CN108059825B - 一种消光pa母粒及其制备方法 - Google Patents
一种消光pa母粒及其制备方法 Download PDFInfo
- Publication number
- CN108059825B CN108059825B CN201810029321.2A CN201810029321A CN108059825B CN 108059825 B CN108059825 B CN 108059825B CN 201810029321 A CN201810029321 A CN 201810029321A CN 108059825 B CN108059825 B CN 108059825B
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- extinction
- cross
- master batch
- linked
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/04—Making microcapsules or microballoons by physical processes, e.g. drying, spraying
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2477/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
本发明涉及一种消光PA母粒及其制备方法,方法为:PA切片与包覆二氧化钛纳米颗粒的中空多孔微球混合均匀后熔融挤出造粒经干燥处理制得消光PA母粒,其中中空多孔微球主要由二氧化钛纳米颗粒以及与之通过共价键连接的包覆在二氧化钛纳米颗粒表面的交联球组成,交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物分子链之间相互交联形成。制得的消光PA母粒中均匀分散有中空多孔微球,添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为0.60~2.86bar/g。本发明方法工艺简便,制得的母粒,具有消光效果好和对纺丝组件压力小的优点,应用范围广。
Description
技术领域
本发明属于纤维制备领域,具体涉及一种消光PA母粒及其制备方法。
背景技术
消光纤维又称无光纤维,是指表面无光泽的化学纤维。制备消光纤维的方法通常是在纺丝前将消光剂加入纺丝溶液或熔体中,经纺丝成形,制得的消光纤维能够散射光线而消除光泽以降低透明度,增加白度。近年来,全消光涤纶纤维以其独特的外在表观特性越来越被织造业所接受。同时,随着国内消光纤维制备技术的突破,全消光纤维的应用领域不断拓展,尤其是在春亚纺和仿毛面料上得到了广泛的应用。
二氧化钛的着色力、遮盖力和消光能力突出,是目前世界上性能最好的一种白色颜料,可广泛应用于涂料、塑料、油墨和造纸等工业领域,需求量较大,有着极好的应用前景。消光PA母粒主要用于熔融纺丝制备抗全消光PA纤维,全消光纤维一般是通过二氧化钛的添加从而达到消光效果。采用该方法的缺点是消光物质在涤纶树脂中很难达到良好的分散,分散不匀的粉体材料在纺丝的时候会增加纺丝压力,堵塞喷丝板,影响纤维的可纺性。同时由于二氧化钛与聚合物的相容性较差,导致二氧化钛作为添加剂制备消光纤维时,在添加量较小的情况下,消光纤维的消光效果较差。
二氧化钛可以通过Al或Si等元素进行无机包覆在一定程度上改善其分散性能。高压静电喷雾法是一种利用电流体动力学技术将聚合物溶液或熔体制备成高分子微粒的方法。相对于其他制备高分子微粒的方法如沉淀法、反相悬浮交联法、喷雾干燥法等,静电喷雾法制备微球材料工艺简单、可控性强、绿色环保且无需使用大量乳化剂,采用静电喷雾法容易制得单分散性微粒且最终得到的微粒可具有多种形貌,如中空多孔等,例如已有文献(战乃乾.静电纺丝法制备聚苯乙烯功能材料[D].吉林大学,2010.)报道,聚苯乙烯溶液可以通过静电喷雾成型制备多孔中空微球,制得的聚苯乙烯(PS)中空微球在常温下化学性质稳定,具有较好的可加工性,但是由于聚苯乙烯(PS)的玻璃化转变温度只有100℃,在高温条件下三维结构会发生破坏,因而无法应用于熔融加工。这很大程度上影响了PS中空微球的应用。
此外,二氧化钛还可以通过对二氧化钛进行表面改性,从而解决二氧化钛易团聚在有机基体中分散性差的问题。常见的表面改性手法是偶联剂改性,但偶联剂只是以化学键的形式接在纳米颗粒表面,对消光性能本身并无提升,且硅烷偶联剂的相对分子质量小,在高温下易分解,不利于熔融制备高性能纤维。
因此,研究一种消光效果好和对纺丝组件压力小的消光母粒的制备方法具有十分重要的作用。
发明内容
本发明的目的是为了克服上述现有技术中存在的问题,提供了一种消光效果好和对纺丝组件压力小的消光PA母粒及其制备方法。
为了达到上述目的,本发明采用的技术方案为:
一种消光PA母粒,消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球;
所述包覆二氧化钛纳米颗粒的中空多孔微球主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成;
