Nothing Special   »   [go: up one dir, main page]

EP0272253A4 - Procede pour ameliorer la stabilite des glycoproteines. - Google Patents

Procede pour ameliorer la stabilite des glycoproteines.

Info

Publication number
EP0272253A4
EP0272253A4 EP19860902150 EP86902150A EP0272253A4 EP 0272253 A4 EP0272253 A4 EP 0272253A4 EP 19860902150 EP19860902150 EP 19860902150 EP 86902150 A EP86902150 A EP 86902150A EP 0272253 A4 EP0272253 A4 EP 0272253A4
Authority
EP
European Patent Office
Prior art keywords
glcnac
gal
galβ1
protein
glcnacβ1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP19860902150
Other languages
German (de)
English (en)
Other versions
EP0272253A1 (fr
Inventor
Michel Louis Eugene Bergh
Catherine S Hubbard
James R Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of EP0272253A1 publication Critical patent/EP0272253A1/fr
Publication of EP0272253A4 publication Critical patent/EP0272253A4/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids

Definitions

  • glycoproteins proteins with covalently bound sugars
  • the carbohydrate moieties of these glycoproteins can participate directly in the biological activity of the glycoproteins in a variety of ways: protection from proteolytic degradation, stabilization of protein conformation, and mediation of inter- and intracellular recognition.
  • glycoproteins include enzymes, serum proteins such as immunoglobulins and blood clotting factors, cell surface receptors for growth factors and infectious agents, hormones, toxins, lectins and structural proteins.
  • Natural and recombinant proteins are being used as tnerapeutic agents in humans and animals. In many cases a therapeutic protein will be most efficacious if it has an appreciable circulatory lifetime. At least four general mechanisms can contribute to a shortened circulatory lifetime for an exogenous protein: proteolytic degradation, clearance by the immune system if the protein is antigenie or immunogenic, clearance by cells of the liver or reticulo-endothelial system that recognize specific exposed sugar units on a glycoprotein, and clearance through the glomerular basement membrane of the kidney if the protein is of low molecular weight. The oligosaccharides of a glycoprotein can exert a strong effect on the first three of these clearance mechanisms.
  • the oligosaccharide chains of glycoproteins are attached to the polypeptide backbone by either N- or O-glycosidic linkages.
  • N-linked glycans there is an amide bond connecting the anomeric carbon (C-1) of a reducing-terminal N-acetylglucosamine (GlcNAc) residue of the oligosaccharide and a nitrogen of an aspara gine (Asn) residue of the polypeptide.
  • O-linked glyeans are attached via a glycosidic bond between N-acetylgalactosamine (GalNAc), galactose (Gal), or xylose and one of several hydroxyamino acids, most commonly serine (Ser) or threonine (Thr), but also hydroxyproline or hydroxylysine in some cases.
  • the O-linked glycans in the yeast Saccharomyces cerevisiae are also attached to serine or threonine residues, but, unlike the glycans of animals, they consist of one to several ⁇ -linked mannose (Man) residues. Mannose residues have not been found in the O-linked oligosaccharides of animal cells.
  • O-Linked glycan synthesis is relatively simple, consisting of a step-by-step transfer of single sugar residues from nucleotide sugars by a series of specific glycosyltransferases.
  • the nucleotide sugars which function as the monosaccharide donors are uridine-diphospho-GalNAc (UDP-GalNAc), UDP-GlcNAc, UDP-Gal , guanidinediphospho-fucose (GDP-Fuc), and cytidine-monophospho-sialic acid (CMP-SA).
  • UDP-GalNAc uridine-diphospho-GalNAc
  • UDP-GlcNAc UDP-GlcNAc
  • UDP-Gal guanidinediphospho-fucose
  • CMP-SA cytidine-monophospho-sialic acid
  • N-linked oligosaccharide assembly does not occur directly on the Asn residues of the protein, but rather involves preassembly of a lipid-linked precursor oligosaccharide which is then transferred to the protein during or very soon after its translation from mRNA.
  • This precursor oligosaccharide which has the composition Glc 3 Man 9 GlcNAc 2 and the structure shown in Fig.
  • lipid-linked precursor is synthesized while attached via a pyrophosphate bridge to a polyisoprenoid carrier lipid, a dolichol.
  • This assembly is a complex process involving at least six distinct membrane-bound glycosyltransferases. Some of these enzymes transfer monosaccharides from nucleotide sugars, while others utilize dolichol-linked monosaccharides as sugar donors.
  • Another membrane-bound enzyme transfers it to sterically accessible Asn residues which occur as part of the sequence -Asn-X-Ser/Thr-. The requirement for steric accessibility is presumably responsible for the observation that denaturation is usually required for in vi tro transfer of precursor ol igosaccharide to exogenous protei ns.
  • Glycosylated Asn residues of newly-synthesized glycoproteins transiently carry only one type of oligosaccharide, Glc 3 Man 9 GlcNAc 2 .
  • Modification, or "processing,” of this structure generates the great diversity of structures found on mature glycoproteins, and it is the variation in the type or extent of this processing which accounts for the observation that different cell types often glycosylate even the same polypeptide differently.
  • N-linked oligosaccharides is accomplished by the sequential action of a number of membrane-bound enzymes and begins immediately after transfer of the precursor oligosaccharide Glc,Man 9 -GlcNAc 2 to the protein.
  • N-linked oligosaccharide processing can be divided into three stages: removal of the three glucose residues, removal of a variable number of mannose residues, and addition of various sugar residues to the resulting trimmed "core," i.e., the Man 3 GlcNAc 2 portion of the original oligosaccharide closest to the polypeptide backbone.
  • a simplified outline of the processing pathway is shown in Fig. 2.
  • tne mannose residues of the Man 9 GlcNAc 2 moiety are bound by ⁇ 1—>2 linkages.
  • the arrow points toward the reducing terminus of an oligosaccharide, or in this case, toward the protein-bound end of the glycan; ⁇ or ⁇ indicate the anomeric configuration of the glycosidic bond; and the two numbers indicate which carbon atoms on each monosaccharide are involved in the bond.
  • the four ⁇ l—>2-linked mannose residues can be removed by Mannosidase I to generate N-linked Man 5-8 GlcNAc 2 , all of which are commonly found on vertebrate glycoproteins.
  • Oligosaccharides with the composition Man 5-9 GlcNAc 2 are said to be of the "high-mannose" type.
  • protein-linked Man 5 GlcNAc 2 can serve as a substrate for GlcNAc transferase I, which transfers a 01—>2-linked GlcNAc residue from UDP-GlcNAc to the ⁇ l—>3-linked mannose residue to form GlcNAcMan 5 GlcNAc 2 (Structure M-d) .
  • Mannosidase II can then complete the trimming phase of the processing pathway by removing two mannose residues to generate a protein-linked oligosaccharide with the composition GlcNAcMan 3 GlcNAc 2 (Structure M-e).
  • This structure is a substrate for GlcNAc transferase II, which can transfer a ⁇ 1—>2-linked GlcNAc residue to the ⁇ 1—>6-linked mannose residue (not shown) .
  • GlcNAc transferases producing ⁇ 1—>3, ⁇ 1 —>4, or ⁇ 1—>6 linkages
  • three gal actosyl transferases producing ⁇ l—>4, ⁇ 1—>3, and ⁇ 1—>3 linkages
  • two sialyl transferases one producing ⁇ 2—>3 and another, ⁇ 2—>6 linkages
  • three fucosyl transferases producing ⁇ 1—>2, ⁇ 1—>3, ⁇ l —>4 or ⁇ 1 —>6 linkages
  • a growing list of other enzymes responsible for a variety of unusual linkages can include at least four more distinct GlcNAc transferases (producing ⁇ 1—>3, ⁇ 1 —>4, or ⁇ 1—>6 linkages); three gal actosyl transferases (producing ⁇ l—>4, ⁇ 1—>3, and ⁇ 1—>3 linkages); two sialyl transferases (one producing ⁇ 2—>3 and another, ⁇ 2—>6 linkages
  • complex oligosaccharides may contain two (for example, Structure M-f in Fig. 2), three (for example, Fig. 1C or Structure M-g in Fig. 2), or four outer branches attached to the invariant core pentasaccharide, Man,GlcNAc 2 .
  • These structures are referred to in terms of the number of their outer branches: biantennary (two branches), triantennary (three branches) or tetraantennary (four branches).
  • the size of these complex glycans varies from a hexasaccharide (on rhodopsin) to very large polylactosaminylglycans, which contain one or more outer branches with repeating (Gal ⁇ 1—>4GlcNAc ⁇ 1—>3) units (on several cell surface glycoproteins such as the erythrocyte glycoprotein Band 3 and the macrophage antigen Mac-2).
  • outer branches of many complex N-linked oligosaccharides consist of all or part of the sequence
  • One or two of these trisaccharide moieties may be attached to each of the two ⁇ -linked mannose residues of the core pentasaccharide, as in Structures M-f and M-g of Fig. 2.
  • oligosaccharide biosynthesis does not take place on a template.
  • considerable heterogeneity is usually observed in the oligosaccharide structures of every giycoprotein. The differences are most commonly due to variations in the extent of processing.
  • the single glycosylation site of the chicken egg glycoprotein ovalbumin for example, contains a structurally related "family" of at least 18 different oligosaccharides, the great majority of which are of the high-mannose or related "hybrid" type (for example, Structure M-h in Fig. 2).
  • glycoproteins contain multiple glycosylated Asn residues, and each of these may carry a distinct family of oligosaccnarides. For example, one site may carry predominantly high-mannose glycans, another may carry mostly fucosylated biantennary complex chains, and a third may carry fucose-free tri- and tetraantennary complex structures. Again, all of these glycans will contain the invariant Man 3 GlcNAc 2 core.
  • lipid-linked Glc 3 Man 9 GlcNAc 2 is assembled, its oligosaccharide chain transferred to acceptor Asn residues of proteins, and its three glucose residues are removed soon after transfer.
  • Yeast cells can remove only a single mannose residue, however, so that the smallest and least-processed N-linked glycans have the composition Man 8-9 GlcNAc 2 . Processing can stop at this stage or continue with the addition of as many as 50 or more ⁇ -linked mannose residues to Man 8 GlcNAc 2 (Fig.
  • Structure Y-c to generate a mannan (for example, Structure Y-d).
  • a mannan for example, Structure Y-d.
  • glycoproteins in mammalian cells may have predominantly high-mannose oligosaccharides at one glycosylated Asn residue and highly processed complex glycans at another, yeast glycoproteins such as external invertase commonly have some glycosylation sites with Man 8-9 GlcNA c2 chains, while other sites carry mannans.
  • bacteria Unlike eukaryotic cells, bacteria lack the enzymatic machinery to assemble lipid-linked Glc 3 Man 9 GlcNAc 2 or transfer it to proteins. Thus, although proteins synthesized in E. coli contain many -Asn-X-Ser/Thr- sequences, they are not glycosylated.
  • glycosylation status of a glycoprotein will depend on the cell in which it is produced.
  • the glycans of a protein synthesized in cultured mammalian cells will resemble those of the same protein isolated from a natural animal source such as a tissue but are unlikely to be identical.
  • Proteins glycosylated by yeast contain high-mannose oligosaccharides and mannans, and proteins synthesized in a bacterium such as E. coli will not be glycosylated because the necessary enzymes are absent.
  • the precise composition and structure of the carbohydrate chain(s) on a glycoprotein can directly influence its serum lifetime, since cells in the liver and reticulo-endothelial system can bind and internalize circulating glycoproteins with specific carbohydrates.
  • Hepatocytes have receptors on their surfaces that recognize oligosaccharide chains with terminal (i.e., at the outermost end(s) of glycans relative to the polypeptide) Gal residues
  • macrophages contain receptors for terminal Man or GlcNAc residues
  • hepatocytes and lymphocytes have receptors for exposed fucose residues. No sialic acid-specific receptors have been found, however.
  • oligosaccharides with all branches terminated, or "capped,” with sialic acid will not promote the clearance of the protein to which they are attached.
  • the presence and nature of the oligosaccharide chain(s) on a glycoprotein can also affect important biochemical properties in addition to its recognition by sugar-specific receptors on liver and reticulo-endothelial cells. Removal of the carbohydrate from a glycoprotein will usually decrease its solubility, and it may also increase its susceptibility to proteolytic degradation by destabi lizing the correct polypeptide folding pattern and/or unmasking protease-sensitive sites. For similar reasons, the glycosylation status of a protein can affect its recognition by the immune system.
  • a method for modifying eukaryotic and prokaryotic proteins to extend their in vivo circulatory lifetimes or to control their site of cellular uptake in the body is used.
  • enzymatic and/or chemical treatments are used to produce a modified protein carrying one or more covalently attached trisaccharide
  • one or two GlcNAc residues bound to the protein are used as a basis for construction of other oligosaccharides by elongation with the appropriate glycosyl transferases.
  • the method can be applied to any natural or recombinant protein possessing Asn-linked oligosaccharides or to any non-glycosylated protein that can be chemically or enzymatically derivatized with the appropriate carbohydrate residues.
  • the preferred oligosaccharide modification scheme consists of the following steps wherein all but the Asn-linked GlcNAc of the N-linked oligosaccharide chains are enzymatically or chemically removed from the protein and a trisaccharide constructed in its place:
  • Step 1 Generation of GlcNAc-->Asn(protein).
  • the initial step is cleavage of the glycosidic bond connecting tne two innermost core GlcNAc residues of some or all N-linked oligosaccharide chains of a glycoprotein with an appropriate endo- ⁇ -N-acetylglucosaminidase such as Endo H or Endo F.
  • Endo H cleaves the high-mannose and hybrid oligosaccharide chains of glycoproteins produced in eukaryotic cells as well as the mannans produced in yeast such as Saccharomyces cerevisiae, removing all but a single GlcNAc residue attached to each glycosylated Asn residue of the polypeptide backbone.
  • Endo F can cleave both high-mannose and biantennary complex chains of N-linked oligosaccharides, again leaving a single GlcNAc residue attached at each glycosylation site.
  • a given glycoprotein contains complex oligosaccharides such as tri- or tetraantennary chains which are inefficiently cleaved by known endoglycosidases, these chains can be trimmed with exoglycosidases such as sialidase, ⁇ - and ⁇ -galactosidase, ⁇ -fucosidase and ⁇ -hexosaminidase.
  • the innermost GlcNAc residue of the resulting core can be then be exposed by any of several procedures.
  • Endo F endo F or other endo-B-N-acetylglucosaminidases such as Endo D.
  • a second procedure is digestion with ⁇ -mannosidase followed by digestion with either Endo L or with ⁇ -mannosidase and ⁇ -hexosaminidase.
  • glycoproteins normally bearing complex Asn-linked oligosaccharides can be produced in mammalian cell culture in the presence of a processing inhibitor such as swainsonine or deoxymannojirimycin.
  • the resulting glycoprotein will bear hybrid or highmannose chains susceptible to cleavage by Endo H, thereby eliminating the need for an initial treatment of the glycoprotein with exoglycosidases.
  • the glycoprotein may be produced in a mutant cell line tnat is incapable of synthesizing complex N-linked chains resistant to endoglycosidases such as Endo H or Endo F.
  • All sugars other than the N-linked GlcNAc residues may also be removed chemically rather than enzymatically by treatment with trifluoromethanesulfonic acid or hydrofluoric acid.
  • chemical cleavage can be expected to be less useful than enzymatic methods because of the denaturing effects of the relatively harsh conditions used.
  • Step 2 Attachment of Gal to GlcNAc-->Asn( protein).
  • the second step is the enzymatic addition of a Gal residue to the residual GlcNAc on the protein by the action of a galactosyltransferase.
  • the preferred galactosyltransferase is a bovine milk enzyme which transfers Gal to GlcNAc in the presence of the sugar donor UDP-Gal to form a ⁇ 1-->4 linkage.
  • galactose can be added to the GlcNAc residue with a ⁇ 1-->3 linkage by the use of a galactosyltransferase from a source such as pig trachea.
  • Step 3 Attachment of SA to Gal-->GlcNAc-->Asn(protein).
  • the final step is the enzymatic addition of a sialic acid residue to Gal ⁇ 1-->4(3)GlcNAc-->Asn(protein).
  • This reaction can be carried out with an ⁇ 2-->6-sialyltransferase isolated, for example, from bovine colostrum or rat liver, which transfers SA from CMP-SA to form an ⁇ 2-->6 linkage to the terminal galactose residue of Gal ⁇ 1-->4(3)-GlcNAc-->Asn( protein).
  • an ⁇ 2-->3-sialyltransferase may be used to form an ⁇ 2—>3 linkage to each terminal Gal residue.
  • sialic acid is N-acetylneuraminic acid (NeuAc)
  • any naturally occurring or chemically synthesized sialic acid which the sialyltransferase can transfer from the CPM-SA derivative to galactose may be used, for exapmole, N-glycolyl neuraminic acid, 9-0-acetyl-N-acetyl neuraminic acid, and 4-0-acetyl-N-acetyl neuraminic acid.
  • glycoproteins containing Asn-1 inked SA >Gal—>GlcNAc—>G1cNAc—>
  • the oligosaccharide chains of the glycoprotein are trimmed back to the two, rather than one, innermost core GlcNAc residues by the use of appropriate exoglycosidases.
  • ⁇ and ⁇ -mannosidase would be used to trim a high-mannose oligosaccharide.
  • GlcNAc ⁇ 1—>4GlcNAc—>Asn( protein) is then converted to the tetrasaccharide SAo2—>6(3 )Gal ⁇ 1-->4(3 )GlcNAc ⁇ 1—>4G1 cNAc—>Asn(protein) by sequential treatment with galactosyl- and sialyl transferases.
  • an oligosaccharide such as the trisaccharide SA—>Gal—>GlcNAc—> or disaccharide SA—>Gal—> is attached at non-glycosylated amino acid residues of a protein expressed eitner in a eukarykotic system or in a bacterial system.
  • the protein is treated with a chemically reactive glycoside derivative of GlcNAc—>, Gal-->GlcNAc-->, or SA-->Gal—>GlcNAc-->.
  • the mono- or disaccharide is then extended to the trisaccharide by the appropriate glycosyltransferase(s).
  • the initial carbohydrate moieties can be attached to the protein by a chemical reaction between a suitable amino acid and a glycoside derivative of the carbohydrate containing an appropriately activated chemical group. Depending on the activation group present in the glycoside, the carbohydrate will be attached to amino acids with free amino groups, carboxyl groups, sulfhydryl groups, or hydroxyl groups or to aromatic amino acids.
