the charge pump on the other side of the charge pump.
  • the charge pump has a voltage transfer factor ⁇ 1.
  • the current and voltage values required for the operation of the transmitting station can be set within wide limits, so that a high flexibility in terms of usable sensors is achieved.
  • circuit units may be used which require a supply current which is greater than the current which may flow as the maximum signal current via the two-wire line to the receiving station. It should be emphasized as an advantage of the arrangement according to the invention also their easy integration. It contains no inductors, but essentially capacitors, which can easily be manufactured with capacities ⁇ 1nF in integrated form.
  • FIG. 1 illustrated arrangement for signal transmission includes a receiving station 10 and a transmitting station 12, which are connected to each other via a two-wire line 14.
  • the receiving station 10 is a Signalaustechnischsacnies 16, which is symbolically represented as an ammeter, since the current flowing via the two-wire line 14 to the receiving station 10 is the electrical parameter to be evaluated.
  • the receiving station 10 contains a supply voltage source 18 which provides the energy required for the operation of the signal transmission arrangement both on the receiving side and on the transmitting side.
  • the transmitting station 12 includes a sensor 20 which detects in a process a process variable, such as a temperature, pressure, level or the like as a measured value.
  • the sensor 20 outputs its output signal, which represents the measured value, to a signal processing circuit 22, which generates a control signal proportional to the measured variable detected by the sensor 20.
  • a circuit 24 included in the transmitting station 12 generates the operating voltage required for the operation of the signal processing circuit 22 and the sensor 20, and at the same time sets the current flowing through the two-wire line 14 under the control of the control signal applied to its input 25 to that from the sensor 20 measured value proportional current value I in .
  • Their inputs 26 and 28 are connected to the two-wire line 14, while their outputs 30 and 32, at which it outputs the constant operating voltage, are connected to the supply voltage terminals of the signal processing circuit 22 and the sensor 20.
  • the circuit includes a current source 34, which is designed as a series current regulator.
  • the current set via the control signal at input 25 is kept constant at the set value by the series current regulator, the reference voltage used being the reference value which is tapped off at a measuring resistor 36 through which the set current flows.
  • a voltage U V At the output of the series current regulator 34 results due to the internal resistance the other circuit parts a voltage U V.
  • This voltage serves as a supply voltage for a charge pump 38, which supplies at its output a voltage U out , which represents the supply voltage for the signal processing circuit 22 and the sensor 20.
  • This output voltage U out is kept constant by means of a voltage regulator 40 designed as a parallel regulator.
  • the charge pump 38 conventionally consists of a series of switches 38.1-38.4 and capacitors C1, C2, C3 and a control circuit 39 which control (open and close) the switches 38.1-38.4 so that a charging voltage occurs across the capacitor C3 which is the desired one Output voltage corresponds.
  • the structure of the charge pump is in FIG. 3 and in FIG. 5 shown only schematically, since the structure and operation of such circuits to those skilled in various versions are known (for example, "semiconductor circuitry" by U. Tietze and Ch. Schenk, 1991, p 570, 571).
  • the control signal at the input 25 sets the series current regulator 34 to a higher current value than can be derived from the charge pump 38, this current can be dissipated via an additional circuit unit 42 which acts as a voltage limiting circuit.
  • the higher current supplied from the series current regulator 34 results in a higher voltage U V
  • the voltage limiting circuit 42 can be designed to respond when a predetermined voltage value is exceeded, and to dissipate the excess current while achieving a voltage limit.
  • the circuit of FIG. 2 allows within wide limits the setting of current and voltage values for the operation of the signal processing circuit 22 and the sensor 20 in the transmitting station. Subsequently, an estimation of the operating limits of the in FIG. 2 set forth circuit.
  • the lower limit U InMin of the input voltage range results from the maximum possible bias voltage U VBypass plus the voltage drop U IReg required for the operation of the current regulator 34:
  • U Inmin U VBypass + U ireg
  • the maximum extractable current I OutMax results at the output from the current transformation ratio V I of the charge pump 38 and the input current I In dependent on the detected measured value.
  • I OutMax v I ⁇ I In