所述交联球内部中空,表面多孔且具有交联结构,所述交联结构由含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物分子链之间相互交联形成;
所述二氧化钛纳米颗粒与交联球之间通过共价键连接;
添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为0.60~2.86bar/g。相同条件下,添加市售二氧化钛后二氧化钛的含量为5wt%的PA树脂的过滤压力值为0.63~5.96bar/g。
过滤压力的测试依据标准BS EN 13900-5:2005,采用FCC-3型过滤性能测试仪检测母粒过滤性能,取一定量的消光PA母粒和PA切片混合得到1000g混合物,混合物中二氧化钛的质量分数为5%,母粒过滤压力值FPV的计算公式如下:
FPV=(pmax-ps)/mc;
式中,ps为开始压力值,单位bar,pmax为测试压力最大值,单位bar,为母粒中无机粒子的含量,单位g。实验采用1400目过滤网,控制机头压力6.5MPa,螺杆各区温度分别为:220℃、265℃、265℃、265℃、265℃、265℃。
作为优选的技术方案:
如上所述的一种消光PA母粒,所述消光PA母粒中二氧化钛的含量为20~80wt%;由消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为0.6~1.2wt%,若添加现有技术中未改性二氧化钛,全消光PA纤维中二氧化钛的含量则需达到1.5~2.0wt%。
如上所述的一种消光PA母粒,所述包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度>530℃,热分解温度>380℃;消光PA母粒的熔融加工温度小于中空多孔微球的熔融温度,因而制备消光PA母粒时,中空多孔微球能够保持较好的三维结构不受破坏,有利于充分发挥其功效;
所述交联球的直径为500~1500nm,所述交联球的壁厚为50~100nm;所述二氧化钛纳米颗粒的直径为300~400nm;所述交联球内部二氧化钛纳米颗粒的数量为1~4个。
如上所述的一种消光PA母粒,当交联球内部二氧化钛纳米颗粒的数量≤2时,所述交联球的表面小孔的分布密度为1~60个/1000nm2,小孔的孔径为10~30nm;
当交联球内部二氧化钛纳米颗粒的数量>2时,所述交联球的表面小孔的分布密度为1~20个/1000nm2,小孔的孔径为10~80nm。
如上所述的一种消光PA母粒,所述包覆二氧化钛纳米颗粒的中空多孔微球的制备方法为:
将苯乙烯、双官能度二甲基丙烯酸酯类有机单体和光引发剂溶解在溶剂中得到电喷溶液,再将表面含双键的改性二氧化钛加入到电喷溶液中以200~500rpm的转速机械搅拌1h分散均匀,在可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,最后用甲醇或乙醇洗涤并干燥;洗涤并干燥的作用是去除静电喷雾过程中微球表面的杂质,例如多余的聚合单体和光引发剂等;同时,在此过程中,表面含双键的改性二氧化钛由于表面带有有机官能团,在溶剂中能够均匀分散,有利于制备均匀的静电喷雾体系;
所述双官能度二甲基丙烯酸酯类有机单体为Bis-GMA、EBPADMA、UDMA、TEGDMA和D3MA中的一种以上;
所述双官能度二甲基丙烯酸酯类有机单体的具体结构式如下所示:
所述光引发剂为DMPOH(N,N-二甲氨基苯乙醇)和/或CQ(1,7,7-三甲基二环(2,2,1)-2,3庚二酮);所述可见光的波长为400~500nm;所述溶剂为DMF、三氯甲烷、二氯甲烷和四氢呋喃中的一种以上;
所述电喷溶液中双官能度二甲基丙烯酸酯类有机单体占苯乙烯和双官能度二甲基丙烯酸酯类有机单体总量的5~25wt%;电喷溶液中双官能度二甲基丙烯酸酯类有机单体占苯乙烯和双官能度二甲基丙烯酸酯类有机单体总量的比例与微球表面交联结构的交联度成正比,交联度越高,交联网孔越大,交换速度越快,但是会在一定程度上降低交联结构的强度,反之,交联度越低,交联网孔越小,交联强度越高,但对水的溶胀性较差;电喷溶液中双官能度二甲基丙烯酸酯类有机单体的浓度过低交联度低,无法应用于熔融加工,过高影响复合体系的粘度,无法形成微球;
溶剂占苯乙烯和双官能度二甲基丙烯酸酯类有机单体总量的50~80wt%,光引发剂占苯乙烯和双官能度二甲基丙烯酸酯类有机单体总量的0.5~1.2wt%;电喷溶液中光引发剂的浓度过低引发效率太低无法引发单体聚合;
所述改性二氧化钛的加入量为电喷溶液质量的15~40%;
所述静电喷雾的参数为:高压电源的输出电压10~15kV,喷雾口与凝固浴池的距离7~13cm,温度25~50℃,推进泵的推进速度1~4mL/h,推进器的直径5~15mm,推进器的体积3~10mL。
如上所述的一种消光PA母粒,所述改性二氧化钛的制备步骤如下:
(1)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液;所述混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为4~6:150~250:1;
(2)向混合分散液中滴加乙醇水混合液,在60~70℃下反应4~5h,室温陈化10~12h得到陈化液;所述乙醇水混合液中乙醇与水的质量比为2~5:1,所述乙醇水混合液的加入量为混合分散液体积的20~30%;