  • Variations of the disclosed procedures can be used to produce glycoproteins with oligosaccharides other than the tri- or tetrasaccharides described above.
  • extended oligosaccharide chains consisting of
  • n GlcNAc ⁇ 1—>4GlcNAc-->, where n is 1-10, can be constructed by subjecting a glycoprotein carrying one or two core GlcNAc residues to alternate rounds of ⁇ 1-->4 galactosyltransferase and ⁇ 1-->3 N-acetylglucosaminyltransferase treatments.
  • the resulting extended oligosaccharide chain can be useful for increasing solubility or masking protease-sensitive or antigenic sites of the Dolypeptide.
  • oligosaccharide structures can be constructed by elongation of protein-linked monosaccharides or disaccharides with the use of appropriate glycosyltransferases.
  • An example is the branched fucosylated trisaccharide
  • Fig. 1 shows the structures of (A), the lipid-linked precursor oligosaccharide, Glc 3 Man 9 GlcNA c2 ; (B), a high-mannose Asn-linked oligosaccharide, Man 9 GlcNAc 2 ; and (C), a typical triantennary complex Asn-linked oligosaccharide.
  • the anomeric configurations and linkage positions of the sugar residues are indicated, and dotted lines enclose the invariant pentasaccharide core shared by all known eukaryotic Asn-linked oligosaccharides.
  • Fig. 2 is a simplified biosynthetic pathway for Asn-linked oligosaccharide biosynthesis in yeast and higher organisms. For clarity, anomeric configurations and linkage positions are not shown, but the arrangement of the branches is the same as in Fig. 1.
  • Fig. 3 is a Coomassie blue-stained gel prepared by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of yeast external invertase before and after treatment with glycosidases. The acrylamide concentration was 6%.
  • A untreated invertase;
  • B invertase after treatment with Endo H under non-denaturing conditions;
  • C invertase after Endo H treatment under denaturing conditions (0.7% SDS); and
  • D an aliquot of a sample first treated with Endo H under non-denaturing conditions and subsequently treated with jack bean ⁇ -mannosidase.
  • Fig. 4 is a fluorogram of a 6% SDS-PAGE gel of samples of yeast external invertase removed at intervals (5 min, 1 hr, 2 hr, 3 hr, 5 hr, 9 hr and 19 hr) during galactosylation of Endo H-treated, SDS-denatured invertase (Fig. 3B) with UDP-[ 3 H]Gal and bovine milk ⁇ 1-->4 galactosyltransferase.
  • Fig. 5 shows the rate of incorporation of acid-precipitable radioactivity into Endo H-treated, SDS-denatured yeast external invertase during treatment with UDP-[ 3 H]Gal and bovine milk ⁇ 1-->4 galactosyltransferase.
  • Fig. 6 is an autoradiogram of a 5% SDS-PAGE gel of various yeast external invertase derivatives that have been sialylated using CMP- [ 14 C]NeuAc and bovine colostrum ⁇ 2 -->6 sialyltransferase .
  • A Sialylation product derived from galactosylated, Endo H-treated, SDS-denatured invertase;
  • B sialylation product derived from a galactosylated sample of Endo H- and jack bean ⁇ -mannos idase-treated, non- denatured invertase;
  • C sialylation product derived from untreated invertase.
  • Fig. 7 is a Coomassie blue-stained 6% SDS-PAGE gel of (A) untreated bovine serum albumin (BSA); (B) BSA converted to GlcNAc-BSA containing approximately 48 GlcNAc residues per molecule of protein by incubation with 2-imino-2-methoxyethyl-1-thio-N-acetylglucosaminide in 0.25 M sodium borate pH 8.5 for 24 hr at room temperature; (C) gal actosyl ated BSA formed by treatment of GlcNAc-BSA with UDP-[ 3 H]Gal and bovine milk ⁇ 1-->4 galactosyltransferase; and (D) sialylated BSA formed by treatment of Gal-->GlcNAc-BSA with CMP-[ 14 C]NeuAc and bovine colostrum ⁇ 2-->6 sialyltransferase.
  • Fig. 8 is a graph of specific uptake (
  • Fig. 9 is a graph of specific uptake (ng/mg cellular protein) of Gal-->GlcNAc[ 125 I]BSA ( ⁇ ) and NeuAc-->Gal-->GlcNAc-[ 125 I]BSA (•) by the Gal/GalNAc receptor of HepG2 cells vs. protein concentration (0.5 to 7.5 ⁇ g protein/ml), where specific uptake is equal to total uptake (uptake in the absence of asialo-orosomucoid) minus non-specific uptake (value obtained in the presence of asialo-orosomucoid).
  • the present invention is a method for modifying proteins wherein oligosaccharide chains are bound to the protein to enhance in vivo stability or to target the protein to cells having specific receptors for an exposed saccharide in the attached oligosaccharide chain(s).
  • the method has two principal embodiments. The first is to cleave the existing Asn-linked oligosaccharide chains on a glycoprotein to leave one or two GlcNAc residues attached to the protein at Asn and then enzymatically extend the terminal GlcNAc to attach Gal and SA.
  • the second is to chemically or enzymatically attach a GlcNAc or Gal residue to the protein at any of a number of different amino acids and then enzymatically extend the terminal GlcNAc or Gal to form an oligosaccharide chain capped with sialic acid.
  • a GlcNAc or Gal residue to the protein at any of a number of different amino acids and then enzymatically extend the terminal GlcNAc or Gal to form an oligosaccharide chain capped with sialic acid.
  • Step 1 Generation of GlcNAc-->Asn(protein).
  • the enzyme hydrolyzes the bond between the two core GlcNAc residues of susceptible N-linked oligosaccharides, leaving behind a single GlcNAc residue attached to the glycosylated Asn residues.
  • the preferred enzyme for this purpose is Endo H, which has been isolated from Streptomyces plicatus. The enzyme is available either as the naturally occurring protein or as the recombinant DNA product expressed in E. coli or Streptomyces lividans.
  • Endo H cleaves all susceptible oligosaccharide structures of denatured glycoproteins and many of those on native glycoproteins.
  • the GlcNAc 2 cores of some highmannose glycans may be protected from cleavage by Endo H due to steric factors such as polypeptide folding. This can frequently be overcome by the use of one of several mild denaturing agents that promote partial polypeptide unfolding.
  • mild denaturants include detergent such as Triton X-100, NP-40, octyl glucoside, deoxycholate and dilute sodium dodecyl sulfate; disulfide bond reducing agents such as dithiothreitol and ⁇ -mercaptoethanol; chaotropic agents such as urea, guanidinium hydrochloride and sodium isothiocyanate; and low concentrations of organic solvents such as alcohols (methanol, ethanol, propanol or butanol), DMSO or acetone.
  • detergent such as Triton X-100, NP-40, octyl glucoside, deoxycholate and dilute sodium dodecyl sulfate
  • disulfide bond reducing agents such as dithiothreitol and ⁇ -mercaptoethanol
  • chaotropic agents such as urea, guanidinium hydrochloride and sodium isothiocyanate
  • organic solvents such as
  • Endo H is a very stable enzyme, active over a pH range of about 5 to 6.5, in low- or highionic strength buffers, and in the presence of the above-mentioned denaturing agents or protease inhibitors such as phenylmethanesul fonyl fluoride, EDTA, aprotinin, leupeptide and pepstatin. Protocols for the use of Endo H have been published by Trimble and Maley in Anal. Biochem. 141, 515-522 (1984). The precise set of reaction conditions which will optimize the cleavage of oligosaccharides by Endo H while preserving biological activity will most likely vary depending on the glycoprotein being modified and can be determined routinely by someone of ordinary skill in this field.
  • yeast glycoproteins sometimes contain O-linked oligosaccharides consisting of one to four ⁇ -linked mannose residues. Because these could bind to a mannose-specific receptor and shorten the serum lifetime of a glycoprotein, it is advisable to treat any protein found to contain such oligosaccharides with an ⁇ -mannosi dase such as the enzyme from jack bean. This would remove all but the innermost, protein-linked mannose residue from the 0-1 inked chains. Because ⁇ -mannosidase treatment could interfere with subsequent cleavage by Endo H or Endo C II , it should be performed after digestion with these enzymes.
  • a common O-linked oligosaccharide in animal cells is Gal-->GalNAc ⁇ -->Ser/Thr(protein). These glycans can be removed with the enzyme endo- ⁇ -N-acetylgalactosaminidase, which is commercially available from Genzyme Corp., Boston MA. Many other mammalian O-linked oligosaccharides can be converted to Gal -->GalNAc-->Ser/Thr(protein) by treatment with exoglycosidases such as sialidase, ⁇ -hexosamini ⁇ ase and ⁇ -fucosidase.
  • the resulting protein-linked disaccharides could then be removed from the polypeptide with endo- ⁇ -N-acetylgalactosaminidase.
  • b Cleavage by other endo-8-N-acetylglucosaminidases.
  • endo- ⁇ -N-acetylglucosaminidases are also capable of cleaving between the two innermost GlcNAc residues of various N-linked oligosaccharides.
  • the oligosaccharide specificities of these enzymes vary and are summarized in Table I.
  • Endo C II and Endo F Two of these endoglycosidases, Endo C II and Endo F, can be used in place of Endo H to cleave high-mannose glycans. Unlike Endo H, however, Endo F is also active with biantennary complex N-linked oligosaccnarides. Although the N-linked oligosaccharides of vertebrates are not substrates for Endo D, this enzyme would be active with glycoproteins produced by insect cells, which produce significant quantities of N-linked Man 3 GlcNAc 2 in addition to high-mannose oligosaccharides, as reported by Hsieh and Robbins in J. Biol. Chem. 259, 2375-82 (1984).
  • the glycoprotein can be incubated with the enzymes either sequentially or in combination to maximize cleavage.
  • Mammalian cells often syntnesize glycoproteins carrying oligosaccharides with structures that are resistant to all of the above-mentioned endo- ⁇ -N-acetylglucosaminidases, e.g., tri- or tetraantennary complex oligosaccharides.
  • oligosaccharide processing inhibitors are deoxymannojirimycin and swainsonine. Cells treated with one of these inhibitors will preferentially synthesize N-linked oligosaccharides with Endo H-sensitive structures. Deoxymannojirimycin inhibits Mannosidase I, thereby blocking further modification of high-mannose N-linked oligosaccharides.
  • Swainsonine is a Mannosidase II inhibitor, blocking the removal of the two ⁇ -linked mannose residues on the ⁇ 1-->6-linked mannose residue of the Man 3 GlcNAc 2 core (i.e., conversion of structure M-d to structure M-e in Fig. 2).
  • glycosylated Asn residues which would normally carry Endo H-resistant complex type glycans will carry Endo H-sensitive "hybrid" oligosaccharides instead.
  • Swainsonine and deoxymannojirimycin are both comrnercially available, for example from Genzyme Corp., Boston MA, or Boehringer Mannheim, Indianapolis IN .
  • Oligosaccharide processing inhibitors that block Glucosidases I or II such as deoxynojirimycin or castanospermine, which are both available from Genzyme Corp., Boston MA, will also generate Endo H-sensitive structures, but these inhibitors are less preferred because they sometimes block secretion. Many other oligosaccharide processing inhibitors, described in the two reviews cited in the previous paragraph, will also serve the same purpose. d. Cleavage by endo- ⁇ -N-acetylglucosaminidases after production of a glycoprotein in a mutant cell line.
  • Another approach for manipulating the structures of the N-linked oligosaccharides of a giycoprotein is to express it in cells with one or more mutations in the oligosaccharide processing pathways. Such mutations are readily selected for in mammalian cells. A number of techniques have been used to generate processing mutants, but selection for resistance or hypersensitivity to one or more of a variety of lectins, as an indicator of the presence of a processing mutation, has been one useful approach. DNA coding for a glycoprotein(s) can be introduced into such a mutant cell line using conventional methods (e.g., transformation with an expression vector containing the DNA). Alternatively, a mutant subline with defective processing can be selected from a line already capable of producing a desired glycoprotein.
  • any of a wide variety of mutant cell lines can be used.
  • GlcNAc transferase I mutants of both CHO cells an established Chinese hamster ovary cell line long used for mutational studies and mammalian protein expression
  • BHK-21 cells an established line of baby hamster kidney origin. Both CHO and BHK-21 cells are available from the American Type Culture Collection, Rockville MD. Because of the missing enzyme activity, the mutant cells are unable to synthesize any complex or hybrid N-linked oligosaccharides; glycosylated Asn residues which would normally carry sucn glycans carry Man 5 GlcNAc 2 instead.
  • glycosylated Asn residues carry only Man 5-9 GlcNAc 2 , all structures which are sensitive to Endo H.
  • Many other mutant cell lines have also been characterized, examples of which include lines with various defects in fucosylation, a defect in galactosylation resulting in failure to extend the outer branches past the GlcNAc residues, an inability to add extra branches to produce tri- and tetraantennary complex oligosaccharides, and various defects in Ser/Thr-linked glycan synthesis.
  • the subject of processing-defective animal cell mutants has been reviewed by Stanley, in The Biochemistry of Glycoproteins and Proteoglyeans, edited by Lennarz, Plenum Press, New York, 1980.
  • An alternative, but less preferred method for generating GlcNAc-->Asn( protein) in cases where the giycoprotein contains high-mannose or mannan-type oligosaccharides is to remove monosaccharide units by exoglycosidase digestion with or without subsequent use of Endo L.
  • the first step is digestion with an ⁇ -mannosidase to remove all ⁇ -linked mannose residues.
  • mannans from some yeast strains it may be desirable to include other exoglycosidases or phosphatases if other sugars or phosphate residues are present in the outer portion of the mannan structure.
  • the last mannose residue is removed with a ⁇ -mannosidase.
  • the product, GlcNAc 2 -->Asn(protein), is then subjected to the third digestion step, which is carried out with ⁇ -hexosaminidase.
  • This enzyme removes the terminal GlcNAc residue to generate GlcNAc-->Asn(protein); since the last GlcNAc is linked to the protein by an amide rather than a glycosidic bond, the hexosaminidase cannot remove the innermost GlcNAc residue from the asparagine.
  • ⁇ -mannosidase treatment of high-mannose or mannantype oligosaccharides can be followed by incubation with Endo L, which can be purified from Streptomyces plicatus.
  • Endo L which can be purified from Streptomyces plicatus.
  • This enzyme can cleave between the Gl cNAc resi dues of Man ⁇ 1 -- >4Gl cNAc ⁇ 1 -- >4Gl cNAc .
  • oligosaccharides In the case of a glycoprotein containing complex or hybrid-type oligosaccharides, sequential (or, when the requirements of the enzymes make it possible, siimultaneous) incubation with the appropriate exoglycosidases, such as sialidase, ⁇ - and/or ⁇ -galactosidase, ⁇ -hexosaminidase, and ⁇ -fucosidase, will trim the oligosaccharides back to Man 3 GlcNAc 2 . This oligosaccharide can be cleaved by Endo D or Endo F.
  • exoglycosidases such as sialidase, ⁇ - and/or ⁇ -galactosidase, ⁇ -hexosaminidase, and ⁇ -fucosidase
  • ⁇ -mannosidase can be treated with ⁇ -mannosidase to generate protein-linked Man ⁇ 1-->4GlcNAc ⁇ 1-->4GlcNAc. This can be cleaved either with Endo L or with digestions with ⁇ -mannosidase, ⁇ -mannosidase, and ⁇ -hexosaminidase.
  • Sialidase can be purified from a variety of sources, including E. coli, Clostridium perfringens, Vi bri o cholerae, and Arthrobacter urefaciens, and is commercially available from a number of sources such as Calbiochem-Behring, San Diego CA, or Sigma Chemical Corp., St. Louis MO.
  • ⁇ -Galactosidase can be purified from Asperaillus niger, C. perfringens, jack bean, or other suitable sources and is commercially available from Sigma Chemical Corp., St. Louis MO.
  • ⁇ -Galactosidase from E. coli or green coffee beans is available from Boehringer Mannheim, Indianapolis IN.
  • ⁇ -Hexosaminidase can be purifed from jack bean, bovine liver or testis, or other suitable sources and is also commercially available from Sigma Chemical Corp., St. Louis MO.
  • ⁇ - Mannosidase has been purified from the snail Achatina fulica, as described by Sugahara and Yamashima in Meth. Enzymol. 28, 769-772 (1972), and from hen oviduct, as described by Sukeno et al. in Meth. Enzymol . 28, 777-782 (1972).
  • ⁇ -Mannosidase from jack bean is preferred and is commercially available from Sigma Chem. Corp., St. Louis MO.
  • Endo H, Endo D, and Endo F are commercially available from Genzyme Corp., Boston MA; from New England Nuclear, Boston MA; from Miles Scientific, Naperville IL; or from Boehringer Mannheim, Indianapolis IN. Conditions for the use of these and the other endo- ⁇ -N-acetylglucosaminidases Endo C II and Endo L are described in the publications cited in Table I. f. Chemical removal of all sugars except N-linked GlcNAc. It is also possible to generate protein-linked GlcNAc chemically. For example, as described by Kalyan and Bah! in J. Biol. Chem.
  • Step 2 the terminal GlcNAc residue generated in Step 1 serves as a site for the attachment of galactose.
  • Either of two galactosyltransferases may be used: UDP-Gal :GlcNAc-R ⁇ 1-->4 galactosyltransferase or UDP-Gal :GlcNAc-R ⁇ 1-->3 galactosyltransferase.
  • tne first variation of this step a ⁇ 1-->4-linked galactose residue is added to GlcNAc-->Asn( protein).
  • UDP-Gal :GlcNAc-R ⁇ 1-->4 galactosyltransferase can be obtained from a variety of sources, the most common and costeffective one being bovine milk. Enzyme from this source is commercially available from Sigma Chem. Corp., St. Louis MC.
  • the reaction conditions for using the bovine milk galactosyltransferase to transfer galactose from UDP-Gal to GlcNAc-->Asn( protein) are similar to those described by Trayer and Hill in J. Biol. Chem. 246, 6666-75 (1971) for natural substrates.
  • the preferred reaction pH is 6.0 to 6.5.
  • buffers can be used with the exception of phosphate, which inhibits enyzme activity, and a broad range of salt concentrations can be used. It is preferable to have 5-20 mM Mn +2 or Mg +2 present.
  • Peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin, and pepstatin and exoglycosidase inhibitors such as galactono-1,4-lactone can be added without interfering with the activity of the galactosyltransferase.
  • sialic acid includes any naturally occurring or chemically synthesized sialic acid or sialic acid derivative.
  • the preferred naturally occurring sialic acid is N-acetyl neuraminic acid (NeuAc).
  • N-acetyl neuraminic acid NeAc
  • other sialic acids can also be transferred from CMP-SA to galactose, for example, N-glycolyl neuraminic acid, 9-0-acetyl neuraminic acid, and 4-0-acetyl-N-acetyl neuraminic acid.
  • Many other sialic acids such as those described in Sialic Acids: Chemistry, Metabolism and Function, edited by R.