  • the series current regulator 34 can be operated with the output voltage U Out . But then special precautions must be taken so that the circuit 24 starts and supplies the required output voltage. For this purpose, it is possible to design the series current regulator 34 so that it supplies a possibly unregulated current to the charge pump 38 without its own supply voltage. The charge pump 38 is then able to generate an output voltage U Out . With this output voltage, the series current regulator 34 can then be operated.
  • FIG. 3 a circuit diagram is shown in which the basic structure of the series current regulator 34, the voltage limiting circuit 42, the charge pump 38 and the voltage regulator 40 are shown. It should be noted, however, that the structure of the respective circuit units is given only as an example. On the particular structure, it does not matter for the invention. Decisive for the invention are only the function of the individual circuit units and their interaction with the other circuit units.
  • the series current regulator 34 is according to FIG. 3 a simple series regulator, which keeps the current flowing through the transistor T to a constant, via the operational amplifier OP by means of the control signal at the input 25 adjustable value.
  • the resistance R in the current regulator 34 between the emitter and the collector of the transistor T has the purpose of enabling the starting of the circuit. About this resistor R, a small current can flow even when the transistor T is locked, which suffices as a starting current for the circuit.
  • the voltage limiting circuit 42 is in the simplest case, only a Zener diode, the voltage occurring at the output of the current regulator 34 to a limited constant value.
  • the charge pump can achieve almost any voltage and current ratios depending on its design.
  • the illustrated circuit of the charge pump is just one example; the structure and function of such charge pumps is known in the art and can be taken from numerous references.
  • the voltage regulator circuit 40 is in the simplest case, only a Zener diode, which keeps the value of the output voltage U Out constant.
  • FIG. 4 is shown in a block diagram, as in such a case, the circuit can be put into operation.
  • This circuit includes a current regulator 44, which is initially disabled without its own operating voltage, so can not deliver power to the charge pump 38.
  • FIG. 5 is shown a more detailed circuit diagram that shows how the individual components of the circuit of FIG. 4 can be constructed.
  • the series current regulator 44 except for a difference yet explained, the voltage limiting circuit 42, the charge pump 38 and the voltage regulator circuit 40 as well as in the circuit of FIG. 3 are constructed. Only the voltage regulator 46 has been added, which, as the diagram shows, is constructed as a series voltage regulator.
  • the transistor T is not bridged by a resistor, as in the case of the series-current regulator 34. This resistance is not required in this case, since here the voltage regulator 46 makes it possible to start the circuit.
  • both the input voltage and the output voltage of the charge pump 38 are kept constant.
  • the aforementioned voltage limiting circuit 42 is used, which is nothing more than a parallel regulator.
  • the circuit used on the output side for keeping constant the output voltage of the charge pump 38 is a parallel regulator. But it is also possible to dispense with keeping constant the input voltage of the charge pump 38, which only requires to use a charge pump that can work with larger input voltages or input currents. When the input voltage of the charge pump is kept constant, it is possible to dispense with keeping the output voltage of the charge pump constant, if a load dependency of the output voltage can be tolerated.
  • charge pump When using two voltage regulators at the input and the output of the charge pump 38, it is possible to form one of the two controllers as a longitudinal regulator. The desired effect of the entire circuit remains unaffected.
  • the in the Figures 3 and 5 shown charge pump has a voltage transfer factor of 1/2, which means that it causes a halving of the voltage and a doubling of the current.
  • Voltage transfer factors are used, if other voltage and current conditions are desired.
  • a transmission factor ⁇ 1 is used in each case, since this can provide an increased current at the output of the charge pump.
  • the in the FIGS. 2 to 5 The in the FIGS. 2 to 5
  • the circuits shown in two embodiments have the advantage that they can be constructed as integrated circuits and that they allow in a highly flexible manner to supply the various currents and voltages present in the transmitting station for the operation of the respective sensor and the processing circuit receiving its output signal needed.
  • This excellent integrability of all variants is mainly due to the fact that in the circuits no inductors, but essentially only well integrable capacitors ( ⁇ 1nF) are used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Dc-Dc Converters (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