  • the sialic acid is attached to Gal ⁇ 1-->4GlcNAc-->Asn(protein) in an ⁇ 2-->6 linkage.
  • the CMP-SA: Gal ⁇ 1—>4GlcNAc-R ⁇ 2-->6 sialyltransferase used in this step can be obtained from a variety of sources, the more usual ones being bovine colostrum and rat liver.
  • the rat liver enzyme has recently become commerciany available from Genzyme Corp., Boston MA.
  • the reaction conditions for using the bovine colostrum and rat liver ⁇ 2-->6 sialyltransferases to transfer sialic acid from CMP-SA to Gal ⁇ 1-->4GlcNAc-->Asn(protein) are similar to those described by Paulson et al. in J. Biol. Chem. 252, 2356-62 (1977) for natural substrates, except that it may be desirable to add additional enzyme to accelerate the rate of the reaction.
  • the preferred pH is 6.5-7.0. Although most buffers, with the exception of phosphate, can be employed, preferred buffers are Tris-maleate or cacodylate.
  • the enzyme is functional in the presence of mild detergents such as NP-40 and Triton X-100; peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin and pepstatin; and exoglycosidase inhibitors such as galactono-1,4-lactone.
  • mild detergents such as NP-40 and Triton X-100
  • peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin and pepstatin
  • exoglycosidase inhibitors such as galactono-1,4-lactone.
  • the sialic acid is attached to the Gal ⁇ l— >4(3)GlcNAc— >Asn(protein) by an ⁇ 2-->3 linkage.
  • Two sialyl transferases producing this linkage have been described.
  • CMP-SA Gal ⁇ 1-->4GlcNAc ⁇ 2-->3 sialyltransferase
  • This enzyme although not yet purified, can be purified using conventional methods.
  • the second enzyme, CMP-SA:Gal ⁇ 1-->3(4)GlcNAc ⁇ 2-->3 sialyltransferase has been purified from rat liver by Weinstein et al. as described in J. Biol . Chem. 257, 13835- ⁇ 4 (1982).
  • the rat liver enzyme has a somewhat relaxed specificity and is able to transfer sialic acid from CMP-sialic acid to the C-3 position of galactose in both Gal ⁇ 1-->4GlcNAc and Gal ⁇ 1-->3GlcNAc sequences.
  • Conditions for the use of the ⁇ 2—>3 sialyltransferases are described in the two publications just cited.
  • the method used to generate SA-->Gal-->GlcNAc-->GlcNAc-->Asn (protein) is similar to the method described above for generating modified glycoproteins containing the trisaccharide sequence SA-->Gal-->GlcNAc-->Asn(protein).
  • both core GlcNAc residues of the original N-linked oligosaccharide are left attached to the protein and a tetrasaccharide sequence, SA-->Gal-->GlcNAc-—- >GlcNAc--> is constructed enzymatically.
  • the intact N-linked oligosaccharide cnain is treated with exoglycosidases selected to remove all carbohydrate exterior to the two innermost GlcNAc residues.
  • exoglycosidases selected to remove all carbohydrate exterior to the two innermost GlcNAc residues.
  • ⁇ - and ⁇ -mannosidase are used.
  • additional exoglycosidases are required, the specific enzymes used depending on the structures of the carbohydrate chains being modified.
  • the principal method for attaching oligosaccharides such as SA-->Gal-->GlcNAc--> to non-glycosylated amino acid residues is to react an activated glycoside derivative of what is to be the innermost sugar residue, in this case GlcNAc, with the protein and then to use glycosyltransferases to extend the ol igosaccharide chain.
  • an activated glycoside derivative of what is to be the innermost sugar residue, in this case GlcNAc an activated glycoside derivative of what is to be the innermost sugar residue, in this case GlcNAc
  • Chemical and/or enzymatic coupling of glycosides to proteins can be accomplished using a variety of activated groups, for example, as described by Aplin and Wriston in CRC Crit. Rev. Biochem., pp. 259-306 (1981).
  • the sugar(s) can be attach arginine, histidine, or the ami no-terminal amino acid of the polypeptide; (b) free carboxyl groups, such as those of glutamic acid or aspartic acid or the carboxyterminal amino acid of the polypeptide; (c) free sulfhydryl groups, such as those of cysteine; (d) free hydroxyl groups, such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (f) the amide group of glutamine.
  • the aglycone, R is the chemical moiety that combines with the sugar to form a glycosi de and which is reacted with the amino acid to bind the sugar to the protein.
  • GlcNAc residues can be attached to the ⁇ -amino groups of lysine residues of a nonglycosyl ated protein by treating the protein with 2-imino-2-methyoxyethyl-1-thio- ⁇ -N-acetylglucosaminide as described by Stowell and Lee in Meth. Enzymol . 83, 278-288 (1982).
  • Other coupling procedures can be used as well, such as treatment of the protein with a glycoside or thioglycoside derivative of GlcNAc in which the aglycone contains an activated carboxylic acid, for example R 1 or R 2 .
  • GlcNAc residues can be attached to the carboxyl groups of aspartic acid and glutamic acid residues of a nonglycosylated protein by treatment of the protein with a glycoside or thioglycoside derivative of GlcNAc in which the aglycone contains a free amino group, for example R 3 or R 4 , in the presence of a coupling reagent such as a carbodiimide.
  • a coupling reagent such as a carbodiimide.
  • GlcNAc derivatives containing the aglycones R 3 or R 4 can also be used to derivatize the amide groups of glutamine through the action of transglutaminase as described by Yan and Wold in Biochemistry 23, 3759-3765 (1984).
  • Attachment of GlcNAc residues to the thiol groups of the cysteine residues of a nonglycosylated protein can be accomplished by treating the protein with a GlcNAc glycoside or thioglycoside in which the aglycone contains an electrophilic site such as an acrylate unit, for example the aglycones R 5 or R 6 .
  • glycosylation of aromatic amino acid residues of a protein with a monosaccharide such as GlcNAc can be accomplished by treatment with a glycoside or thioglycoside in which the aglycone contains a diazo group, for example aglycones R 7 or R 8 .
  • a large number of other coupling methods and aglycone structures can be employed to derivatize a protein with a GlcNAc derivative.
  • the trisaccharide sequence SA ⁇ 2-->3(6)Gal ⁇ 1-->4(3)GlcNAc--> is constructed by sequential enzymatic attachment of galactose and sialic acid residues, as described for Asn-linked GlcNAc residues.
  • the protein is derivatized with: Gal ⁇ 1-->4(3)GlcNAc-X, Gal ⁇ 1-->4(3)GlcNAc ⁇ 1-->4GlcNAc-X, SA ⁇ 2-->3(6)Gal ⁇ 1-->4(3)GlcNAc-X, or SA ⁇ 2-->3(6)Gal ⁇ 1-->4(3)GlcNAc ⁇ 1-->4GlcNAc-X, where X is an aglycone containing a free amino group , an activated ester of a carboxy lic aci d, a diazo group , or other groups described above.
  • the same procedures may be used to chemically attach galactose, rather than GlcNAc, directly to an amino acid.
  • the galactose may then be enzymatically extended or capped with sialic acid, as previously described.
  • Procedures similar to those used to extend GlcNAc-protein or GlcNAc-->GlcNAc-protein to a protein-linked oligosaccharide resembling the outer branch of a complex oligosaccharide can be employed to construct other carbohydrate structures found on GlcNAc residues attached to the terminal mannose units of the core pentasaccharide.
  • Example 1 Generation of proteins containing repeating units of (GlcNAc ⁇ 1-->3Gal ⁇ 1-->4). After preparation of either GlcNAc-protein or GlcNAc ⁇ 1-->4GlcNAc-protein using the methods described above, a long carbohydrate chain may be generated by several rounds of alternating UDP-Gal :G!cNAc-R ⁇ 1-->4 galactosyltransferase and UDP-GlcNAc: Gal ⁇ 1-->4GlcNAc-R ⁇ 1-->3 N-acetylglucosaminyltransferase incubations.
  • the number of repeating GlcNAc-->Gal units in the structure can be varied depending on the desired length; 1-10 such units should suffice for most applications.
  • the essential element is that, after attachment of the disaccharide units, an exposed galactose residue is present so that the carbohydrate chain can be capped with ⁇ 2-->3- or ⁇ 2-->6-linked sialic acid, as described above.
  • the final structure would be
  • a fucose can be attached to any of the acceptor GlcNAc residues by treatment with GDP- FUC and a GDP-Fuc: GlcNAc ⁇ 1—>3(4) fucosyl transferase.
  • the purification of this fucosyl transferase, its substrate specificity and preferred reaction conditions have been reported by Prieels et al in J. Biol. Chem. 256, 104456-63 (1981).
  • sugar-specific cell surface receptors are able to recognize and internalize glycoproteins bearing appropriate carbohydrate structures.
  • the best characterized sugar-specific cell surface receptors are the Gal receptor of hepatocytes, the Man/GlcNAc receptor of reticulo-endothelial cells and the fucose receptor found on hepatocytes, lymphocytes and teratocarcinoma cells.
  • the subject of sugar-specific cell surface receptors has been reviewed by Neufeld and Ashwell in The Biochemistry of Glycoproteins and Proteoglycans, edited by Lennarz, Plenum Press, New York (1980), pp. 241-266.
  • Proteins can be targeted to cells with sugar-specific cell surface receptors by generating glycoproteins that contain the appropriate sugar at nonreducing terminal positions.
  • Several procedures are used to expose the desired terminal sugars.
  • One procedure in general, involves the treatment of a native glycoprotein with exoglycosidases, as described by Ashwell and Morel! in Adv. Enzymol . 41, 99-128 (1974).
  • Another procedure is the attachment of monosaccharides to the protein, as described by Stahl et al . in Proc. Natl. Acad. Sci. USA 75, 1399-1403 (1978).
  • a third approach is the attachment of derivatives of ol igosacchari des i so lated from natura l sources such as ovalbumin , as reported by Yan and Wold in Biochemistry 23, 3759-3765 (1984).
  • the glycosylated proteins that are the subject of the present invention can be targeted to specific cells, depending on the specific sugars attached.
  • Gal--> ( Fuc --> ) Gl cNAc-->[Gal --> ( Fuc--> ) m Gl cNAc] n -->Gl cNAc-protei n where n is 1-10 and m is 0 or 1, are targeted to hepatocytes, lymphocytes and teratocarcinoma cells.
  • One application of targeting is for enzyme replacement therapy.
  • glucocerebrosidase can be targeted to macrophages for the treatment of Gaucher's disease.
  • a second application is to target drugs or toxins to teratocarcinoma cells.
  • the following non-limiting example demonstrates the method of the present invention on a yeast glycoprotein possessing multiple high-mannose and mannan oligosaccharides.
  • Step 1 Endo H treatment of yeast external invertase.
  • Yeast external invertase is a glycoprotein containing approximately two high mannose and seven mannan oligosaccharides.
  • the purified invertase was denatured by placing a 1% SDS solution of the glycoprotein in a boiling water bath for 5 minutes.
  • the denatured invertase (250 ⁇ g) was then incubated with Endo H (C.3 ⁇ g, from Miles Scientific, Naperville ID for 20 hours at 37°C in 175 ul of 0.1 M sodium citrate buffer, pH 5.5. After Endo H treatment, the reaction mixture was desalted on a Bio-Gel P-4 column (1 x 10 cm) equilibrated and eluted with 50 mM ammonium acetate, pH 6.5. The method of desalting is not critical. Dialysis or protein precipitation can also be used. The material eluting in the void volume of the column was pooled and lyophilized.
  • Step 2 Galactosylation of the Endo H-treated samples of native and denatured yeast external invertase.
  • Nonradiolabeled galactosylated samples of native and denatured yeast external invertase were prepared as substrates for the sialylation reaction.
  • Endo H-treated denatured invertase and Endo H plus ⁇ -mannosidase- treated native invertase were galactosylated with nonradioactive UDP-Gal using the procedures described above.
  • Step 3 Sialylation of the galactosylated samples of native and denatured yeast external invertase.
  • the reaction mixtures were analyzed by SDS-PAGE and autoradiography, as shown in Fig. 6.
  • the radioactivity associated with the invertase band demonstrates that sialic acid has been attached to the galactose residues of the invertase by the ⁇ 2-->6 sialyltransferase.
  • the following non-limiting example demonstrates the method of the present invention using chemical and enzymatic techniques on a protein that is not glycosylated in its native form.
  • Step 1 Chemical attachment of a thioglycoside derivative of GlcNAc to bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • BSA was derivatized by treatment with 2-imino-2-methoxyethyl-1-thio-N-acetylglucosaminide by Dr. R. Schnaar at Johns Hopkins University according to the procedure described by Lee et al. in Biochemistry 15, 3956-63 (1976).
  • the glycosylated BSA contained, on the average, 48 lysine-linked GlcNAc residues per molecule.
  • GlcNAc 48 -BSA (0.9 mg) was incubated at 37°C for 17 hours in 600 ⁇ l of 0.12 M MFS, pH 6.3, containing 0.6% Triton X-100, 20 mM MnCl 2 , 5 mM
  • a second incubation of tne gal actosylated BSA under identical conditions increased the extent of reaction from 46 to 51%.
  • the galactosylated BSA was Durified with an anti-BSA antibody column obtained from Cooper Biomedical, Malvern PA.
  • the galactosylated BSA (240 ⁇ g) was incubated for 16 hours at 37°C in 120 ⁇ l of 0.1 M Tris-maleate, pH 6.7, containing 3 mM CMP-[ 14 C]NeuAc (specific activity 0.55 Ci/mol) and bovine colostrum CMP-SA: Gal ⁇ 1-->4GlcNAc-R ⁇ 2-->6 sialyltransferase (2.1 mU).
  • the glycosylated BSA was partially purified from other reaction components by gel filtration. After measurement of the ratio of 14 C to 3 H radioactivity incorporated into the samples, it was calculated that 42% of the Gal-->GlcNAc-->protein residues were sialylated.
  • the following nonlimiting example demonstrates the differential uptake of GlcNAc-BSA and Gal ⁇ 1-->4GlcNAc-BSA by GlcNAc/Man-specific receptors of macrophages.
  • Mouse peritoneal macrophages which possess cell surface receptors that recognize terminal GlcNAc and Man residues, were obtained from mice 4-5 days after intraperitoneal injection of thioglycollate broth (1.5 ml per mouse).
  • the peritoneal cells were washed with Dulbecco's modified minimal essential medium (DME) containing 10% fetal calf serum (FCS) and plated in 96-well tissue culture trays at a density of 2 x 10 5 cells per well. After 4 hours the wells were washed twice with phosphate-buffered saline (PBS) to remove nonadherent cells.
  • DME Dulbecco's modified minimal essential medium
  • FCS fetal calf serum
  • the adherent cells remaining in the wells were used for uptake experiments with GlcNAc-[ 125 I]BSA and Gal ⁇ 1-->4GlcNAc-[ 125 I]BSA which had been radiolabeled with 125 I by the chloramine T method.
  • the radiolabeled protein preparations were added at a concentration of 0.1-1.2 ⁇ g/ml to 100 ⁇ l of DME containing 10% FCS and 10 mM HEPES [4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid], pH 7.4.
  • Parallel experiments were run in the presence of yeast mannan (1 mg/ml ) to measure nonspecific uptake of the glycosylated BSA samples.
  • the cells were incubated with the samples for 30 min at 37°C and then washed five times with PBS to remove residual protein not taken up by the cells.
  • the washed cells were dissolved in 200 ⁇ l of 1% SDS and the radioactivity determined.
  • Nonspecific uptake (CPM in the presence of yeast mannan) was subtracted from the total uptake (CPM in the absence of yeast mannan) to determine Man/GlcNAc receptor-specific uptake by the mouse peritoneal macrophages.
  • GlcNAc-BSA Dut not GalB1-->4GlcNAc-BSA, is recognized and endocytosed by mouse peritoneal macrophages.
  • the following non-limiting example demonstrates the differential uptake of Gal ⁇ 1-->4GlcNAc-BSA and SA ⁇ 2-->6Gal ⁇ 1-->4GlcNAc-BSA by galactose-specific receptors of hepatoma cell line HepG2.
  • Samples of GlcNAc-BSA and Gal-->GlcNAc-BSA were radiolabeled with 125 I by the chloramine T method.
  • HepG2 cells were cultured in DME containing 10% fetal calf serum. Uptake experiments were performed on cells plated in 35 mm tissue culture dishes at approximately 70% confluency. The cells were washed with protein-free medium and incubated with 1 ml of DME containing 20 mM HEPES, pH 7.3, containing cytochrome c (0.2 mg/ml ) and 0.5-7.5 ⁇ g of Gal ⁇ 1-->4GlcNAc-[ 125 I]BSA or SA ⁇ 2-->6Gal ⁇ 1-->4GlcNAc-[ 125 I]BSA.
  • Non-specific uptake (CPM in tne presence of asialo-orosomucoid) was subtracted from the total uptake (CPM in the absence of asialoorosomucoid) to determine the galactose receptor-specific uptake by the HepG2 cells.
  • the galactose receptor-specific uptake is shown as a function of glycosylated BSA concentration in Fig. 9.
  • the results demonstrate that Gal ⁇ 1-->4GlcNAc-BSA, but not SA ⁇ 2— >6Gal ⁇ 1-->4GlcNAc-BSA, is recognized and endocytosed by HepG2 cells.
  • the following non-limiting example demonstrates the method of the present invention on a mammalian glycoprotein having one oligosaccharide chain of the high-mannose type.
  • Step 1 Deglycosylation of ribonuclease B, a glycoprotein having a single high-mannose oligosaccharide.
  • Native ribonuclease B (490 ⁇ g), obtained from Sigma Chem. Corp., St. Louis MO, and further purified by concanavalin A affinity chromatography as described by Baynes and Wold in J. Biol. Chem. 251, 6016-24 (1976) was incubated with Endo H (50 mU, obtained from Genzyme Corp., Boston MA) in 100 ⁇ l of 50 mM sodium acetate, pH 5.5, for 24 hours at 37°C. SDS-PAGE indicated complete conversion of the giycoprotein to a form containing a single GlcNAc residue.
  • the modified ribonuclease B was desalted on a Bio-Gel P6DG column and the ribonuclease fractions were freeze-dried.
  • Endo H-treated ribonuclease B 400 ⁇ g was incubated for 3 hours at 37° in 250 ⁇ l of 0.1 M MES, pH 6.3, containing 0.1% Triton X-100, 0.01 M MnCl 2 , 100 mU bovine milk UDP-Gal :GlcNAc-R ⁇ 1-->4 galactosyltransferase and 300 nmol UDP-[ 3 H]Ga! (specific activity 17.3 Ci/mmol).
  • the ga! actosyl ated ribonuclease was analyzed by FPLC on a Mono S column.
  • Step 3 Sialylation of gal actosylated ribonuclease.
  • a 40 ⁇ l aliquot of the reaction mixture from Step 2 was mixed with 10 ⁇ l of 6.5 mM CMP-NeuAc and 10 ul of rat liver CMP-NeuAc :Gal-R ⁇ 2-->6 sialyltransferase (1.6 mU, obtained from Genzyme Corp., Boston MA) and incubated at 37°C for 18 hours.
  • the sialylated ribonuclease was analyzed by FPLC on a Mono S column using the conditions described in Step 2.
  • the sialylated ribonuclease eluted at a NaCl concentration of 0.18 M, as judged by the profiles of both A280 and radioactivity.
  • the profile of radioactivity is shown in Fig 10, ( ⁇ — ⁇ ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
EP19860902150 1986-03-07 1986-03-07 Procede pour ameliorer la stabilite des glycoproteines. Ceased EP0272253A4 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1986/000495 WO1987005330A1 (fr) 1986-03-07 1986-03-07 Procede pour ameliorer la stabilite des glycoproteines

Publications (2)

Publication Number Publication Date
EP0272253A1 EP0272253A1 (fr) 1988-06-29
EP0272253A4 true EP0272253A4 (fr) 1990-02-05

Family

ID=22195409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860902150 Ceased EP0272253A4 (fr) 1986-03-07 1986-03-07 Procede pour ameliorer la stabilite des glycoproteines.

Country Status (5)

Country Link
EP (1) EP0272253A4 (fr)
JP (1) JPS63502716A (fr)
AU (2) AU597574B2 (fr)
DK (1) DK583087A (fr)
WO (1) WO1987005330A1 (fr)

Families Citing this family (558)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL80973A (en) * 1985-12-20 1992-08-18 Sanofi Sa Modified ribosome-inactivating glycoproteins,their preparation,immunotoxins containing them and pharmaceutical compositions containing such immunotoxins
JPH03503484A (ja) * 1988-02-10 1991-08-08 ジェンザイム コーポレーション 糖タンパク質の治療機能の強化
DE3927801A1 (de) * 1989-08-23 1991-02-28 Hoechst Ag Verfahren zur enzymatischen synthese galactosylierter glycoprotein-bausteine
ES2129458T3 (es) 1991-10-15 1999-06-16 Scripps Research Inst Produccion de carbohidratos fucosilados por sintesis con fucosilacion enzimatica de nucleotidos de azucares y regeneracion in situ de gdp-fucosa.
US6319695B1 (en) * 1991-10-15 2001-11-20 The Scripps Research Insitute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
US5877016A (en) 1994-03-18 1999-03-02 Genentech, Inc. Human trk receptors and neurotrophic factor inhibitors
US5708142A (en) 1994-05-27 1998-01-13 Genentech, Inc. Tumor necrosis factor receptor-associated factors
DE4423131A1 (de) * 1994-07-01 1996-01-04 Bayer Ag Neue hIL-4-Mutantenproteine als Antagonisten oder partielle Agonisten des humanen Interleukin 4
SK284191B6 (sk) 1995-02-24 2004-10-05 Genentech, Inc. Aktín-rezistentný variant humánnej DNázy I
US6020473A (en) 1995-08-25 2000-02-01 Genentech, Inc. Nucleic acids encoding variants of vascular endothelial cell growth factor
US7005505B1 (en) 1995-08-25 2006-02-28 Genentech, Inc. Variants of vascular endothelial cell growth factor
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6998116B1 (en) 1996-01-09 2006-02-14 Genentech, Inc. Apo-2 ligand
WO1997037020A1 (fr) 1996-04-01 1997-10-09 Genentech, Inc. Polypeptides de l'apoptose apo-2l1 et apo-3
US5851984A (en) * 1996-08-16 1998-12-22 Genentech, Inc. Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides
US6159462A (en) * 1996-08-16 2000-12-12 Genentech, Inc. Uses of Wnt polypeptides
US6462176B1 (en) 1996-09-23 2002-10-08 Genentech, Inc. Apo-3 polypeptide
US5990281A (en) * 1996-09-30 1999-11-23 Genentech, Inc. Vertebrate smoothened proteins
US6136958A (en) * 1996-09-30 2000-10-24 Genentech, Inc. Antibodies to vertebrate smoothened proteins
DE69737457T2 (de) 1997-01-31 2007-11-29 Genentech, Inc., South San Francisco O-fukosyltransferase
US6342369B1 (en) 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
US6291643B1 (en) 1997-06-05 2001-09-18 Board Of Reports, The University Of Texas System Apaf-1 an activator of caspase-3
EP1032661A1 (fr) 1997-06-18 2000-09-06 Genentech, Inc. Apo-2DcR
CA2382376A1 (fr) 1997-09-17 1999-03-25 Genentech, Inc. Nouveaux polypeptides et acides nucleiques codant le polypeptide pro 287, utiles pour traiter les troubles du pancreas
JP4303883B2 (ja) 1997-09-18 2009-07-29 ジェネンテック・インコーポレーテッド DcR3ポリペプチドというTNFR相同体
WO1999019490A1 (fr) 1997-10-10 1999-04-22 Genentech, Inc. Reactifs de fusion d'anticorps monoclonal a chaine unique regulant une transcription in vivo
EP1029046B1 (fr) 1997-10-29 2008-09-24 Genentech, Inc. Genes inductibles par wnt-1
EP2014770A3 (fr) 1997-10-29 2009-02-18 Genentech, Inc. Polypeptide secrété à induction par WNT-1 WISP-2
DK1481989T3 (da) 1997-11-21 2008-08-25 Genentech Inc A-33-beslægtede antigener og deres farmakologiske anvendelser
US7192589B2 (en) 1998-09-16 2007-03-20 Genentech, Inc. Treatment of inflammatory disorders with STIgMA immunoadhesins
AU2325199A (en) 1998-01-15 1999-08-02 Genentech Inc. Apo-2 ligand
US6727079B1 (en) 1998-02-25 2004-04-27 The United States Of America As Represented By The Department Of Health And Human Services cDNA encoding a gene BOG (B5T Over-expressed Gene) and its protein product
EP2050762A3 (fr) 1998-03-10 2009-07-08 Genentech, Inc. Nouvelles polypeptides et acides nucléiques les codant
DK1064382T3 (da) 1998-03-17 2008-12-08 Genentech Inc Homologe polypeptider til VEGF og BMP1
AU740405B2 (en) 1998-05-15 2001-11-01 Genentech Inc. IL-17 homologous polypeptides and therapeutic uses thereof
EP3112468A1 (fr) 1998-05-15 2017-01-04 Genentech, Inc. Polypeptides allogéniques il-17 et utilisations thérapeutiques
EP1865061A3 (fr) 1998-05-15 2007-12-19 Genentech, Inc. Polypeptides allogéniques IL-17 et utilisations thérapeutiques
US20020172678A1 (en) 2000-06-23 2002-11-21 Napoleone Ferrara EG-VEGF nucleic acids and polypeptides and methods of use
CA2450402A1 (fr) 1998-12-22 2000-06-29 Genentech, Inc. Methodes et compositions permettant d'inhiber la croissance de cellules cancereuses avec la pro224
AU778759B2 (en) 1998-12-23 2004-12-16 Genentech Inc. IL-1 related polypeptides
EP1953173B1 (fr) 1999-06-15 2009-11-18 Genentech, Inc. Polypeptides sécrétés et transmembranaires, et acides nucléiques les codant
CA2491433A1 (fr) 1999-12-01 2001-06-07 Genentech, Inc. Polypeptides secretes et transmembranaires et acides nucleiques codant ces polypeptides
EP1897945B1 (fr) 1999-12-23 2012-01-18 Genentech, Inc. Polypeptides allogéniques IL-17 et utilisations thérapeutiques
HUP0203751A3 (en) 2000-01-10 2005-01-28 Maxygen Holdings Ltd Redwood C G-csf conjugates
NZ520095A (en) 2000-01-13 2004-05-28 Genentech Inc Novel Stra6 polypeptides, nucleic acids, antibodies, compositions and methods of treatments for inhibiting tumor cell growth
ES2325877T3 (es) 2000-02-11 2009-09-23 Bayer Healthcare Llc Moleculas de tipo factor vii o viia.
US7101974B2 (en) 2000-03-02 2006-09-05 Xencor TNF-αvariants
EP2792747A1 (fr) 2000-06-23 2014-10-22 Genentech, Inc. Compositions et procédés pour le traitement et le diagnostic des troubles impliquant une angiogenèse
CA2648046A1 (fr) 2000-06-23 2002-01-03 Genentech, Inc. Compositions et procedes de diagnostic et de traitement de troubles dont l'angiogenese
DE60136281D1 (de) 2000-08-24 2008-12-04 Genentech Inc Methode zur inhibierung von il-22 induziertem pap1
EP1944317A3 (fr) 2000-09-01 2008-09-17 Genentech, Inc. Polypeptides sécrétés et transmembranaires, et acides nucléiques les codant
US6576452B1 (en) 2000-10-04 2003-06-10 Genencor International, Inc. 2,5-diketo-L-gluconic acid reductases and methods of use
US6673580B2 (en) 2000-10-27 2004-01-06 Genentech, Inc. Identification and modification of immunodominant epitopes in polypeptides
US7892730B2 (en) 2000-12-22 2011-02-22 Sagres Discovery, Inc. Compositions and methods for cancer
US7820447B2 (en) 2000-12-22 2010-10-26 Sagres Discovery Inc. Compositions and methods for cancer
US7645441B2 (en) 2000-12-22 2010-01-12 Sagres Discovery Inc. Compositions and methods in cancer associated with altered expression of PRLR
US20030232334A1 (en) 2000-12-22 2003-12-18 Morris David W. Novel compositions and methods for cancer
US7700274B2 (en) 2000-12-22 2010-04-20 Sagres Discovery, Inc. Compositions and methods in cancer associated with altered expression of KCNJ9
EP1366075B1 (fr) 2001-02-27 2009-05-27 Maxygen Aps Nouvelles molecules de type interferon beta
US20070160576A1 (en) 2001-06-05 2007-07-12 Genentech, Inc. IL-17A/F heterologous polypeptides and therapeutic uses thereof
EP1992643A3 (fr) 2001-06-20 2008-12-10 Genentech, Inc. Compositions et procédés pour le traitement et le diagnostic d'une tumeur
KR101008734B1 (ko) 2001-08-29 2011-01-14 제넨테크, 인크. 유사분열촉진 활성을 가진 Bv8 핵산 및 폴리펩티드
ATE486092T1 (de) 2001-09-18 2010-11-15 Genentech Inc Zusammensetzungen und verfahren für die diagnose von tumoren
US7320789B2 (en) 2001-09-26 2008-01-22 Wyeth Antibody inhibitors of GDF-8 and uses thereof
US7439043B2 (en) 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
EP2298354B1 (fr) 2001-10-10 2014-03-19 ratiopharm GmbH Remodelage et glycoconjugation de Intérferon-beta
US7795210B2 (en) * 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
US7173003B2 (en) 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7265084B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US7179617B2 (en) 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
US7226903B2 (en) 2001-10-10 2007-06-05 Neose Technologies, Inc. Interferon beta: remodeling and glycoconjugation of interferon beta
US7125843B2 (en) 2001-10-19 2006-10-24 Neose Technologies, Inc. Glycoconjugates including more than one peptide
CN102180944A (zh) 2001-10-10 2011-09-14 诺和诺德公司 肽的重构和糖缀合
US7157277B2 (en) 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US7297511B2 (en) 2001-10-10 2007-11-20 Neose Technologies, Inc. Interferon alpha: remodeling and glycoconjugation of interferon alpha
US7399613B2 (en) 2001-10-10 2008-07-15 Neose Technologies, Inc. Sialic acid nucleotide sugars
US7696163B2 (en) 2001-10-10 2010-04-13 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
EP1461445B1 (fr) 2001-11-28 2008-08-20 Neose Technologies, Inc. Remodelage glycoproteinique au moyen d'endoglycanases
US7473680B2 (en) 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
MXPA04006554A (es) 2002-01-02 2005-03-31 Genentech Inc Composiciones y metodos para diagnostico y tratamiento de tumor.
MXPA04008149A (es) 2002-02-21 2005-06-17 Wyeth Corp Proteinas que contienen dominios de folistatina.
US20040258678A1 (en) 2002-02-22 2004-12-23 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
JP2005518212A (ja) 2002-02-25 2005-06-23 ジェネンテック・インコーポレーテッド 新規な1型サイトカインレセプターglm−r
EP1501855A4 (fr) 2002-03-21 2006-02-22 Sagres Discovery Inc Nouvelles compositions et nouveaux procedes pour le cancer
MXPA04010092A (es) 2002-04-16 2004-12-13 Genentech Inc Composiciones y metodos para el diagnostico y tratamiento de tumores.
EP2305710A3 (fr) 2002-06-03 2013-05-29 Genentech, Inc. Bibliothèques de phages et anticorps synthétiques
CA2486252C (fr) 2002-06-07 2012-07-24 Genentech, Inc. Procedes de criblage d'agents modulant le developpement du carcinome hepatocellulaire
WO2004004649A2 (fr) 2002-07-08 2004-01-15 Genentech, Inc. Compositions et procedes destines au traitement de maladies liees au systeme immunitaire
AU2003257962A1 (en) 2002-08-02 2004-02-23 Wyeth Mk2 interacting proteins
AU2003258157A1 (en) 2002-08-12 2004-02-25 Genencor International, Inc. Mutant e. coli appa phytase enzymes
EP1539228B1 (fr) 2002-09-11 2010-12-29 Genentech, Inc. Nouvelles composition et methodes servant au traitement de maladies associees au systeme immunitaire
US20060199181A1 (en) 2002-09-11 2006-09-07 Genentch, Inc. Compositions and methods for the treatment of immune related diseases
US20070010434A1 (en) 2002-09-16 2007-01-11 Genetech, Inc. Novel compositions and methods for the treatment of immune related diseases
WO2004028479A2 (fr) 2002-09-25 2004-04-08 Genentech, Inc. Nouvelles compositions et methodes de traitement du psoriasis
EP2322201A3 (fr) 2002-10-29 2011-07-27 Genentech, Inc. Les compositions et les methodes pour le traitement de maladies liées immunisées
EP2364716A3 (fr) 2002-11-08 2012-01-11 Genentech, Inc. Compositions et procédés pour le traitement des maladies liées aux cellules tueuses naturelles
AU2003302386B2 (en) 2002-11-26 2010-04-01 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
TWI330641B (en) 2002-12-24 2010-09-21 Yasuhiro Kajihara Sugar chain asparagine derivatives
US7553930B2 (en) 2003-01-06 2009-06-30 Xencor, Inc. BAFF variants and methods thereof
CA2516138A1 (fr) 2003-02-14 2004-09-02 Sagres Discovery, Inc. Nouveaux cibles therapeutiques du recepteur de couplage a la proteine g dans le cancer
US20040170982A1 (en) 2003-02-14 2004-09-02 Morris David W. Novel therapeutic targets in cancer
US7767387B2 (en) 2003-06-13 2010-08-03 Sagres Discovery, Inc. Therapeutic targets in cancer
FR2851471B1 (fr) * 2003-02-24 2006-07-28 Synt Em Composes comprenant au moins une substance active et au moins un vecteur relies par un agent de liaison, leurs utilisations et lesdits agents de liaison
CA2515288A1 (fr) 2003-03-12 2004-09-23 Genentech, Inc. Compositions ayant un effet sur l'hematopoiese et le systeme immunitaire
BRPI0408315A (pt) 2003-03-14 2006-03-07 Wyeth Corp anticorpo isolado, composição farmacêutica, ácido nucleico isolado, vetor de expressão, célula hospedeira, métodos de produzir um anticorpo, de gerar um anticorpo ou fragmento de ligação de antìgeno, de regular uma resposta imune, de tratar ou prevenir um distúrbio associado com célula imune em um paciente, de tratar ou prevenir um distúrbio hiperproliferativo em um paciente, e, kit de diagnóstico
CN102212019B (zh) 2003-03-14 2015-05-27 蔚所番有限公司 支化水溶性聚合物及其缀合物
JP4473257B2 (ja) 2003-04-02 2010-06-02 エフ.ホフマン−ラ ロシュ アーゲー インスリン様成長因子i受容体に対する抗体及びその使用
US7691603B2 (en) 2003-04-09 2010-04-06 Novo Nordisk A/S Intracellular formation of peptide conjugates
WO2006127896A2 (fr) 2005-05-25 2006-11-30 Neose Technologies, Inc. Facteur ix glycopegyle
US8791070B2 (en) 2003-04-09 2014-07-29 Novo Nordisk A/S Glycopegylated factor IX
EP2338333B1 (fr) 2003-04-09 2017-09-06 ratiopharm GmbH Méthode de glycopegylation et proteines/peptides produits au moyen de ces méthodes
US7709610B2 (en) 2003-05-08 2010-05-04 Facet Biotech Corporation Therapeutic use of anti-CS1 antibodies
US20050025763A1 (en) 2003-05-08 2005-02-03 Protein Design Laboratories, Inc. Therapeutic use of anti-CS1 antibodies
ES2380093T3 (es) 2003-05-09 2012-05-08 Biogenerix Ag Composiciones y métodos para la preparación de mutantes de glucosilación de la hormona del crecimiento humana
AU2004251168A1 (en) 2003-05-30 2005-01-06 Genentech, Inc. Treatment with anti-VEGF antibodies
EP3594228A1 (fr) 2003-07-08 2020-01-15 Genentech, Inc. Polypeptides hétérologues il-14a/f et utilisations thérapeutiques associées
AR046071A1 (es) 2003-07-10 2005-11-23 Hoffmann La Roche Anticuerpos contra el receptor i del factor de crecimiento de tipo insulinico y los usos de los mismos
US9005625B2 (en) 2003-07-25 2015-04-14 Novo Nordisk A/S Antibody toxin conjugates
WO2005019258A2 (fr) 2003-08-11 2005-03-03 Genentech, Inc. Compositions et methodes de traitement de maladies relatives au systeme immunitaire
US8883147B2 (en) 2004-10-21 2014-11-11 Xencor, Inc. Immunoglobulins insertions, deletions, and substitutions
US8399618B2 (en) 2004-10-21 2013-03-19 Xencor, Inc. Immunoglobulin insertions, deletions, and substitutions
EP2327723A3 (fr) 2003-10-10 2012-06-27 Xencor, Inc. Variantes tnf-alpha à base de protéine pour le traitement des troubles associés au tnf-alpha
PT2161283E (pt) 2003-11-17 2014-08-29 Genentech Inc Composições que compreendem anticorpos contra cd79b conjugados a um agente de inibição do crescimento ou agente citotóxico e métodos para o tratamento de tumor de origem hematopoiética
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US20080305992A1 (en) 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
AU2004293103C1 (en) 2003-11-24 2010-12-02 Ratiopharm Gmbh Glycopegylated erythropoietin
US7956032B2 (en) 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
JP5422101B2 (ja) 2004-01-07 2014-02-19 ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド M−csf特異的モノクローナル抗体およびその使用
CA2552892C (fr) 2004-01-08 2014-08-05 Neose Technologies, Inc. Glycosylation de peptides liee a o
ES2403055T3 (es) 2004-04-13 2013-05-13 F. Hoffmann-La Roche Ag Anticuerpos anti-P-selectina
EP1745141B2 (fr) 2004-05-04 2019-09-25 Novo Nordisk Health Care AG Glycoformes de facteur vii o-liees et leur procede de fabrication
EP1771066A2 (fr) 2004-07-13 2007-04-11 Neose Technologies, Inc. Remodelage de peg ramifie et glycosylation de peptide-1 semblable a glucagon glp-1
US20060024677A1 (en) 2004-07-20 2006-02-02 Morris David W Novel therapeutic targets in cancer
ZA200701183B (en) 2004-07-20 2008-05-28 Genentech Inc Inhibitors of angiopoietin-like 4 protein, combinations, an their use
EP3059245B1 (fr) 2004-07-23 2018-11-07 Acceleron Pharma Inc. Anticorps antagonistes du récepteur actrii
US8268967B2 (en) 2004-09-10 2012-09-18 Novo Nordisk A/S Glycopegylated interferon α
PL2586456T3 (pl) 2004-10-29 2016-07-29 Ratiopharm Gmbh Remodeling i glikopegilacja czynnika wzrostu fibroblastów (FGF)
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
CA2587617C (fr) 2004-11-12 2011-02-01 Xencor, Inc. Variants fc presentant une liaison modifiee au fcrn
EP2842571A1 (fr) 2004-11-30 2015-03-04 Celldex Therapeutics, Inc. Anticorps diriges contre la GPNMB et leurs utilisations