  • Die Erfindung bezieht sich auf eine Anordnung zur Signalübertragung zwischen einer Empfangsstation und einer Sendestation sowie zur Stromversorgung der Sendestation.
  • Aus der EP-A-0 744 724 ist eine solche Schaltungsanordnung bekannt, bei der die beiden Stationen durch eine Zweidrahtleitung verbunden sind, über die ein zwischen zwei Grenzwerten veränderlicher analoger Signalstrom übertragen wird, der einen in der Sendestation von einem Sensor erfaßten Meßwert repräsentiert und den für den Betrieb der Sendestation erforderlichen Versorgungsstrom bildet. Die Sendestation weist dabei eine Schaltung auf, die eine konstante Betriebsspannung für die Sendestation erzeugt, und sie enthält eine steuerbare Stromquelle, die den über die Zweidrahtleitung fließenden Strom in Abhängigkeit von dem Meßwert bestimmt und die aus einer Versorgungsspannungsquelle in der Empfangsstation gespeist wird. Dabei findet die Sendestation an ihren beiden Eingängen eine Spannung vor, die je nach Wahl der Versorgungsspannungsquelle in weiten Bereichen variieren kann. Zur Meßwertübertragung regelt die Sendestation ihren Eingangsstrom in idealer Weise so, daß dieser nur vom Meßwert abhängig ist. Die Versorgung der Sendestation erfolgt dabei ausschließlich über die Zweidrahtleitung, wobei die Eingangsspannung im allgemeinen größer als die intern benötigte Versorgungsspannung ist. In der Sendestation wird daher die Eingangsspannung durch einen Linearregler auf die intern benötigte Versorgungsspannung herabgesetzt. Damit ist aber der zur Verfügung stehende Versorgungsstrom durch den Eingangsstrom der Sendestation begrenzt. Durch diese Einschränkung ist aber die Flexibilität hinsichtlich der Verwendung der Sensoren und Signalauswertungsschaltungen in der Sendestation begrenzt, da es durchaus auch erwünscht sein kann, Sensoren zu verwenden, die einen größeren Strom benötigen als ihr über die Zweidrahtleitung zugeführt werden kann.
  • WO88/02528A1 offenbart einen Digitalen Wandler zum Verbessern des Ausgangs eines Zweidrahtmesswandlers Teile der analogen Steuerschaltung zum Steuern des Signalstroms werden durch digital arbeitende Komponenten ersetzt.
  • EP0591926 A2 offenbart eine Anordnung zur Signalübertragung zwischen einer Empfangsstation und einer Sendestation sowie zur Stromversorgung der Sendestation, wobei diese beiden Stationen miteinander durch eine Zweidrahtleitung verbunden sind, über die ein zwischen zwei Grenzwerten veränderlicher analoger Signalstrom übertragen wird, der einen in der Sendestation von einem Sensor erfassten Messwert repräsentiert und den für den Betrieb der Sendestation erforderlichen Versorgungsstrom bildet, wobei die Sendestation eine Schaltung aufweist, die eine konstante Betriebsspannung für die Sendestation erzeugt, und wobei in der Sendestation eine steuerbare Stromquelle vorgesehen ist, die den über die Zweidrahtleitung fließenden Strom in Abhängigkeit von dem Messwert bestimmt und die aus einer Versorgungsspannungsquelle in der Empfangsstation gespeist wird, wobei die Stromquelle ein Serienstromregler ist, der aus der Versorgungsspannungsquelle in der Empfangsstation gespeist wird, mit dem Ausgang der Stromquelle eine Ladungspumpe verbunden ist, die aus der am Ausgang der Stromquelle auftretenden Spannung die für den Betrieb des Sensors und einer mit diesem verbundenen Signalverarbeitungsschaltung erforderliche Betriebsspannung erzeugt, und mit dem Eingang oder dem Ausgang der Ladungspumpe ein Parallelregler zum Konstanthalten der Eingangsspannung bzw. der Ausgangsspannung der Ladungspumpe verbunden ist. Bei der beschriebenen Anordnung ist während des Startens der Vorrichtung der Signalstrom in einem undefinierten Zustand, wenn die von der Ladungspumpe bereitzustellende Versorgungsspannung noch nicht stabilisiert ist. Es ist daher die Aufgabe der Erfindung, die beschriebenen Nachteile des Stands der Technik zu überwinden.
  • Der Erfindung liegt weiterhin die Aufgabe zugrunde, eine Signalübertragungs- und Stromversorgungsdnordnung zu schaffen, die hinsichtlich der verwendbaren Sensoren und Signalaufbereitungseinheiten in der Sendestation sehr flexibel ist und hinsichtlich der Stromversorgung an die jeweiligen Gegebenheiten angepaßt werden kann.
  • Zur Lösung dieser Aufgabe wird durch die Erfindung eine Anordnung zur Signalübertragung zwischen einer Empfangsstation und einer Sendestation sowie zur Stromversorgung der Sendestation geschaffen, bei der diese beiden Stationen miteinander durch eine Zweidrahtleitung verbunden sind, über die ein zwischen zwei Grenzwerten veränderlicher analoger Signalstrom übertragen wird, der einen in der Sendestation von einem Sensor erfaßten Meßwert repräsentiert und den für den Betrieb der Sendestation erforderlichen versorgungsstrom bildet, wobei die Sendestation eine Schaltung aufweist, die eine konstante Betriebsspannung für die Sendestation erzeugt, und wobei in der Sendestation eine steuerbare Stromquelle vorgesehen ist, die den über die Zweidrahtleitung fließenden Strom in Abhängigkeit von dem Meßwert bestimmt und die aus einer Versorgungsspannungsquelle in der Empfangestation gespeist