WO2006074467A2 (fr) 2005-01-10 2006-07-13 Neose Technologies, Inc. Facteur de stimulation de colonie de granulocytes glycopegylatees
KR101289537B1 (ko) 2005-02-15 2013-07-31 듀크 유니버시티 항-cd19 항체 및 종양학에서 이의 용도
US9820986B2 (en) * 2005-03-04 2017-11-21 Taiwan Hopaz Chems, Mfg. Co., Ltd. Glycopeptide compositions
TW200720289A (en) 2005-04-01 2007-06-01 Hoffmann La Roche Antibodies against CCR5 and uses thereof
AU2006235258A1 (en) 2005-04-07 2006-10-19 Novartis Vaccines And Diagnostics Inc. Cancer-related genes
EP1865981A2 (fr) 2005-04-07 2007-12-19 Chiron Corporation Cacna1e dans le diagnostic, la detection et le traitement du cancer
US20070154992A1 (en) 2005-04-08 2007-07-05 Neose Technologies, Inc. Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
CA2607281C (fr) 2005-05-05 2023-10-03 Duke University Traitements des maladies auto-immunes par anticorps anti-cd19
WO2006127910A2 (fr) 2005-05-25 2006-11-30 Neose Technologies, Inc. Formulations d'erythropoietine glycopegylees
GEP20115324B (en) 2005-05-27 2011-11-10 Biogen Idec Inc Tweak binding antibodies
CA2610709A1 (fr) 2005-06-06 2006-12-14 Genentech, Inc. Nouvelles disruptions geniques, nouvelles compositions et nouveaux procedes s'y rapportant
US8389469B2 (en) 2005-06-06 2013-03-05 The Rockefeller University Bacteriophage lysins for Bacillus anthracis
US7582291B2 (en) 2005-06-30 2009-09-01 The Rockefeller University Bacteriophage lysins for Enterococcus faecalis, Enterococcus faecium and other bacteria
JP2009504183A (ja) 2005-08-15 2009-02-05 ジェネンテック・インコーポレーテッド 遺伝子破壊、それに関連する組成物および方法
US20070105755A1 (en) 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
DE602006018746D1 (de) 2005-08-24 2011-01-20 Univ Rockefeller Ply-gbs-lysinmutanten
WO2007056191A2 (fr) 2005-11-03 2007-05-18 Neose Technologies, Inc. Purification de sucre de nucleotide en utilisant des membranes
EP3023497A1 (fr) 2005-11-18 2016-05-25 Glenmark Pharmaceuticals S.A. Anticorps anti-integrine alpha-2 et leurs utilisations
CA2630432A1 (fr) 2005-11-21 2007-07-19 Genentech, Inc. Nouvelles dissociations de genes, compositions et procedes les concernant
EA026874B1 (ru) 2005-11-23 2017-05-31 Акселерон Фарма Инк. Антагонисты активина-actriia и их применение для стимулирования роста кости
ZA200807714B (en) 2006-02-17 2010-01-27 Genentech Inc Gene disruptions, compositions and methods relating thereto
TW200744634A (en) 2006-02-21 2007-12-16 Wyeth Corp Methods of using antibodies against human IL-22
TWI417301B (zh) 2006-02-21 2013-12-01 Wyeth Corp 對抗人類介白素-22(il-22)之抗體及其用途
EP2540741A1 (fr) 2006-03-06 2013-01-02 Aeres Biomedical Limited Anticorps humanisés anti CD22 et leur utilisation dans le traitement de l'oncologie, la transplantation et les maladies auto-immunes
WO2007111661A2 (fr) 2006-03-20 2007-10-04 Xoma Technology Ltd. anticorps humains specifiques a des matieres et des procedes a base de gastrine
US7846724B2 (en) 2006-04-11 2010-12-07 Hoffmann-La Roche Inc. Method for selecting CHO cell for production of glycosylated antibodies
AU2007297565A1 (en) 2006-04-19 2008-03-27 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
TWI395754B (zh) 2006-04-24 2013-05-11 Amgen Inc 人類化之c-kit抗體
WO2008011633A2 (fr) 2006-07-21 2008-01-24 Neose Technologies, Inc. Glycosylation de peptides par l'intermédiaire de séquences de glycosylation à liaison o
CN101626783A (zh) 2006-08-04 2010-01-13 诺华有限公司 Ephb3-特异性抗体和其应用
CA2661023C (fr) 2006-08-18 2017-08-15 Novartis Ag Anticorps specifiques du prlr et leurs utilisations
JP5502480B2 (ja) 2006-09-18 2014-05-28 コンピュゲン エルティーディー. 生物活性ペプチド及びその使用方法
EP2074147B1 (fr) 2006-09-29 2012-03-21 F. Hoffmann-La Roche AG Anticorps diriges contre le ccr5 et leurs utilisations
US7833527B2 (en) 2006-10-02 2010-11-16 Amgen Inc. Methods of treating psoriasis using IL-17 Receptor A antibodies
EP2054521A4 (fr) 2006-10-03 2012-12-19 Novo Nordisk As Méthodes de purification de conjugués de polypeptides
MX2009003470A (es) 2006-10-04 2009-04-14 Novo Nordisk As Azucares y glicopeptidos pegilados enlazados a glicerol.
EP2078040B1 (fr) 2006-11-02 2017-06-28 Daniel J. Capon Procédé de production de polypeptides hybrides présentant des parties mobiles
KR20170012582A (ko) 2006-11-02 2017-02-02 악셀레론 파마 인코포레이티드 Alk1 수용체 및 리간드 길항제 및 그의 용도
US8377439B2 (en) 2006-12-07 2013-02-19 Novartis Ag Antagonist antibodies against EPHB3
TWI548647B (zh) 2007-02-02 2016-09-11 艾瑟勒朗法瑪公司 衍生自ActRIIB的變體與其用途
KR101672156B1 (ko) 2007-02-09 2016-11-02 악셀레론 파마 인코포레이티드 액티빈-ActRⅡA 길항제 및 암 환자에서 골 생장을 촉진시키기 위한 이의 용도
CA2676790A1 (fr) 2007-02-22 2008-08-28 Genentech, Inc. Methode de detection d'une maladie intestinale inflammatoire
RS52845B (en) 2007-04-03 2013-12-31 Biogenerix Ag TREATMENT PROCEDURES USING GLYCOPEGILATED G-CSF
JP5575636B2 (ja) 2007-05-07 2014-08-20 メディミューン,エルエルシー 抗icos抗体ならびに、腫瘍、移植および自己免疫疾患の治療におけるその使用
CN101778859B (zh) 2007-06-12 2014-03-26 诺和诺德公司 改良的用于生产核苷酸糖的方法
WO2009007848A2 (fr) 2007-07-12 2009-01-15 Compugen Ltd. Peptides bioactifs et leur procédé d'utilisation
CL2008002085A1 (es) 2007-07-16 2008-11-21 Genentech Inc Anticuerpo humanizado anti-cd79b/igbeta/b29; polinucleotido codificacnte, vector, celula huesped; metodo de fabricacion; inmunoconjugado; composicion farmaceutica; uso para tratar cancer; metodo in vitro para determinar presencia de cd79b, oinhibir crecimiento de celulas quqe expresa cd79b; ensayo in vitro para detectar celulas b
TW200918089A (en) 2007-07-16 2009-05-01 Genentech Inc Humanized anti-CD79b antibodies and immunoconjugates and methods of use
CN101361968B (zh) 2007-08-06 2011-08-03 健能隆医药技术(上海)有限公司 白介素-22在治疗脂肪肝中的应用
JP5718640B2 (ja) 2007-08-21 2015-05-13 アムジエン・インコーポレーテツド ヒトc−fms抗原結合性タンパク質
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
RU2015147300A (ru) 2007-08-29 2019-01-11 Санофи-Авентис Гуманизированные антитела к cxcr5, их производные и их применение
LT2769729T (lt) 2007-09-04 2019-05-10 Compugen Ltd. Polipeptidai ir polinukleotidai ir jų panaudojimas kaip vaistų taikinio vaistų ir biologinių preparatų gamybai
US7960343B2 (en) 2007-09-18 2011-06-14 Acceleron Pharma Inc. Activin-ActRIIa antagonists and uses for decreasing or inhibiting FSH secretion
TW200918553A (en) 2007-09-18 2009-05-01 Amgen Inc Human GM-CSF antigen binding proteins
EP2050764A1 (fr) 2007-10-15 2009-04-22 sanofi-aventis Nouveau format d'anticorps bispécifique polyvalent
EP2214691B1 (fr) 2007-10-30 2015-09-30 Indiana University Research and Technology Corporation Composés présentant une activité d'antagoniste de glucagon et d'agoniste du glp-1
WO2009085200A2 (fr) 2007-12-21 2009-07-09 Amgen Inc. Anticorps anti-amyloïde et utilisations de ceux-ci
DK2235059T3 (en) 2007-12-26 2015-03-30 Xencor Inc FC-VERSIONS OF MODIFIED BINDING TO FcRn
EP2238165B1 (fr) 2008-01-07 2017-07-05 Government of the United States of America, as represented by the Secretary, Department of Health and Human Services Anticorps à domaine anti-vih et procédé de fabrication et d'utilisation de ceux-ci
WO2009094551A1 (fr) 2008-01-25 2009-07-30 Amgen Inc. Anticorps anti-ferroportine et procédés d'utilisation
AU2009210636B2 (en) 2008-01-31 2014-08-28 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
ES2848323T3 (es) 2008-01-31 2021-08-06 Inst Nat Sante Rech Med Anticuerpos contra CD39 humano y uso de los mismos para inhibir la actividad de las células T reguladoras
MX2010009154A (es) 2008-02-27 2010-09-09 Novo Nordisk As Moleculas conjugadas del factor viii.
AU2009233708B2 (en) 2008-04-09 2015-06-04 Genentech, Inc. Novel compositions and methods for the treatment of immune related diseases
EP2816059A1 (fr) 2008-05-01 2014-12-24 Amgen, Inc Anticorps anti-hepcidine et procédés d'utilisation
BRPI0911853A8 (pt) 2008-05-02 2018-03-06 Acceleron Pharma Inc composições e métodos para a modulação de angiogênese e composição de pericito
US8093018B2 (en) 2008-05-20 2012-01-10 Otsuka Pharmaceutical Co., Ltd. Antibody identifying an antigen-bound antibody and an antigen-unbound antibody, and method for preparing the same
RU2560254C2 (ru) 2008-06-17 2015-08-20 Индиана Юниверсити Рисерч Энд Текнолоджи Корпорейшн АНАЛОГИ ГЛЮКАГОНА, ОБЛАДАЮЩИЕ ПОВЫШЕННОЙ РАСТВОРИМОСТЬЮ И СТАБИЛЬНОСТЬЮ В БУФЕРАХ С ФИЗИОЛОГИЧЕСКИМИ ЗНАЧЕНИЯМИ Ph
EA019203B9 (ru) 2008-06-17 2014-03-31 Индиана Юниверсити Рисерч Энд Текнолоджи Корпорейшн Коагонисты глюкагонового рецептора/glp-1-рецептора
CN104945500B (zh) 2008-06-17 2019-07-09 印第安纳大学研究及科技有限公司 基于gip的混合激动剂用于治疗代谢紊乱和肥胖症
EP2671891A3 (fr) 2008-06-27 2014-03-05 Amgen Inc. Inhibition d'ang-2 pour traiter la sclérose en plaques
SI3494986T1 (sl) 2008-08-14 2020-10-30 Acceleron Pharma Inc. GDF pasti
MX2011002478A (es) 2008-09-07 2011-04-05 Glyconex Inc Anticuerpo anti-glucoesfingolipido tipo i extendido, derivados del mismo y su uso.
US8481033B2 (en) 2008-10-07 2013-07-09 INSERM (Institute National de la Santé et de la Recherche Médicale) Neutralizing antibodies and fragments thereof directed against platelet factor-4 variant 1 (PF4V1)
EP2346903A1 (fr) 2008-11-06 2011-07-27 Glenmark Pharmaceuticals S.A. Traitement utilisant des anticorps anti-intégrine alpha 2
CA2743469C (fr) 2008-11-12 2019-01-15 Medimmune, Llc Formulation d'anticorps
AU2009325878B2 (en) 2008-12-08 2014-01-16 Compugen Ltd. TMEM154 polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
AR074811A1 (es) 2008-12-19 2011-02-16 Univ Indiana Res & Tech Corp Profarmaco de peptido de la superfamilia de glucagon basados en amida
JP5755566B2 (ja) 2008-12-19 2015-07-29 インディアナ ユニバーシティー リサーチ アンド テクノロジー コーポレーションIndiana University Research And Technology Corporation アミド系インスリンプロドラッグ
JO3382B1 (ar) 2008-12-23 2019-03-13 Amgen Inc أجسام مضادة ترتبط مع مستقبل cgrp بشري
JP5841845B2 (ja) 2009-02-24 2016-01-13 ソーク・インステチュート・フォー・バイオロジカル・スタディーズSalk Institute For Biological Studies TGF−βスーパーファミリーのデザイナーリガンド
EP3002296B1 (fr) 2009-03-17 2020-04-29 Université d'Aix-Marseille Anticorps btla et leurs utilisations
EP2233500A1 (fr) 2009-03-20 2010-09-29 LFB Biotechnologies Variantes Fc optimisées
MX2011009798A (es) 2009-03-20 2011-12-08 Amgen Inc Inmunoglobulinas portadoras y usos de las mismas.
WO2010111617A2 (fr) 2009-03-27 2010-09-30 Van Andel Research Institute Peptides de l'hormone parathyroïdienne et peptides de la protéine apparentée à l'hormone parathyroïdienne ainsi que des procédés d'utilisation
CA2756206A1 (fr) 2009-03-27 2010-09-30 Academia Sinica Procedes et compositions pour l'immunisation contre un virus
EP3702001A1 (fr) 2009-03-30 2020-09-02 Acceleron Pharma Inc. Antagonistes de bmp-alk3 et utilisations pour favoriser la croissance osseuse
JP6132548B2 (ja) 2009-04-01 2017-05-24 ジェネンテック, インコーポレイテッド 抗FcRH5抗体および免疫接合体および使用方法
US8580732B2 (en) 2009-04-07 2013-11-12 Duke University Peptide therapy for hyperglycemia
EP2248903A1 (fr) 2009-04-29 2010-11-10 Universitat Autònoma De Barcelona Procédés et réactifs pour le transfert génétique efficace et ciblé vers des monocytes et macrophages
AU2010258931B2 (en) 2009-06-08 2015-04-23 Acceleron Pharma Inc. Methods for increasing thermogenic adipocytes
WO2010151426A1 (fr) 2009-06-12 2010-12-29 Acceleron Pharma Inc. Protéines de fusion actriib-fc tronquées
US9150632B2 (en) 2009-06-16 2015-10-06 Indiana University Research And Technology Corporation GIP receptor-active glucagon compounds
KR20180085825A (ko) 2009-08-13 2018-07-27 악셀레론 파마 인코포레이티드 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용
WO2011028952A1 (fr) 2009-09-02 2011-03-10 Xencor, Inc. Compositions et procédés pour une co-liaison bivalente et monovalente simultanée d'antigènes
IN2012DN02766A (fr) 2009-09-09 2015-09-18 Acceleron Pharma Inc
WO2011032099A1 (fr) 2009-09-11 2011-03-17 The Board Of Trustees Of The University Of Illinois Méthodes pour traiter un disfonctionnement diastolique et états associés
US8926976B2 (en) 2009-09-25 2015-01-06 Xoma Technology Ltd. Modulators
EP3187877A1 (fr) 2009-09-25 2017-07-05 XOMA Technology Ltd. Procédés de criblage
TW201117824A (en) 2009-10-12 2011-06-01 Amgen Inc Use of IL-17 receptor a antigen binding proteins
JP6016636B2 (ja) 2009-10-15 2016-10-26 ジェネンテック, インコーポレイテッド 改変したレセプター特異性を持つキメラ線維芽細胞増殖因子
BR112012009409A2 (pt) 2009-10-22 2017-02-21 Genentech Inc método de identificação de uma substância inibidora, molécula antagonista, ácido nucleico isolado, vetor, célula hospedeira, método para fabricar a molécula, composição, artigo de fabricação, método de inibição de uma atividade biológica, método de tratamento de uma condição patológica, método para detectar msp em uma amostra e método para detectar hepsina em uma amostra
AU2010311567B2 (en) 2009-10-26 2015-03-26 Chugai Seiyaku Kabushiki Kaisha Method for the production of a glycosylated immunoglobulin
WO2011056497A1 (fr) 2009-10-26 2011-05-12 Genentech, Inc. Compositions de récepteur de l'activine de type iib et leurs méthodes d'utilisation
WO2011056494A1 (fr) 2009-10-26 2011-05-12 Genentech, Inc. Combinaisons d'antagonistes de la kinase-1 du type récepteur de l'activine et d'antagonistes vegfr3
WO2011056502A1 (fr) 2009-10-26 2011-05-12 Genentech, Inc. Compositions du gene recepteur de proteine morphogenetique osseuse type ii et procedes d'utilisation
JO3244B1 (ar) 2009-10-26 2018-03-08 Amgen Inc بروتينات ربط مستضادات il – 23 البشرية
US20120208762A1 (en) 2009-10-27 2012-08-16 The Board Of Trustees Of The University Of Illinois Methods of Diagnosing Diastolic Dysfunction
WO2011056896A1 (fr) 2009-11-03 2011-05-12 Acceleron Pharma Inc. Procédés de traitement de la stéatose hépatique
JP6267425B2 (ja) 2009-11-17 2018-01-24 アクセルロン ファーマ, インコーポレイテッド 筋ジストロフィー治療のためのユートロフィン誘導に関するactriibタンパク質およびその改変体およびその使用
WO2011063277A1 (fr) 2009-11-20 2011-05-26 Amgen Inc. Protéines de liaison à un antigène anti-orai1 et leurs utilisations
RU2563359C2 (ru) 2009-11-30 2015-09-20 Дженентек, Инк. Композиции и способы для диагностики и лечения опухоли
EP2507265B1 (fr) 2009-12-01 2016-05-11 Compugen Ltd. Anticorps spécifique pour la variante d'épissage héparanase T5 et son utilisation.
IN2012DN05169A (fr) 2009-12-02 2015-10-23 Acceleron Pharma Inc
UA109888C2 (uk) 2009-12-07 2015-10-26 ІЗОЛЬОВАНЕ АНТИТІЛО АБО ЙОГО ФРАГМЕНТ, ЩО ЗВ'ЯЗУЄТЬСЯ З β-КЛОТО, РЕЦЕПТОРАМИ FGF І ЇХНІМИ КОМПЛЕКСАМИ
WO2011075393A2 (fr) 2009-12-18 2011-06-23 Indiana University Research And Technology Corporation Co-agonistes du récepteur du glucagon/glp-i
MX2012008603A (es) 2010-01-27 2013-01-25 Univ Indiana Res & Tech Corp Conjugados de antagonista de glucagon-agonista de gip y composiciones para el tratamiento de desordenes metabolicos y obesidad.
WO2011097527A2 (fr) 2010-02-04 2011-08-11 Xencor, Inc. Immunoprotection de fractions thérapeutiques avec des régions fc améliorées
RU2015102845A (ru) 2010-02-23 2015-06-10 Санофи АНТИТЕЛА К ИНТЕГРИНУ α2 И ИХ ПРИМЕНЕНИЯ
MA34057B1 (fr) 2010-02-23 2013-03-05 Genentech Inc Compositions et methodes pour le diagnostic et le traitement d'une tumeur
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
JP6034283B2 (ja) 2010-03-26 2016-11-30 トラスティーズ・オブ・ダートマス・カレッジ Vista制御性t細胞メディエータタンパク質、vista結合剤、およびその使用
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
US9517264B2 (en) 2010-04-15 2016-12-13 Amgen Inc. Human FGF receptor and β-Klotho binding proteins
BR112012028010A2 (pt) 2010-05-03 2017-09-26 Genentech Inc anticorpo isolado, célula, ácido nucleíco isolado, método de identificação de um primeiro anticorpo que se liga a um epítopo antigênico tat425 ligado or um anticorpo, métodos de inibir o crescimento de uma célula, de tratamento terapêutico de determinação da presença de uma proteína de tat425 e de diagnóstico da presença de um tumor em um mamífero
US20120135912A1 (en) 2010-05-10 2012-05-31 Perseid Therapeutics Llc Polypeptide inhibitors of vla4
JP6121323B2 (ja) 2010-05-13 2017-05-10 インディアナ ユニバーシティー リサーチ アンド テクノロジー コーポレーションIndiana University Research And Technology Corporation 核内ホルモン受容体の活性を示すグルカゴンスーパーファミリーのペプチド
CA2802994A1 (fr) 2010-06-17 2011-12-22 The United States Of America As Represented By The Secretary, National I Nstitutes Of Health Compositions et procedes pour traiter des affections inflammatoires
KR20130102470A (ko) 2010-06-24 2013-09-17 인디애나 유니버시티 리서치 앤드 테크놀로지 코퍼레이션 아미드계 글루카곤 슈퍼패밀리 펩티드 프로드러그
WO2011163462A2 (fr) 2010-06-24 2011-12-29 Indiana University Research And Technology Corporation Promédicaments insuliniques à base d'amide
WO2016030888A1 (fr) 2014-08-26 2016-03-03 Compugen Ltd. Polypeptides et leurs utilisations en tant que médicament pour le traitement de troubles auto-immuns
US20130209463A1 (en) 2010-06-30 2013-08-15 Compugen Ltd. Polypeptides and uses thereof as a drug for treatment of multiple sclerosis, rheumatoid arthritis and other autoimmune disorders
EP2596025B1 (fr) 2010-07-23 2018-06-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Méthodes de gestion du cancer ciblant co-029
WO2012016227A2 (fr) 2010-07-29 2012-02-02 Xencor, Inc. Anticorps dont les points isoélectriques sont modifiés
US8999335B2 (en) 2010-09-17 2015-04-07 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
US8993727B2 (en) 2010-09-22 2015-03-31 Amgen Inc. Carrier immunoglobulins and uses thereof
WO2012045085A1 (fr) 2010-10-01 2012-04-05 Oxford Biotherapeutics Ltd. Anticorps anti-ror1
TWI537385B (zh) * 2010-11-04 2016-06-11 中央研究院 產生具簡單醣基化之表面蛋白質之病毒顆粒的方法
WO2012080769A1 (fr) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anticorps anti-cd277 et leurs utilisations
KR20130132931A (ko) 2010-12-22 2013-12-05 인디애나 유니버시티 리서치 앤드 테크놀로지 코퍼레이션 Gip 수용체 활성을 나타내는 글루카곤 유사체들
US20130273062A1 (en) 2010-12-22 2013-10-17 Orega Biotech Antibodies against human cd39 and use thereof
WO2012090150A2 (fr) 2010-12-27 2012-07-05 Compugen Ltd Nouveaux peptides pénétrant dans les cellules et leurs utilisations
JOP20210044A1 (ar) 2010-12-30 2017-06-16 Takeda Pharmaceuticals Co الأجسام المضادة لـ cd38
WO2012101125A1 (fr) 2011-01-24 2012-08-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Anticorps spécifiques dirigés contre le cxcl4 humain et leurs utilisations
WO2012125775A1 (fr) 2011-03-16 2012-09-20 Sanofi Utilisations d'une protéine de type anticorps à région v double
CN103517922B (zh) 2011-03-31 2016-10-19 国家医疗保健研究所 抗icos的抗体及其用途
CN105601741A (zh) 2011-04-15 2016-05-25 卡姆普根有限公司 多肽和多核苷酸及其用于治疗免疫相关失调和癌症的用途
DK2699590T3 (en) 2011-04-20 2019-05-06 Acceleron Pharma Inc ENDOGLIN POLYPEPTIDES AND APPLICATIONS THEREOF
KR102101806B1 (ko) 2011-05-19 2020-04-20 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 항-인간-her3 항체 및 이의 용도
KR102148982B1 (ko) 2011-06-03 2020-08-27 조마 테크놀로지 리미티드 Tgf-베타에 특이적인 항체
US9574002B2 (en) 2011-06-06 2017-02-21 Amgen Inc. Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
ES2636445T3 (es) 2011-06-22 2017-10-05 Indiana University Research And Technology Corporation Coagonistas de receptores de glucagón/GLP-1
CA2836855C (fr) 2011-06-30 2020-07-14 Compugen Ltd. Polypeptides et leurs utilisations pour traiter les troubles auto-immuns et l'infection
CN103649127B (zh) 2011-07-01 2021-03-19 恩格姆生物制药公司 用于代谢病症和疾病治疗的组合物、应用和方法
EP2543679A1 (fr) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Anticorps pour la prévention et le traitement de la thrombose
EP2543678A1 (fr) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Anticorps pour la prévention et le traitement de la thrombose
EP2543677A1 (fr) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Anticorps pour la prévention et le traitement de la thrombose
WO2013016220A1 (fr) 2011-07-22 2013-01-31 Amgen Inc. Récepteur a de il-il-17 requis pour biologie il-17c
WO2013022855A1 (fr) 2011-08-05 2013-02-14 Xencor, Inc. Anticorps avec points isoélectriques modifiés et immunofiltration
CN104136461B (zh) 2011-09-22 2021-06-08 安姆根有限公司 Cd27l抗原结合蛋白
CA2851261A1 (fr) 2011-10-06 2013-04-11 The Board Of Trustees Of The University Of Illinois Proteine-c de liaison a la myosine a utiliser dans des methodes associees a l'insuffisance cardiaque diastolique
AU2012323287B2 (en) 2011-10-10 2018-02-01 Xencor, Inc. A method for purifying antibodies
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
KR20200019261A (ko) 2011-10-17 2020-02-21 악셀레론 파마 인코포레이티드 비효율적 적혈구생성 치료를 위한 방법 및 조성물
KR20140097151A (ko) 2011-11-17 2014-08-06 인디애나 유니버시티 리서치 앤드 테크놀로지 코퍼레이션 글루코코르티코이드 수용체 활성을 나타내는 글루카곤 슈퍼패밀리 펩티드
CA2858572C (fr) 2011-12-08 2023-01-17 Amgen Inc. Proteines liant un antigene lcat humain et leur utilisation en therapie
WO2013090931A2 (fr) 2011-12-16 2013-06-20 Kalos Therapeutics, Inc. Procédés et utilisations de peptides ssociés à anp (peptide natriurétique atrial), bnp (peptide natriurétique du cerveau) et cnp (peptide natriurétique de type c) et de leurs dérivés pour le traitement de troubles et maladies de la rétine
WO2013096386A1 (fr) 2011-12-20 2013-06-27 Indiana University Research And Technology Corporation Analogues d'insuline à base de ctp pour le traitement du diabète
EP2756093A4 (fr) 2012-02-01 2015-07-01 Compugen Ltd Anticorps de c10rf32 et leurs utilisations pour traiter le cancer
AU2013214779A1 (en) 2012-02-02 2014-09-04 Acceleron Pharma Inc. ALK1 antagonists and their uses in treating renal cell carcinoma
JP6200437B2 (ja) 2012-03-16 2017-09-20 ユニバーシティ ヘルス ネットワーク Toso活性を調節するための方法および組成物
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
US9809636B2 (en) 2012-04-06 2017-11-07 Acceleron Pharma Inc. Methods for increasing red blood cell levels comprising administering BMP9
US10385395B2 (en) 2012-04-11 2019-08-20 The Regents Of The University Of California Diagnostic tools for response to 6-thiopurine therapy
MX357327B (es) 2012-04-27 2018-07-05 Novo Nordisk As Proteinas de union a antigenos del ligando de cd30 humano.
EP2847219A1 (fr) 2012-05-07 2015-03-18 Amgen Inc. Anticorps anti-érythropoïétine
AR091069A1 (es) 2012-05-18 2014-12-30 Amgen Inc Proteinas de union a antigeno dirigidas contra el receptor st2
WO2013188740A1 (fr) 2012-06-14 2013-12-19 Ambrx, Inc. Anticorps anti-psma conjugués à des polypeptides de ligand de récepteur nucléaire
AR091477A1 (es) 2012-06-21 2015-02-04 Univ Indiana Res & Tech Corp Analogos de glucagon que presentan actividad de receptor de gip
CA2877127A1 (fr) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Analogues du glucagon presentant une activite sur le recepteur du gip
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
EP2864355B1 (fr) 2012-06-25 2016-10-12 Orega Biotech Anticorps antagonistes de l'il-17
WO2014004549A2 (fr) 2012-06-27 2014-01-03 Amgen Inc. Protéines de liaison anti-mésothéline
WO2014022759A1 (fr) 2012-08-03 2014-02-06 Dana-Farber Cancer Institute, Inc. Agents modulant l'activation des cellules immunitaires et procédés de leur utilisation
EP2892928B1 (fr) 2012-09-03 2018-05-30 INSERM - Institut National de la Santé et de la Recherche Médicale Anticorps anti-icos pour traiter la maladie du greffon contre l'hôte
US9381244B2 (en) 2012-09-07 2016-07-05 King's College London VISTA modulators for diagnosis and treatment of cancer
AU2013334659B2 (en) 2012-10-24 2019-07-11 Celgene Corporation Biomarker for use in treating anemia
ES2884095T3 (es) 2012-11-02 2021-12-10 Celgene Corp Antagonistas de activina-actrii y usos para el tratamiento de trastornos óseos y otros trastornos
PT3199552T (pt) 2012-11-20 2020-03-25 Sanofi Sa Anticorpos anti-ceacam5 e suas utilizações
NZ630484A (en) 2012-11-28 2017-04-28 Ngm Biopharmaceuticals Inc Compositions and methods for treatment of metabolic disorders and diseases
TW201425336A (zh) 2012-12-07 2014-07-01 Amgen Inc Bcma抗原結合蛋白質
EP2928923B1 (fr) 2012-12-10 2020-01-22 Biogen MA Inc. Anticorps anti-antigène 2 de cellules dendritiques sanguines et ses utilisations
EP3400961B1 (fr) 2012-12-27 2021-02-24 Sanofi Anticorps anti-lamp1 et conjugués anticorps médicament, et utilisations associées
WO2014105939A1 (fr) 2012-12-27 2014-07-03 Ngm Biopharmaceuticals, Inc. Procédés de modulation de l'homéostasie de l'acide biliaire et traitement de troubles et de maladies de l'acide biliaire
US10717965B2 (en) 2013-01-10 2020-07-21 Gloriana Therapeutics, Inc. Mammalian cell culture-produced neublastin antibodies
CN105051069B (zh) 2013-01-14 2019-12-10 Xencor股份有限公司 新型异二聚体蛋白
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US9738722B2 (en) 2013-01-15 2017-08-22 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
JO3519B1 (ar) 2013-01-25 2020-07-05 Amgen Inc تركيبات أجسام مضادة لأجل cdh19 و cd3
WO2014114801A1 (fr) 2013-01-25 2014-07-31 Amgen Inc. Anticorps ciblant cdh19 pour un mélanome
US20160025749A1 (en) 2013-03-11 2016-01-28 Amgen Inc. Protein formulations
WO2014159764A1 (fr) 2013-03-14 2014-10-02 Amgen Inc. Protéines de liaison à l'antigène chrdl-1 et procédés de traitement
US9546203B2 (en) 2013-03-14 2017-01-17 Amgen Inc. Aglycosylated Fc-containing polypeptides with cysteine substitutions
JP6463331B2 (ja) 2013-03-15 2019-01-30 イントリンシック ライフサイエンシズ リミテッド ライアビリティ カンパニー 抗ヘプシジン抗体およびその使用
EP4079760A3 (fr) 2013-03-15 2023-01-25 Sanofi Pasteur Inc. Anticorps contre les toxines de clostridium difficile et leurs procédés d'utilisation
EP2970486B1 (fr) 2013-03-15 2018-05-16 Xencor, Inc. Modulation de cellules t avec des anticorps bispecifiques et des fusions fc
WO2014144466A1 (fr) 2013-03-15 2014-09-18 Biogen Idec Ma Inc. Anticorps anti-alpha ν bêta 6 et leurs utilisations
EP3385277A1 (fr) 2013-03-15 2018-10-10 F. Hoffmann-La Roche AG Polypeptides il-22 et protéines de fusion fc il-22 et leurs procédés d'utilisation
UY35484A (es) 2013-03-15 2014-10-31 Amgen Res Munich Gmbh Molécula de unión de cadena simple que comprenden ABP de extremo N
US9850297B2 (en) 2013-03-15 2017-12-26 Amgen Inc. Secreted frizzle-related protein 5 (SFRP5) binding proteins
PE20151923A1 (es) 2013-03-15 2016-01-14 Amgen Inc Anticuerpos humanos pac1
AU2014232501C1 (en) 2013-03-15 2021-04-22 Xencor, Inc. Heterodimeric proteins
US9260527B2 (en) 2013-03-15 2016-02-16 Sdix, Llc Anti-human CXCR4 antibodies and methods of making same
WO2014145174A1 (fr) 2013-03-15 2014-09-18 Biological Mimetics, Inc. Compositions immunogéniques de rhinovirus humain (hrv)
PT3611180T (pt) 2013-03-15 2022-03-15 Biomolecular Holdings Llc Imunoglobulina híbrida que contém uma ligação não peptídica
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
WO2014151680A1 (fr) 2013-03-15 2014-09-25 Biogen Idec Ma Inc. Traitement et prévention d'une lésion rénale aiguë à l'aide d'anticorps anti- αvβ5
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
WO2014140368A1 (fr) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Constructions d'anticorps pour m2 et cd3 de grippe
WO2014143739A2 (fr) 2013-03-15 2014-09-18 Biogen Idec Ma Inc. Anticorps anti-alpha ν bêta 6 et leurs utilisations
US10005839B2 (en) 2013-05-17 2018-06-26 Inserm (Institut National De La Sante Et De La Recherche Medicale) Antagonist of the BTLA/HVEM interaction for use in therapy
NZ753995A (en) 2013-05-30 2022-07-01 Kiniksa Pharmaceuticals Ltd Oncostatin m receptor antigen binding proteins
US20160237399A1 (en) 2015-02-18 2016-08-18 Biogen Ma Inc. Control of Protein Glycosylation by Culture Medium Supplementation and Cell Culture Process Parameters
EP3036320B2 (fr) 2013-08-19 2024-04-03 Biogen MA Inc. Régulation de la glycosylation des protéines par supplémentation du milieu de culture et par les paramètres du procédé de culture cellulaire
EP3036262A4 (fr) 2013-08-22 2017-03-01 Acceleron Pharma Inc. Variants de type ii du récepteur de tgf-bêta et utilisations associées
TW201605896A (zh) 2013-08-30 2016-02-16 安美基股份有限公司 Gitr抗原結合蛋白
AR097648A1 (es) 2013-09-13 2016-04-06 Amgen Inc Combinación de factores epigenéticos y compuestos biespecíficos que tienen como diana cd33 y cd3 en el tratamiento de leucemia mieloide
WO2015048312A1 (fr) 2013-09-26 2015-04-02 Costim Pharmaceuticals Inc. Méthodes de traitement de cancers hématologiques
PE20160561A1 (es) 2013-10-11 2016-06-03 Oxford Biotherapeutics Ltd Anticuerpos conjugados contra ly75 para el tratamiento de cancer
WO2015057939A1 (fr) 2013-10-18 2015-04-23 Biogen Idec Ma Inc. Anticorps anti-s1p4 et leurs utilisations
EP3060235B1 (fr) 2013-10-25 2020-12-02 Acceleron Pharma Inc. Peptides d'endogline pour traiter des maladies fibrotiques
ES2759252T3 (es) 2013-10-31 2020-05-08 Resolve Therapeutics Llc Fusiones y métodos terapéuticos de nucleasa-albúmina
CN104623637A (zh) 2013-11-07 2015-05-20 健能隆医药技术(上海)有限公司 Il-22二聚体在制备静脉注射药物中的应用
US20160289633A1 (en) 2013-12-20 2016-10-06 Biogen Ma Inc. Use of Perfusion Seed Cultures to Improve Biopharmaceutical Fed-Batch Production Capacity and Product Quality
EP4043493A1 (fr) 2013-12-24 2022-08-17 Janssen Pharmaceutica NV Anticorps anti-vista et fragments
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
EP3107935B1 (fr) 2014-02-20 2020-06-24 Allergan, Inc. Anticorps anti-composant c5 de du systeme de complement
JP6643244B2 (ja) 2014-02-27 2020-02-12 アラーガン、インコーポレイテッドAllergan,Incorporated 補体因子Bb抗体
CA2941697A1 (fr) 2014-03-07 2015-09-11 University Health Network Procedes et compositions pour modifier une reponse immunitaire
PT3116486T (pt) 2014-03-14 2020-03-12 Biomolecular Holdings Llc Imunoglobulina híbrida que contém uma ligação não peptídica
EP3122869B2 (fr) 2014-03-24 2022-08-10 Biogen MA Inc. Procédés pour pallier la carence en glutamine pendant la culture de cellules de mammifères
UA119167C2 (uk) 2014-03-28 2019-05-10 Зенкор, Інк. Біспецифічне антитіло, яке зв'язується з cd38 та cd3
EP3131929B1 (fr) 2014-04-16 2022-06-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anticorps pour la prévention ou le traitement d'épisodes de saignement
FR3020063A1 (fr) 2014-04-16 2015-10-23 Gamamabs Pharma Anticorps humain anti-her4
EP3137501B1 (fr) 2014-05-02 2021-09-29 Medimmune Limited Modulateurs des canaux ioniques
EP3152237B1 (fr) 2014-06-04 2020-04-01 Acceleron Pharma Inc. Procédés et compositions pour traiter des troubles à l'aide de polypeptides de follistatine
EP3154585B1 (fr) 2014-06-11 2022-02-23 Kathy A. Green Utilisation d'antagonistes et d'agonistes vista pour supprimer ou améliorer l'immunité humorale
CN107001528A (zh) 2014-07-09 2017-08-01 米德瑞(美国)有限公司 低聚糖组合物及其制备方法
US10556946B2 (en) 2014-07-29 2020-02-11 Neurimmunie Holding AG Human derived anti-Huntingtin (HTT) antibodies and uses thereof
UY36245A (es) 2014-07-31 2016-01-29 Amgen Res Munich Gmbh Constructos de anticuerpos para cdh19 y cd3
JP6749312B2 (ja) 2014-07-31 2020-09-02 アムゲン リサーチ (ミュンヘン) ゲーエムベーハーAMGEN Research(Munich)GmbH 最適化された種間特異的二重特異性単鎖抗体コンストラクト
ES2980787T3 (es) 2014-07-31 2024-10-03 Amgen Res Munich Gmbh Constructo de anticuerpo de cadena sencilla biespecífico con distribución tisular potenciada
AR101942A1 (es) 2014-08-27 2017-01-25 Amgen Inc Variantes de inhibidor de tejido de metaloproteinasa tipo tres (timp-3), composiciones y métodos
WO2016040767A2 (fr) 2014-09-12 2016-03-17 Amgen Inc. Anticorps et épitopes chrdl-1
AU2015321462B2 (en) 2014-09-22 2020-04-30 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
SG11201701925XA (en) 2014-09-30 2017-04-27 Neurimmune Holding Ag Human-derived anti-dipeptide repeats (dprs) antibody
MA41685A (fr) 2014-10-17 2017-08-22 Biogen Ma Inc Supplémentation en cuivre pour la régulation de la glycosylation dans un procédé de culture cellulaire de mammifère
AU2015335029B2 (en) 2014-10-24 2021-09-23 Astrazeneca Ab Combination
WO2016069925A1 (fr) 2014-10-30 2016-05-06 Acceleron Pharma Inc. Méthodes et compositions utilisant des polypeptides gdf15 pour augmenter le nombre de globules rouges sanguins
WO2016069889A1 (fr) 2014-10-31 2016-05-06 Resolve Therapeutics, Llc Hybrides nucléase-transferrine à visée thérapeutique et procédés associés
MA40864A (fr) 2014-10-31 2017-09-05 Biogen Ma Inc Hypotaurine, gaba, bêta-alanine et choline pour la régulation de l'accumulation de sous-produits résiduaires dans des procédés de culture de cellules mammifères
EP3220900B1 (fr) 2014-11-21 2020-09-23 University of Maryland, Baltimore Systèmes d'administration particulaires spécifiques d'une structure ciblée
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
SG11201704274QA (en) 2014-11-26 2017-06-29 Xencor Inc Heterodimeric antibodies that bind cd3 and cd38
HUE055115T2 (hu) 2014-11-26 2021-10-28 Xencor Inc CD3-at és CD20-at kötõ heterodimer antitestek
TWI773117B (zh) 2014-12-03 2022-08-01 美商西建公司 活化素-actrii拮抗劑及治療貧血之用途
WO2016090347A1 (fr) 2014-12-05 2016-06-09 Immunext, Inc. Identification de vsig8 en tant que récepteur putatif de vista et son utilisation pour produire des modulateurs de vista/vsig8
EP3229837A4 (fr) 2014-12-08 2018-05-30 Dana-Farber Cancer Institute, Inc. Procédés de régulation à la hausse des réponses immunitaires à l'aide de combinaisons d'agents anti-rgmb et d'agents anti-pd-1
WO2016105450A2 (fr) 2014-12-22 2016-06-30 Xencor, Inc. Anticorps trispécifiques
TN2018000324A1 (en) 2015-01-23 2020-01-16 Sanofi Sa ANTl-CD3 ANTIBODIES, ANTl-CD123 ANTIBODIES AND BISPECIFIC ANTIBODIES SPECIFICALLY BINDING TO CD3 AND/OR CD123
CA2975095A1 (fr) 2015-01-26 2016-08-04 Cadena Bio, Inc. Compositions a base d'oligosaccharides destinees a etre utilisees comme aliment pour animaux et procedes de production de celles-ci