wird, wobei die Stromquelle ein Serienstromregler ist, der aus der Versorgungsspannungsquelle in der Empfangsstation gespeist wird, mit dem Ausgang der Stromquelle eine Ladungspumpe verbunden ist, die aus der am Ausgang der Stromquelle auftretenden Spannung die für den Betrieb des Sensors und einer mit diesem verbundenen Signalverarbeitungsschaltung erforderliche Betriebsspannung erzeugt, und mit dem Eingang oder dem Ausgang der Ladungspumpe ein Parallelregler zum Konstanthalten der Eingangsspannung bzw. der Ausgangsspannung der Ladungspumpe verbunden ist, wobei die Stromquelle durch einen Spannungsregler überbrückt ist, der in einer Anlaufphase eine Eingangsspannung für die Ladungspumpe liefert, wobei die Stromquelle so ausgebildet ist, daß sie in der Anlaufphase erst dann einen Ausgangsstrom liefert, wenn die Ladungspumpe eine für seinen Betrieb ausreichende Ausgangsspannung abgibt, wobei der Spannungsregler so ausgelegt ist, daß er in einen gesperrten Zustand übergeht, sobald die Ausgangsspannung die Betriebsspannung erreicht.
  • Gemäß einer ersten Ausgestaltung der Erfindung ist zusätzlich zu dem Parallelregler am Eingang oder am Ausgang der Ladungspumpe auf der jeweils anderen Seite der Ladungspumpe ein weiterer Parallelregler vorgesehen.
  • Nach einer zweiten Ausgestaltung der Erfindung ist zusätzlich zu dem Parallelregler am Eingang oder am Ausgang der Ladungspumpe auf der jeweils anderen Seite der Ladungspumpe ein Längsregler vorgesehen.
  • In einer Weiterbildung hat die Ladungspumpe einen Spannungsübertragungsfaktor < 1.
  • Durch die Verwendung der Kombination aus Strom- und Spannungsreglern in Verbindung mit einer Ladungspumpe lassen sich in weiten Grenzen die für den Betrieb der Sendestation erforderlichen Strom- und Spannungswerte einstellen, so daß eine hohe Flexibilität hinsicht der verwendbaren Sensoren erreicht wird. Insbesondere können in der Sendestation Schaltungseinheiten zur Anwendung kommen, die einen Versorgungsstrom benötigen, der größer als der Strom ist, der als maximaler Signalstrom über die Zweidrahtleitung zur Empfangsstation fließen darf. Hervorzuheben ist als Vorteil der erfindungsgemäßen Anordnung auch ihre leichte Integrierbarkeit. Sie enthält keine Induktivitäten, sondern im wesentlichen Kondensatoren, die mit Kapazitäten < 1nF leicht in integrierter Form hergestellt werden können.
  • Ausführungsbeispiele der Erfindung werden nun unter Bezugnahme auf die Zeichnung näher erläutert. Es zeigen:
  • Figur 1
    eine schematische Übersichtsdarstellung einer Anordnung zur Signalübertragung zwischen einer Sendestation und einer Empfangsstation, in der die Erfindung anwendbar ist,
    Figur 2
    ein schematisches Blockschaltbild der erfindungsgemäß aufgebauten Spannungsversorgung für die Anordnung von Figur 1,
    Figur 3
    ein Schaltbild der Spannungsversorgung von Figur 2, wobei die einzelnen Schaltungseinheiten beispielhaft genauer in ihrem Aufbau dargestellt sind,
    Figur 4
    ein Blockschaltbild einer zweiten Ausführungsform einer erfindungsgemäß aufgebauten Spannungsversorgung für die Verwendung in der Anordnung von Figur 1 und
    Figur 5
    ein Schaltbild der Spannungsversorgung von Figur 4, wobei die einzelnen Schaltungseinheiten beispielhaft in ihrem Aufbau genauer dargestellt sind.
  • Die in Figur 1 dargestellte Anordnung zur Signalübertragung enthält eine Empfangsstation 10 und eine Sendestation 12, die über eine Zweidrahtleitung 14 miteinander verbunden sind. In der Empfangsstation 10 befindet sich eine Signalauswertungsachaltung 16, die symbolisch als Strommesser dargestellt ist, da der über die Zweidrahtleitung 14 zur Empfangsstation 10 fließende Strom der auszuwertende elektrische Parameter ist. Ferner enthält die Empfangsstation 10 eine Versorgungsspannungsquelle 18, die die für den Betrieb der Signalübertragungsanordnung sowohl empfangsseitig als auch sendeseitig benötigte Energie zur Verfügung stellt.
  • Die Sendestation 12 enthält einen Sensor 20, der in einem Prozeß eine Prozeßgröße, beispielsweise eine Temperatur, einen Druck, einen Füllstand oder dergleichen als Meßwert erfaßt. Der Sensor 20 gibt sein Ausgangssignal, das den Meßwert repräsentiert, an eine Signalverarbeitungsschaltung 22, die ein der vom Sensor 20 erfaßten Meßgröße proportionales Steuersignal erzeugt. Eine in der Sendestation 12 enthaltene Schaltung 24 erzeugt die für den Betrieb der Signalverarbeitungsschaltung 22 und des Sensors 20 erforderliche Betriebsspannung, und sie stellt gleichzeitig den über die Zweidrahtleitung 14 fließenden Strom unter der Steuerung durch das ihrem Eingang 25 zugeführte Steuersignal auf einen dem vom Sensor 20 erfaßten Meßwert proportionalen Stromwert Iin. Ihre Eingänge 26 und 28 sind mit der Zweidrahtleitung 14 verbunden, während ihre Ausgänge 30 und 32, an denen sie die konstante Betriebsspannung abgibt, mit den Versorgungsspannungsanschlüssen der Signalverarbeitungsschaltung 22 und des Sensors 20 verbunden sind.
  • In Figur 2 ist der Aufbau der Schaltung 24 in einer Prinzipdarstellung gezeigt. Die Schaltung enthält eine Stromquelle 34, die als Serienstromregler ausgebildet ist. Der über das Steuersignal am Eingang 25 eingestellte Strom wird durch den Serienstromregler konstant auf dem eingestellten Wert gehalten, wobei als Referenzgröße der Spannungsabfall benutzt wird, der an einem vom eingestellten Strom durchflossenen Meßwiderstand 36 abgegriffen wird. Am Ausgang des Serienstromreglers 34 ergibt sich aufgrund des Innenwiderstands der weiteren Schaltungsteile eine Spannung UV. Diese Spannung dient als Versorgungsspannung für eine Ladungspumpe 38, die an ihrem Ausgang eine Spannung Uout liefert, die die Versorgungsspannung für die Signalverarbeitungsschaltung 22 und den Sensor 20 darstellt. Diese Ausgangsspannung Uout wird mittels eines als Parallelregler ausgeführten Spannungsreglers 40 konstant gehalten.
  • Die Ladungspumpe 38 besteht herkömmlicherweise aus einer Reihe von Schaltern 38.1 - 38.4 und Kondensatoren C1, C2, C3 sowie einer Steuerschaltung 39, die die Schalter 38.1 - 38.4 so steuern (öffnen und schließen), daß am Kondensator C3 eine Ladespannung auftritt, die der gewünschten Ausgangsspannung entspricht. Der Aufbau der Ladungspumpe ist in Figur 3 und in Figur 5 nur schematisch dargestellt, da Aufbau und Wirkungsweise solcher Schaltungen dem Fachmann in verschiedenen Ausführungen bekannt sind (beispielsweise aus "Halbleiterschaltungstechnik" von U. Tietze und Ch. Schenk, 1991, S. 570, 571).
  • Für den Fall, daß das Steuersignal am Eingang 25 den Serienstromregler 34 auf einen höheren Stromwert einstellt, als er von der Ladungspumpe 38 abgeleitet werden kann, kann dieser Strom über eine zusätzliche Schaltungseinheit 42 abgeleitet werden, die als Spannungsbegrenzungsschaltung wirkt. Der vom Serienstromregler 34 gelieferte höhere Strom hat nämlich eine höhere Spannung UV zur Folge, und die Spannungsbegrenzungsschaltung 42 kann so ausgelegt werden, daß sie bei Überschreiten eines vorgegebenen Spannungswerts anspricht und den überschüssigen Strom unter Erzielung einer Spannungsbegrenzung ableitet.
  • Die Schaltung von Figur 2 ermöglicht innerhalb weiter Grenzen die Einstellung von Strom- und Spannungswerten für den Betrieb der Signalverarbeitungsschaltung 22 und des Sensors 20 in der Sendestation. Anschließend wird eine Abschätzung der Betriebsgrenzen der in Figur 2 dargestellten Schaltung dargelegt.
  • Durch die Spannungsübersetzung vU der Ladungspumpe 38 kann bestimmt werden, welche Spannung UV = UVmin mindestens notwendig ist, damit am Ausgang die Sollspannung Uout = UOutSoll erreicht wird: U Vmin = 1 v U U OutSoll
    Figure imgb0001
  • Bei einer Begrenzung der Vorspannung durch die Spannungsbegrenzungsschaltung 42 sollte die minimal notwendige Spannung UVmin sicher erreicht werden: U VBypass U Vmin
    Figure imgb0002
  • Die untere Grenze UInMin des Eingangsspannungsbereichs ergibt sich aus der maximal möglichen Vorspannung UVBypass zuzüglich dem für den Betrieb des Stromreglers 34 benötigten Spannungsabfall UIReg: U InMin = U VBypass + U IReg
    Figure imgb0003
  • Wenn vorausgesetzt wird, daß im Serienstromregler 34 und in der Spannungsbegrenzungsschaltung 42 keine Stromverluste auftreten, ergibt sich am Ausgang der maximal entnehmbare Strom IOutMax aus dem Stromübersetzungsverhältnis VI der Ladungspumpe 38 und dem vom erfaßten Meßwert abhängigen Eingangsstrom IIn: I OutMax = v I I In
    Figure imgb0004
  • Übliche Ladungspumpen erreichen einen Leistungswirkungsgrad von annähernd 100 %. Für die Übersetzungsverhältnisse vU und vI gilt dann: 1 v U = v I
    Figure imgb0005
  • Der Serienstromregler 34 kann mit der Ausgangsspannung UOut betrieben werden. Es müssen dann aber besondere Vorkehrungen getroffen werden, damit die Schaltung 24 anläuft und die erforderliche Ausgangsspannung liefert. Dazu besteht die Möglichkeit, den Serienstromregler 34 so auszulegen, daß er ohne eigene Versorgungsspannung einen gegebenenfalls ungeregelten Strom an die Ladungspumpe 38 liefert. Die Ladungspumpe 38 ist dann in der Lage, eine Ausgangsspannung UOut zu erzeugen. Mit dieser Ausgangsspannung kann dann der Serienstromregler 34 betrieben werden.
  • In Figur 3 ist ein Schaltbild dargestellt, in dem der prinzipielle Aufbau des Serienstromreglers 34, der Spannungsbegrenzungsschaltung 42, der Ladungspumpe 38 und des Spannungsreglers 40 gezeigt sind. Dabei sei jedoch darauf hingewiesen, daß der Aufbau der jeweiligen Schaltungseinheiten lediglich als Beispiel angegeben ist. Auf den jeweiligen Aufbau kommt es für die Erfindung nicht an. Entscheidend für die Erfindung sind lediglich die Funktion der einzelnen Schaltungseinheiten und ihr Zusammenwirken mit den anderen Schaltungseinheiten.