WO2016141387A1 (fr) 2015-03-05 2016-09-09 Xencor, Inc. Modulation de lymphocytes t avec des anticorps bispécifiques et des hybrides fc
EP3770171A1 (fr) 2015-04-03 2021-01-27 XOMA Technology Ltd. Traitement du cancer à l'aide d'inhibiteurs de tgf-bêta et pd-1
MY188430A (en) 2015-04-10 2021-12-08 Amgen Inc Interleukin-2 muteins for the expansion of t-regulatory cells
EP4276116A3 (fr) 2015-04-17 2024-01-17 Amgen Research (Munich) GmbH Constructions d'anticorps bispécifiques pour cdh3 et cd3
US20160347848A1 (en) 2015-05-28 2016-12-01 Medimmune Limited Therapeutic combinations and methods for treating neoplasia
DK3313882T3 (da) 2015-06-24 2020-05-11 Janssen Pharmaceutica Nv Anti-VISTA antistoffer og fragmenter
AU2016291846B2 (en) 2015-07-13 2022-05-26 Compugen Ltd. HIDE1 Compositions and Methods
TWI717375B (zh) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Cd70及cd3抗體構築體
TWI744242B (zh) 2015-07-31 2021-11-01 德商安美基研究(慕尼黑)公司 Egfrviii及cd3抗體構築體
TWI793062B (zh) 2015-07-31 2023-02-21 德商安美基研究(慕尼黑)公司 Dll3及cd3抗體構築體
TWI796283B (zh) 2015-07-31 2023-03-21 德商安美基研究(慕尼黑)公司 Msln及cd3抗體構築體
TWI829617B (zh) 2015-07-31 2024-01-21 德商安美基研究(慕尼黑)公司 Flt3及cd3抗體構築體
US9884900B2 (en) 2015-08-04 2018-02-06 Acceleron Pharma Inc. Methods for treating Janus kinase-associated disorders by administering soluble transforming growth factor beta type II receptor
EP4435105A2 (fr) 2015-09-29 2024-09-25 Amgen Inc. Inhibiteurs de l'asgr pour réduire les taux de cholestérol
EP3362074B1 (fr) 2015-10-16 2023-08-09 President and Fellows of Harvard College Modulation de pd-1 des lymphocytes t régulateurs pour réguler les réponses immunitaires effectrices des lymphocytes t
CN108699136B (zh) 2015-12-07 2022-03-18 Xencor股份有限公司 结合cd3和psma的异二聚抗体
TWI797073B (zh) 2016-01-25 2023-04-01 德商安美基研究(慕尼黑)公司 包含雙特異性抗體建構物之醫藥組合物
TN2018000266A1 (en) 2016-02-03 2020-01-16 Amgen Res Munich Gmbh Psma and cd3 bispecific t cell engaging antibody constructs.
SG11201805770UA (en) 2016-02-03 2018-08-30 Amgen Res Munich Gmbh BCMA and CD3 Bispecific T Cell Engaging Antibody Constructs
EA039859B1 (ru) 2016-02-03 2022-03-21 Эмджен Рисерч (Мюник) Гмбх Биспецифические конструкты антител, связывающие egfrviii и cd3
CN109069626A (zh) 2016-02-12 2018-12-21 詹森药业有限公司 抗-vista(b7h5)抗体
CN118108843A (zh) 2016-04-15 2024-05-31 伊穆奈克斯特股份有限公司 抗人vista抗体及其用途
WO2017181143A1 (fr) 2016-04-15 2017-10-19 Generon (Shanghai) Corporation, Ltd. Utilisation d'il-22 pour le traitement de l'entérocolite nécrosante
JOP20170091B1 (ar) 2016-04-19 2021-08-17 Amgen Res Munich Gmbh إعطاء تركيبة ثنائية النوعية ترتبط بـ cd33 وcd3 للاستخدام في طريقة لعلاج اللوكيميا النخاعية
US11016085B2 (en) 2016-04-25 2021-05-25 The Johns Hopkins University ZNT8 assays for drug development and pharmaceutical compositions
EP3808764A1 (fr) 2016-05-04 2021-04-21 Amgen Inc. Mutéines de l'interleukine-2 pour l'expansion de lymphocytes t régulateurs
CN109415425A (zh) 2016-05-31 2019-03-01 财团法人牧岩生命科学研究所 TGF-β超家族的AB6家族设计配体
EP4257613A3 (fr) 2016-06-14 2023-12-13 Xencor, Inc. Anticorps inhibiteurs de points de contrôle bispécifiques
CN109715663B (zh) 2016-06-28 2022-11-25 Xencor股份有限公司 结合生长抑素受体2的异源二聚抗体
AU2017290389B2 (en) 2016-07-01 2024-09-26 Resolve Therapeutics, Llc Optimized binuclease fusions and methods
JP7316930B2 (ja) 2016-07-15 2023-07-28 武田薬品工業株式会社 形質芽細胞及び形質細胞枯渇療法に対する応答を評価するための方法及び材料
TWI790206B (zh) 2016-07-18 2023-01-21 法商賽諾菲公司 特異性結合至cd3和cd123的雙特異性抗體樣結合蛋白
MA45715A (fr) 2016-07-25 2019-05-29 Biogen Ma Inc Anticorps anti-hspa5 (grp78) et leurs utilisations
EP3490600A1 (fr) 2016-08-01 2019-06-05 Xoma (Us) Llc Anticorps du récepteur 1 de l'hormone de parathyroïde (pth1r) et leurs utilisations
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
AU2017325973A1 (en) 2016-09-15 2019-03-07 Acceleron Pharma Inc. Twisted gastrulation polypeptides and uses thereof
AU2017336440B2 (en) 2016-09-28 2022-06-02 Cohbar, Inc. Therapeutic MOTS-c related peptides
BR112019005944A2 (pt) 2016-09-28 2019-06-11 Musc Foudation For Res Development anticorpos que se ligam à interleucina 2 e usos dos mesmos
BR112019006918A2 (pt) 2016-10-05 2019-06-25 Acceleron Pharma Inc proteínas actriib variantes e usos das mesmas
SG11201903302UA (en) 2016-10-14 2019-05-30 Xencor Inc Bispecific heterodimeric fusion proteins containing il-15/il-15ralpha fc-fusion proteins and pd-1 antibody fragments
US11286295B2 (en) 2016-10-20 2022-03-29 Sanofi Anti-CHIKV monoclonal antibodies directed against the E2 structural protein
PT3565828T (pt) 2017-01-05 2022-02-08 Kahr Medical Ltd Proteína de fusão sirp1 alfa-41bbl e seus métodos de utilização
SI3565579T1 (sl) 2017-01-05 2023-10-30 Kahr Medical Ltd. PD1-41BBL fuzijski protein in postopki njegove uporabe
JOP20190189A1 (ar) 2017-02-02 2019-08-01 Amgen Res Munich Gmbh تركيبة صيدلانية ذات درجة حموضة منخفضة تتضمن بنيات جسم مضاد يستهدف الخلية t
WO2018152496A1 (fr) 2017-02-17 2018-08-23 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Compositions et méthodes de diagnostic et de traitement de l'infection par le virus zika
WO2018156892A1 (fr) 2017-02-23 2018-08-30 Adrx, Inc. Inhibiteurs peptidiques de l'agrégation du facteur de transcription
KR102584011B1 (ko) 2017-03-16 2023-09-27 이나뜨 파르마 에스.에이. 암 치료를 위한 조성물 및 방법
WO2018200742A1 (fr) 2017-04-25 2018-11-01 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Anticorps et procédés de diagnostic et de traitement d'infection par le virus d'epstein barr
FI3628049T3 (fi) 2017-05-04 2023-07-26 Acceleron Pharma Inc Tgf-beeta-reseptorin tyypin ii fuusioproteiineja ja niiden käyttöjä
US11918650B2 (en) 2017-05-05 2024-03-05 Amgen Inc. Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration
CN110997693A (zh) 2017-06-07 2020-04-10 阿德克斯公司 τ聚集抑制剂
WO2018231905A1 (fr) 2017-06-14 2018-12-20 Celgene Corporation Méthodes de traitement de la myélofibrose associée à un néoplasme myéloprolifératif et de l'anémie
US11084863B2 (en) 2017-06-30 2021-08-10 Xencor, Inc. Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains
US11892457B2 (en) 2017-07-12 2024-02-06 The Johns Hopkins University Proteoliposome-based ZnT8 self-antigen for type 1 diabetes diagnosis
US11827669B2 (en) 2017-07-19 2023-11-28 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis and treatment of hepatitis b virus infection
HRP20220404T1 (hr) 2017-08-03 2022-05-27 Amgen Inc. Interleukin-21 muteini i postupci liječenja
EP3668886A2 (fr) 2017-08-18 2020-06-24 Adrx, Inc. Inhibiteurs peptidiques d'agrégation de tau
WO2019040674A1 (fr) 2017-08-22 2019-02-28 Sanabio, Llc Récepteurs d'interféron solubles et leurs utilisations
AU2018329920B2 (en) 2017-09-08 2022-12-01 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
JP2021502100A (ja) 2017-11-08 2021-01-28 ゼンコア インコーポレイテッド 新規抗pd−1配列を用いた二重特異性および単一特異性抗体
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
EA202091422A1 (ru) 2017-12-11 2020-08-28 Эмджен Инк. Способ непрерывного производства продуктов на основе биспецифических антител
CN111655718A (zh) 2017-12-19 2020-09-11 Xencor股份有限公司 经过工程化的il-2 fc融合蛋白
TW201940518A (zh) 2017-12-29 2019-10-16 美商安進公司 針對muc17和cd3之雙特異性抗體構建體
MX2020007291A (es) 2018-01-12 2020-09-10 Amgen Inc Anticuerpos anti-pd-1 y metodos de tratamiento.
CN111655717A (zh) 2018-01-26 2020-09-11 豪夫迈·罗氏有限公司 IL-22 Fc融合蛋白及使用方法
JP7345479B2 (ja) 2018-01-26 2023-09-15 ジェネンテック, インコーポレイテッド 組成物及び使用方法
EP3752195A4 (fr) 2018-02-14 2021-11-17 Viela Bio, Inc. Anticorps dirigés contre le ligand du récepteur 3 de la tyrosine kinase 3 du sarcome de mcdonough félin (fms) (flt3l) et leurs utilisations pour le traitement de maladies auto-immunes et inflammatoires
TW201946647A (zh) 2018-02-21 2019-12-16 美商建南德克公司 利用il-22 fc融合蛋白進行治療之投藥
EP3773911A2 (fr) 2018-04-04 2021-02-17 Xencor, Inc. Anticorps hétérodimères qui se lient à la protéine d'activation des fibroblastes
EP3781598A1 (fr) 2018-04-18 2021-02-24 Xencor, Inc. Protéines de fusion hétérodimères ciblant tim-3 contenant des protéines de fusion fc d'il-15/il-15ra et domaines de liaison à l'antigène de tim-3
MX2020010910A (es) 2018-04-18 2021-02-09 Xencor Inc Proteinas de fusion heterodimericas dirigidas a pd-1 que contienen proteinas de fusion il-15 / il-15ra fc y dominios de union al antigeno pd-1 y usos de los mismos.
EP3788071A1 (fr) 2018-05-02 2021-03-10 The United States Of America, As Represented By The Secretary, Department of Health and Human Services Anticorps et méthodes de diagnostic, de prévention et de traitement d'infection par le virus d'epstein barr
EA202092518A1 (ru) 2018-06-18 2021-08-23 Иннейт Фарма Композиции и способы лечения рака
KR20210028204A (ko) 2018-07-02 2021-03-11 암젠 인크 항-steap1 항원 결합 단백질
SG11202013167UA (en) 2018-07-11 2021-01-28 Kahr Medical Ltd SIRPalpha-4-1BBL VARIANT FUSION PROTEIN AND METHODS OF USE THEREOF
MA53325A (fr) 2018-07-30 2021-06-09 Amgen Inc Administration prolongée d'une construction d'anticorps bispécifique se liant à cd33 et cd3
JOP20210022A1 (ar) 2018-08-03 2021-01-28 Amgen Inc بنيات جسم مضاد لـ cldn18.2وcd3
US12103968B2 (en) 2018-08-16 2024-10-01 The Johns Hopkins University Antibodies to human ZnT8
MA53822A (fr) 2018-10-03 2021-08-11 Xencor Inc Protéines de fusion fc hétérodimères d'il -12
CA3114802A1 (fr) 2018-10-11 2020-04-16 Amgen Inc. Traitement en aval de constructions d'anticorps bispecifiques
KR20210113261A (ko) 2019-01-04 2021-09-15 리졸브 테라퓨틱스, 엘엘씨 뉴클레아제 융합 단백질을 사용한 쇼그렌병의 치료
CA3127336A1 (fr) 2019-01-28 2020-08-06 Cohbar, Inc. Peptides therapeutiques
KR20210124260A (ko) 2019-02-07 2021-10-14 사노피 폐암을 치료하기 위한 항-ceacam5 면역접합체의 용도
EP3693023A1 (fr) 2019-02-11 2020-08-12 Sanofi Utilisation d'immuno-conjugués anti-ceacam5 pour le traitement du cancer du poumon
KR20210136014A (ko) 2019-02-12 2021-11-16 암브룩스, 인코포레이티드 항체-tlr 작용제 콘쥬게이트를 함유하는 조성물, 방법 및 이의 용도
CA3132185A1 (fr) 2019-03-01 2020-09-10 Xencor, Inc. Anticorps heterodimeres qui se lient a enpp3 et cd3
CA3131705A1 (fr) 2019-03-27 2020-10-01 Umc Utrecht Holding B.V. Anticorps iga modifies et procedes d'utilisation
EP3953389A1 (fr) 2019-04-08 2022-02-16 Biogen MA Inc. Anticorps anti-intégrine et leurs utilisations
CA3136625A1 (fr) 2019-04-09 2020-10-15 Abcuro, Inc. Anticorps a action depletive sur le recepteur klrg1 (killer cell lectin-like receptor subfamily g member 1)
WO2020223121A1 (fr) 2019-04-30 2020-11-05 Dana-Farber Cancer Institute, Inc. Méthodes de traitement du cancer à l'aide de combinaisons d'agents anti-cx3cr1 et d'agents de blocage de points de contrôle immunitaires
TW202045711A (zh) 2019-06-13 2020-12-16 美商安進公司 生物製品製造中基於生物量之自動灌注控制
MX2022000367A (es) 2019-07-11 2022-07-13 Kahr Medical Ltd Heterodimeros, metodos y uso de los mismos.
US20210032370A1 (en) 2019-08-02 2021-02-04 Immatics Biotechnologies Gmbh Recruiting agent further binding an mhc molecule
DE102019121007A1 (de) 2019-08-02 2021-02-04 Immatics Biotechnologies Gmbh Antigenbindende Proteine, die spezifisch an MAGE-A binden
EP4007775A1 (fr) 2019-08-02 2022-06-08 Orega Biotech Nouveaux anticorps il-17b
CA3150441A1 (fr) 2019-08-13 2021-02-18 Amgen Inc. Muteines de l'interleukine-2 pour l'expansion de lymphocytes t regulateurs
CA3156683A1 (fr) 2019-11-13 2021-05-20 Amgen Inc. Procede de reduction de la formation d'agregats dans le traitement en aval de molecules de liaison a l'antigene bispecifiques
EP4058465A1 (fr) 2019-11-14 2022-09-21 Cohbar Inc. Peptides antagonistes de cxcr4
US20230040604A1 (en) 2019-12-17 2023-02-09 Amgen Inc. Interleukin-2 in combination with tnf receptor family members for the expansion of t-regulatory cells
JP2023525423A (ja) 2020-01-15 2023-06-16 イマティクス バイオテクノロジーズ ゲーエムベーハー Prameに特異的に結合する抗原結合タンパク質
EP4093771A1 (fr) 2020-01-22 2022-11-30 Amgen Research (Munich) GmbH Combinaisons de constructions d'anticorps et d'inhibiteurs du syndrome de libération de cytokine et leurs utilisations
US20230146593A1 (en) 2020-03-12 2023-05-11 Amgen Inc. Method for treatment and prophylaxis of crs in patients comprising a combination of bispecific antibodies binding to cds x cancer cell and tnf alpha or il-6 inhibitor
WO2021207662A1 (fr) 2020-04-10 2021-10-14 Genentech, Inc. Utilisation d'il-22-fc pour le traitement ou la prévention de la pneumonie, du syndrome de détresse respiratoire aiguë ou du syndrome de libération de cytokines
WO2021231976A1 (fr) 2020-05-14 2021-11-18 Xencor, Inc. Anticorps hétérodimères qui se lient à l'antigène membranaire spécifique de la prostate (psma) et cd3
WO2021236638A1 (fr) 2020-05-19 2021-11-25 Amgen Inc. Constructions de liaison à mageb2
CA3183693A1 (fr) 2020-05-29 2021-12-02 Amgen Inc. Administration attenuant des effets indesirables d'une construction d'anticorps bispecifique de liaison a cd33 et cd3
CN116670285A (zh) 2020-06-23 2023-08-29 江苏康缘药业股份有限公司 抗cd38抗体及其用途
US20230355722A1 (en) 2020-06-29 2023-11-09 Resolve Therapeutics, Llc Treatment of sjogren’s syndrome with nuclease fusion proteins
TW202216778A (zh) 2020-07-15 2022-05-01 美商安進公司 Tigit及cd112r阻斷
IL300666A (en) 2020-08-19 2023-04-01 Xencor Inc ANTI–CD28 COMPOSITIONS
JP2023538071A (ja) 2020-08-20 2023-09-06 アンブルックス,インコーポレイテッド 抗体-tlrアゴニストコンジュゲート、その方法及び使用
BR112023001733A2 (pt) 2020-09-04 2023-03-28 Merck Patent Gmbh Anticorpos anti-ceacam5 e conjugados e usos dos mesmos
AU2021375733A1 (en) 2020-11-06 2023-06-08 Amgen Inc. Polypeptide constructs binding to cd3
AU2021374839A1 (en) 2020-11-06 2023-06-08 Amgen Inc. Multitargeting bispecific antigen-binding molecules of increased selectivity
AU2021374036A1 (en) 2020-11-06 2023-06-08 Amgen Inc. Polypeptide constructs selectively binding to cldn6 and cd3
JP2023548345A (ja) 2020-11-06 2023-11-16 アムジエン・インコーポレーテツド クリッピング率の低減した抗原結合ドメイン
EP4281187A1 (fr) 2021-01-20 2023-11-29 Bioentre LLC Protéines de liaison à ctla4 et méthodes de traitement du cancer
US11739144B2 (en) 2021-03-09 2023-08-29 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CLDN6
WO2022192586A1 (fr) 2021-03-10 2022-09-15 Xencor, Inc. Anticorps hétérodimères qui se lient au cd3 et au gpc3
EP4314078A1 (fr) 2021-04-02 2024-02-07 Amgen Inc. Constructions de liaison à mageb2
IL307282A (en) 2021-04-03 2023-11-01 Ambrx Inc Antidote conjugates against HER2 and their applications
IL307672A (en) 2021-05-06 2023-12-01 Amgen Res Munich Gmbh CD20 and CD22 targeting antigen-binding molecules for use in proliferative diseases
WO2022261183A2 (fr) 2021-06-08 2022-12-15 Dana-Farber Cancer Institute, Inc. Compositions et procédés de traitement et/ou d'identification d'un agent pour le traitement de cancers intestinaux
AU2022320627A1 (en) 2021-07-26 2024-02-08 Abcuro, Inc. Killer cell lectin-like receptor subfamily g member 1 (klrg1) depleting antibodies
WO2023097119A2 (fr) 2021-11-29 2023-06-01 Dana-Farber Cancer Institute, Inc. Méthodes et compositions pour moduler riok2
AU2022402334A1 (en) 2021-12-02 2024-07-18 Sanofi Ceacam5 adc–anti-pd1/pd-l1 combination therapy
CA3239856A1 (fr) 2021-12-02 2023-06-08 Mustapha CHADJAA Dosage du cea pour la selection d'un patient dans une therapie anticancereuse
WO2023137161A1 (fr) 2022-01-14 2023-07-20 Amgen Inc. Triple blocage de tigit, cd112r et pd-l1
AU2023230951A1 (en) 2022-03-09 2024-09-05 Merck Patent Gmbh Anti-gd2 antibodies, immunoconjugates and therapeutic uses thereof
WO2023170239A1 (fr) 2022-03-09 2023-09-14 Merck Patent Gmbh Procédés et outils de conjugaison à des anticorps
TW202346368A (zh) 2022-05-12 2023-12-01 德商安美基研究(慕尼黑)公司 具有增加的選擇性的多鏈多靶向性雙特異性抗原結合分子
WO2023240287A1 (fr) 2022-06-10 2023-12-14 Bioentre Llc Combinaisons de protéines de liaison à ctla4 et procédés de traitement du cancer
TW202421650A (zh) 2022-09-14 2024-06-01 美商安進公司 雙特異性分子穩定組成物
WO2024126431A1 (fr) 2022-12-12 2024-06-20 Horizon Therapeutics Ireland Dac Agents de liaison anti-ilt7 pour le traitement et la prévention de la myosite
WO2024147934A1 (fr) 2023-01-06 2024-07-11 Takeda Pharmaceutical Company Limited Anticorps anti-cd38 pour le traitement de maladies auto-immunes
WO2024155810A1 (fr) 2023-01-20 2024-07-25 Viela Bio, Inc. Agents de liaison anti-cd19 pour le traitement et la prévention de la myopathie nécrosante à médiation immunitaire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847890A (en) * 1971-11-01 1974-11-12 A Green Acidic monosaccharide-substituted proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847890A (en) * 1971-11-01 1974-11-12 A Green Acidic monosaccharide-substituted proteins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of WO8705330A1 *
W.J. LENNURZ: "Biochemistry of Glycoproteins and Proteglycans", 1981, pages 16-22, Plenum Press, New York, US; KORNFELD & KORNFELD, Chapter 1: "Structure of glycoproteins and their oligosaccharide units" *