  • Der Serienstromregler 34 ist gemäß Figur 3 ein einfacher Serienregler, der den durch den Transistor T fließenden Strom auf einen konstanten, über den Operationsverstärker OP mittels des Steuersignals am Eingang 25 einstellbaren Wert hält. Der im Stromregler 34 zwischen Emitter und Kollektor des Transistors T liegende Widerstand R hat dabei den Zweck, das Anlaufen der Schaltung zu ermöglichen. Über diesen Widerstand R kann auch bei gesperrtem Transistor T ein geringer Strom fließen, der als Anlaufstrom für die Schaltung genügt. Die Spannungsbegrenzungsschaltung 42 ist im einfachsten Fall lediglich eine Zenerdiode, die die am Ausgang des Stromreglers 34 auftretende Spannung auf einen konstanten Wert begrenzt. Die Ladungspumpe kann je nach ihrem Aufbau nahezu beliebige Spannungs- und Stromübersetzungen erzielen. Die gezeigte Schaltung der Ladungspumpe ist nur ein Beispiel; der Aufbau und die Funktion solcher Ladungspumpen ist dem Fachmann bekannt und läßt sich aus zahlreichen Literaturstellen entnehmen. Auch die Spannungsreglerschaltung 40 ist im einfachsten Fall lediglich eine Zenerdiode, die den Wert der Ausgangsspannung UOut konstant hält.
  • Wenn der Serienstromregler 34 so aufgebaut ist, daß er ohne eigene Versorgungsspannung nicht arbeitet, müssen besondere Vorkehrungen getroffen werden, damit der Stromregler seinen Betrieb aufnehmen kann und einen Strom an die Ladungspumpe 38 liefern kann. In Figur 4 ist in einem Blockschaltbild dargestellt, wie in einem solchen Fall die Schaltung in Betrieb gesetzt werden kann. Diese Schaltung enthält einen Stromregler 44, der ohne eigene Betriebsspannung zunächst gesperrt ist, also keinen Strom an die Ladungspumpe 38 abgeben kann. Wie aus Figur 4 zu erkennen ist, ist der Serienstromregler 44 durch einen Spannungsregler 46 überbrückt, der bei der Inbetriebnahme der Schaltung eine Spannung UV1 erzeugt, die als Versorgungsspannung für die Ladungspumpe 38 wirkt, so daß diese dann an ihrem Ausgang eine Spannung UOut = UOut1 liefern kann. Es muß dafür gesorgt werden, daß diese Spannung ausreicht, den Serienstromregler 44 in Betrieb zu setzen. Sobald der Serienstromregler 44 in Betrieb geht, gibt er einen größeren Strom ab, so daß dementsprechend die Spannung UV1 ansteigt, bis die Begrenzungswirkung der Spannungsbegrenzungsschaltung 42 einsetzt. Die Spannung UV1 hat dann den Wert UV. Der Spannungsregler 46 ist so ausgelegt, daß er dann, wenn am Ausgang des Serienstromreglers 44 der Spannungswert UV erreicht wird, nicht mehr wirksam ist, sondern in einen gesperrten Zustand übergeht, in dem er den Stromregler 44 nicht mehr überbrückt.
  • In Figur 5 ist ein genaueres Schaltbild gezeigt, das erkennen läßt, wie die einzelnen Bestandteile der Schaltung von Figur 4 aufgebaut sein können. Dabei ist zu erkennen, daß der Serienstromregler 44 bis auf einen noch erläuterten Unterschied, die Spannungsbegrenzungsschaltung 42, die Ladungspumpe 38 und die Spannungsreglerschaltung 40 ebenso wie in der Schaltung von Figur 3 aufgebaut sind. Es ist lediglich der Spannungsregler 46 hinzugekommen, der, wie das Schaltbild zeigt, als Serienspannungsregler aufgebaut ist. Im Serienstromregler 44 ist der Transistor T nicht wie beim Serienstromregler 34 durch einen Widerstand überbrückt. Dieser Widerstand ist in diesem Fall nicht erforderlich, da hier der Spannungsregler 46 das Anlaufen der Schaltung ermöglicht.
  • In den beschriebenen Ausführungsbeispielen werden sowohl die Eingangsspannung als auch die Ausgangsspannung der Ladungspumpe 38 konstant gehalten. Eingangsseitig wird dazu die erwähnte Spannungsbegrenzungsschaltung 42 verwendet, die nichts anderes als ein Parallelregler ist. Auch die ausgangsseitig verwendete Schaltung zum Konstanthalten der Ausgangsspannung der Ladungspumpe 38 ist ein Parallelregler. Es ist aber auch möglich, auf das Konstanthalten der Eingangsspannung der Ladungspumpe 38 zu verzichten, was lediglich erfordert, eine Ladungspumpe zu verwenden, die mit größeren Eingangsspannungen bzw. Eingangsströmen arbeiten kann. Beim Konstanthalten der Eingangsspannung der Ladungspumpe kann auf ein Konstanthalten der Ausgangsspannung der Ladungspumpe verzichtet werden, falls eine Lastabhängigkeit der Ausgangsspannung toleriert werden kann. Bei Verwendung von zwei Spannungsreglern am Eingang und am Ausgang der Ladungspumpe 38 ist es möglich, einen der beiden Regler als Längsregler auszubilden. Die angestrebte Wirkung der gesamten Schaltungsanordnung bleibt dadurch unberührt. Die in den Figuren 3 und 5 dargestellte Ladungspumpe hat einen Spannungsübertragungsfaktor von 1/2, was bedeutet, daß sie eine Halbierung der Spannung und eine Verdoppelung des Stroms bewirkt. Natürlich können auch Ladungspumpen mit anderen Spannungsübertragungsfaktoren eingesetzt werden, falls andere Spannungs- und Stromverhältnisse gewünscht werden. Bei der hier beschriebenen Anordnung wird jedoch in jedem Fall ein Übertragungsfaktor < 1 verwendet, da damit ein erhöhter Strom am Ausgang der Ladungspumpe zur Verfügung gestellt werden kann.
  • Die in den Figuren 2 bis 5 in zwei Ausführungsformen dargestellten Schaltungen haben den Vorteil, daß sie als integrierte Schaltungen aufgebaut werden können und daß sie in äußerst flexibler Weise ermöglichen, die verschiedenen Ströme und Spannungen zu liefern, die in der Sendestation für den Betrieb des jeweiligen Sensors und der dessen Ausgangssignal empfangenden Verarbeitungsschaltung benötigt werden. Diese hervorragende Integrierbarkeit aller Ausführungsvarianten ist vor allem darauf zurückzuführen, daß in den Schaltungen keine Induktivitäten, sondern im wesentlichen nur gut integrierbare Kondensatoren (< 1nF) zum Einsatz kommen.