Also Published As

Publication number Publication date
WO1987005330A1 (fr) 1987-09-11
EP0272253A1 (fr) 1988-06-29
AU624487B2 (en) 1992-06-11
AU5133690A (en) 1990-08-23
JPS63502716A (ja) 1988-10-13
AU5627186A (en) 1987-09-28
DK583087D0 (da) 1987-11-06
AU597574B2 (en) 1990-06-07
DK583087A (da) 1987-11-06

Similar Documents

Publication Publication Date Title
US4925796A (en) Method for enhancing glycoprotein stability
US5272066A (en) Synthetic method for enhancing glycoprotein stability
AU597574B2 (en) Method for enhancing glycoprotein stability
EP0799318B1 (fr) Procedes de modification de fractions de glucide
Schachter Glycoproteins: their structure, biosynthesis and possible clinical implications
Kornfeld et al. Structure of glycoproteins and their oligosaccharide units
Staneloni et al. The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins
RU2597975C2 (ru) Способы получения сахарной цепи, содержащей сиаловую кислоту
Trincone et al. Glycosyl hydrolases and glycosyltransferases in the synthesis of oligosaccharides
Nakata et al. Structural study of the sugar chains of CD36 purified from bovine mammary epithelial cells: Occurrence of novel hybrid-type sugar chains containing the Neu5Ac. alpha. 2. fwdarw. 6GalNAc. beta. 1. fwdarw. 4GlcNAc and the Man. alpha. 1. fwdarw. 2Man. alpha. 1. fwdarw. 3Man. alpha. 1. fwdarw. 6Man groups
Nilsson Synthesis with glycosidases
Schachter et al. Oligosaccharide branching of glycoproteins: biosynthetic mechanisms and possible biological functions
Endo et al. Structures of the asparagine-linked sugar chain of glucose transporter from human erythrocytes
Yoneda et al. Structures of the N‐linked oligosaccharides on porcine plasma vitronectin
Mendicino et al. Isolation and properties of. alpha.-D-mannose:. beta.-1, 2-N-acetylglucosaminyltransferase from trachea mucosa
Endo et al. Structure identification of the complex-type, asparagine-linked sugar chains of β-D-galactosyl-transferase purified from human milk
Bahl et al. Characterization of glycoproteins: carbohydrate structures of glycoprotein hormones
JP3811527B2 (ja) 新規複合糖質の製造方法
Schachter et al. Glycosyltransferases involved in the biosynthesis of protein-bound oligosaccharides of the asparagine-N-acetyl-D-glucosamine and serine (threonine)-N-acetyl-D-galactosamine types
Thayer et al. Enzymatic synthesis of glycopeptides and glycoproteins
Kent Exploration of glycoprotein structures: sequences and consequences
JP3732871B2 (ja) 複合糖質の製造方法
Bouquelet Enzymatic cleavage
Savage 2.2 Glycosylation: A Post-Translational Modification
Ishimizu et al. Substrate Recognition by Sugar Chain-Related Enzymes Recognition of a Large Area of Substrates and Its Strictness and Tolerance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19900205

17Q First examination report despatched

Effective date: 19910125

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19921120