Claims (4)

  1. Anordnung zur Signalübertragung zwischen einer Empfangsstation (10) und einer Sendestation (12) sowie zur Stromversorgung der Sendestation (12), wobei diese beiden Stationen miteinander durch eine Zweidrahtleitung (14) verbunden sind, über die ein zwischen zwei Grenzwerten veränderlicher analoger Signalstrom übertragen wird, der einen in der Sendestation (12) von einem Sensor (20) erfassten Messwert repräsentiert und den für den Betrieb der Sendestation erforderlichen Versorgungsstrom bildet, wobei die Sendestation eine Schaltung (24) aufweist, die eine konstante Betriebsspannung für die Sendestation (12) erzeugt, und wobei in der Sendestation (12) eine steuerbare Stromquelle (34) vorgesehen ist, die den über die Zweidrahtleitung (14) fließenden Strom in Abhängigkeit von dem Messwert bestimmt und die aus einer Versorgungsspannungsquelle in der Empfangsstation gespeist wird, wobei die Stromquelle (34) ein Serienstromregler ist, der aus der Versorgungsspannungsquelle (18) in der Empfangsstation (10) gespeist wird, mit dem Ausgang der Stromquelle (34) eine Ladungspumpe (38) verbunden ist, die aus der am Ausgang der Stromquelle (34) auftretenden Spannung die für den Betrieb des Sensors (20) und einer mit diesem verbundenen Signalverarbeitungsschaltung (22) erforderliche Betriebsspannung erzeugt, und mit dem Eingang oder dem Ausgang der Ladungspumpe 38 ein Parallelregler (40, 42) zum Konstanthalten der Eingangsspannung bzw. der Ausgangsspannung der Ladungspumpe (38) verbunden ist; dadurch gekennzeichnet, dass
    die Stromquelle (44) durch einen Spannungsregler (46) überbrückt ist, der in einer Anlaufphase eine Eingangsspannung (Uv1) für die Ladungspumpe (38) liefert, wobei die Stromquelle (44) so ausgebildet ist, dass sie in der Anlaufphase erst dann einen Ausgangsstrom liefert, wenn die Ladungspumpe (38) eine für seinen Betrieb ausreichende Ausgangsspannung abgibt, wobei der Spannungsregler (46) so ausgelegt ist, dass er in einen gesperrten Zustand übergeht, sobald die Ausgangsspannung (UOut) die Betriebsspannung erreicht.
  2. Anordnung nach Anspruch 1, bei welcher zusätzlich zu dem Parallelregler am Eingang oder am Ausgang der Ladungspumpe (38) auf der jeweils anderen Seite der Ladungspumpe (38) ein weiterer Parallelregler vorgesehen ist.
  3. Anordnung nach Anspruch 1, bei welcher zusätzlich zu dem Parallelregler am Eingang oder am Ausgang der Ladungspumpe (38) auf der jeweils anderen Seite der Ladungspumpe ein Längsregler vorgesehen ist.
  4. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher die Ladungspumpe (38) einen Übertragungsfaktor < 1 hat.
EP98116881A 1998-09-07 1998-09-07 Anordnung zur Stromversorgung einer Stromschleifesendestation Expired - Lifetime EP0986039B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP98116881A EP0986039B1 (de) 1998-09-07 1998-09-07 Anordnung zur Stromversorgung einer Stromschleifesendestation
DE59814313T DE59814313D1 (de) 1998-09-07 1998-09-07 endestation
CA002281156A CA2281156C (en) 1998-09-07 1999-08-30 Assembly for signal transfer between a receiving station and a transmitting station as well as for power supply of the transmitting station
US09/387,998 US6703943B1 (en) 1998-09-07 1999-09-01 Assembly for signal transfer between a receiving station and a transmitting station as well as for power supply of the transmitting station
JP25309399A JP3348051B2 (ja) 1998-09-07 1999-09-07 受信局と送信局との間の信号伝送用並びに前記送信局の電流給電用の装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98116881A EP0986039B1 (de) 1998-09-07 1998-09-07 Anordnung zur Stromversorgung einer Stromschleifesendestation

Publications (2)

Publication Number Publication Date
EP0986039A1 EP0986039A1 (de) 2000-03-15
EP0986039B1 true EP0986039B1 (de) 2008-10-29

Family

ID=8232586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98116881A Expired - Lifetime EP0986039B1 (de) 1998-09-07 1998-09-07 Anordnung zur Stromversorgung einer Stromschleifesendestation

Country Status (5)

Country Link
US (1) US6703943B1 (de)
EP (1) EP0986039B1 (de)
JP (1) JP3348051B2 (de)
CA (1) CA2281156C (de)
DE (1) DE59814313D1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020149379A1 (en) * 2000-01-12 2002-10-17 Winfried Rauer Electronic measuring device for detecting a process variable, in particular a radar or ultrasonic filling level measuring device, and a method for operating a measuring device of this type
DE10059815A1 (de) * 2000-12-01 2002-06-13 Grieshaber Vega Kg Elektronische Messvorrichtung zur Erfassung einer Prozessvariablen, insbesondere Radar- oder Ultraschall-Füllstandsmessvorrichtung und Verfahren zum Betreiben einer solchen Messvorrichtung
US7339458B2 (en) * 2005-05-20 2008-03-04 Ambient Corporation Power line communications interface and surge protector
MX2008013260A (es) * 2006-04-28 2008-10-28 Micro Motion Inc Interfaz y metodo de potencia de circuito de barra colectora.
JP2009537036A (ja) * 2006-05-12 2009-10-22 エヌエックスピー ビー ヴィ 付加ピンに接続した阻止キャパシタを有する電流インタフェース
US7907430B2 (en) * 2008-12-18 2011-03-15 WaikotoLink Limited High current voltage regulator
KR101005136B1 (ko) * 2009-05-29 2011-01-04 주식회사 하이닉스반도체 고전압 발생 장치
EP2275781B8 (de) * 2009-07-17 2012-03-21 Itron France Energiezähler mit Stromversorgung über einen M-Bus
DE102010063949A1 (de) * 2010-12-22 2012-06-28 Endress + Hauser Gmbh + Co. Kg Messgerät
JP5807030B2 (ja) * 2013-02-18 2015-11-10 Ckd株式会社 流体圧シリンダ用センサ
US20150008867A1 (en) * 2013-07-03 2015-01-08 At&T Intellectual Property I, L.P. Charge pump battery charging
RU185926U1 (ru) * 2018-05-23 2018-12-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" Устройство передачи информации по цепям питания

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3615463A1 (de) 1986-05-07 1987-11-12 Endress Hauser Gmbh Co Anordnung zur signaluebertragung in einer messanordnung
US5187474A (en) 1986-10-02 1993-02-16 Rosemount Inc. Digital converter apparatus for improving the output of a two-wire transmitter
IN170265B (de) * 1986-10-02 1992-03-07 Rosemount Inc
MX9306152A (es) 1992-10-05 1994-05-31 Fisher Controls Int Sistema de comunicacion y metodo.
EP0744724B1 (de) 1995-05-24 2001-08-08 Endress + Hauser Gmbh + Co. Anordnung zur leitungsgebundenen Energieversorgung eines Signalgebers vom Singnalempfänger
US6064582A (en) * 1997-02-11 2000-05-16 The Foxboro Company Current converter for increasing current and decreasing voltage

Also Published As

Publication number Publication date
DE59814313D1 (de) 2008-12-11
CA2281156C (en) 2002-07-09
CA2281156A1 (en) 2000-03-07
EP0986039A1 (de) 2000-03-15
JP2000132781A (ja) 2000-05-12
US6703943B1 (en) 2004-03-09
JP3348051B2 (ja) 2002-11-20

Similar Documents

Publication Publication Date Title
DE69932635T2 (de) Hocheffiziente spannungsversorgung fuer eine zweidrahtschleifengespeisste vorrichtung
EP1103038B1 (de) Schaltungsanordnung zur messwerterfassung, -übertragung und -auswertung
EP0986039B1 (de) Anordnung zur Stromversorgung einer Stromschleifesendestation
EP0111729B1 (de) Schaltungsanordnung zur Speisung von elektrischen Verbrauchern mit einer Gleichspannung
EP0721692B1 (de) Sperrwandler
EP0782513A1 (de) Schaltungsanordnung zur überwachung einer steuerschaltung
EP0837479A2 (de) Elektromagnettreiberschaltung
EP0698794A1 (de) Schaltungsanordnung zur Unterspannungs-Erkennung
EP0098460B1 (de) Regelvorrichtung für ein elektrisches Stellglied
DE60014357T2 (de) Anlaufschaltung für Schaltnetzteile
EP1067473B1 (de) Integrator
DE2633923C3 (de) Verfahren zum Betrieb eines selbstgetakteten Schaltreglers und Vorrichtungen zur Durchführung des Verfahrens
DE4337461A1 (de) Schaltnetzteil
DE102008008831B4 (de) Strombegrenzte Spannungsquelle mit weitem Eingangsstrombereich
DE19652622A1 (de) Getaktete Endstufenschaltung zur Steuerung oder Regelung induktiver Lasten
DE3626088A1 (de) Regeleinrichtung
EP0402367B1 (de) Aktives filter
EP0301386A2 (de) Schaltnetzteil
EP0509343A2 (de) Verfahren zum Betreiben eines Schaltreglers sowie Anordnung
EP0361353B1 (de) Gleichstromgespeiste Steuerschaltung für ein Magnetventil
DE1057172B (de) Schaltungsanordnung zur Sperrung eines einen Teil eines Geraetes, insbesondere der Nachrichtentechnik, bildenden Schalttransistors
EP0779702B1 (de) Elektrische Schaltungsanordnung zur Umformung einer Eingangsspannung
EP0203419A1 (de) Primärgetaktetes Schaltnetzteil
DE2621763A1 (de) Sperrwandler-netzgeraet
DE3347484C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000418

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENDRESS + HAUSER GMBH + CO.KG.

17Q First examination report despatched

Effective date: 20071109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59814313

Country of ref document: DE

Date of ref document: 20081211

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120920

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121010

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120928

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130907

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170928

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59814313

Country of ref document: DE

Owner name: ENDRESS+HAUSER SE+CO. KG, DE

Free format text: FORMER OWNER: ENDRESS + HAUSER GMBH + CO. KG, 79689 MAULBURG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59814313

Country of ref document: DE