(3)将硅烷偶联剂滴入乙醇水溶液中,在室温下搅拌水解2~3h,加入到超声分散30~60min的陈化液中,在60~70℃下回流反应4~5h;所述乙醇水溶液中乙醇与水的质量比为2~5:1,所述硅烷偶联剂与乙醇水溶液的质量比为1:8~12,所述硅烷偶联剂的加入量为陈化液中二氧化钛质量的5~10%,所述硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷;
(4)在50~70℃下旋转蒸发干燥后在70~80℃下真空干燥12~16h,得到表面含双键的改性二氧化钛。
如上所述的一种消光PA母粒,所述改性二氧化钛的制备步骤如下:
(1)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液;所述混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为4~6:150~250:1;
(2)向混合分散液中滴加乙醇水混合液,在60~70℃下反应4~5h,室温陈化10~12h得到陈化液;所述乙醇水混合液中乙醇与水的质量比为2~5:1,所述乙醇水混合液的加入量为混合分散液体积的20~30%;
(3)将硅烷偶联剂滴入乙醇水溶液中,在室温下搅拌水解2~3h,加入到超声分散30~60min的陈化液中,在60~70℃下回流反应4~5h;所述乙醇水溶液中乙醇与水的质量比为2~5:1,所述硅烷偶联剂与乙醇水溶液的质量比为1:8~12,所述硅烷偶联剂的加入量为陈化液中二氧化钛质量的5~10%,所述硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷;
(4)在50~70℃下旋转蒸发干燥后在70~80℃下真空干燥12~16h,得到表面含双键的改性二氧化钛。
本发明还提供了一种制备如上所述的消光PA母粒的的方法,将PA切片与包覆二氧化钛纳米颗粒的中空多孔微球混合均匀后熔融挤出造粒经干燥处理制得消光PA母粒。
如上所述的方法,按重量份数计,混合时PA切片为100份,包覆二氧化钛纳米颗粒的中空多孔微球为80~150份。
如上所述的方法,所述混合均匀是指在高速混合器内混合30~40min;所述熔融挤出的温度为240~280℃,所述熔融挤出的压力为5~7MPa;所述干燥处理的温度为60~80℃,所述干燥处理的时间为30~40min。
发明机理:
本发明的一种消光PA母粒及其制备方法,首先设计了静电喷雾-光引发聚合交联制备包覆二氧化钛纳米颗粒的中空多孔微球的方法,在此过程中,先将单官能度的苯乙烯单体、双官能度二甲基丙烯酸酯类有机单体和光引发剂溶解在溶剂中制得电喷溶液,再加入表面含双键的改性二氧化钛混合均匀,接着在高压场下进行静电喷雾形成液滴,利用可见光(根据光引发剂的引发波长定律)引发液滴中的苯乙烯单体、双官能度二甲基丙烯酸酯类单体和改性二氧化钛表面的双键进行自由基聚合,在二氧化钛表面形成含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物,同时由于双官能度二甲基丙烯酸酯类单体的双官能度,含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物的分子链之间能够相互交联形成体型结构,在成型过程中因聚合收缩和溶剂的挥发和在凝固浴中的扩散而形成包覆二氧化钛纳米颗粒的中空多孔微球,从而制得熔融温度>530℃,热分解温度>380℃的包覆二氧化钛纳米颗粒的中空多孔微球,含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物的分子链之间交联形成的体型结构,使得其熔融温度高,在后续加工过程中能够保持三维结构,充分发挥其功能,而现有技术采用静电喷雾制备中空微球一般通过将聚合物溶解在溶剂中静电喷雾得到微球,该方法得到微球后,聚合物仍会保持其原有热性质而在熔融加工时熔融而不能保持其微球形貌,无法用于熔融加工,然后将PA切片与包覆二氧化钛纳米颗粒的中空多孔微球混合均匀后熔融挤出造粒经干燥处理制得消光PA母粒。
此外,本发明的二氧化钛本身拥有良好的消光效果(散射),多孔结构能够有效的散射入射光,提高对入射光的利用率,本发明将二氧化钛包覆在多孔微球即交联球的内部,光线穿过多孔结构入射到二氧化钛表面经过二氧化钛的散射后,会在二氧化钛和微球内壁之间重复多次散射,最终只有少量光线能够透过微球溢出,因而提高了消光效果。
有益效果:
(1)本发明的一种消光PA母粒,具有消光效果好和对纺丝组件压力小的优点,应用范围广。
(2)本发明的一种消光PA母粒,使用改性的二氧化钛,由于其表面带有有机官能团,在溶剂中能够均匀分散,且有利于后续反应的进行;
(3)本发明的一种消光PA母粒的制备方法,在解决了二氧化钛的分散性问题的同时,提升了二氧化钛的消光效果,减小了后续加工过程中二氧化钛在纤维中的添加量。
(4)本发明的一种消光PA母粒的制备方法,工艺简便,制备流程合理,有极好的推广价值。
附图说明
图1为本发明的消光PA母粒中的包覆二氧化钛纳米颗粒的中空多孔微球的结构示意图。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为4:150:1;
b)向混合分散液中滴加乙醇水混合液,在70℃下反应4h,室温陈化11h得到陈化液,乙醇水混合液中乙醇与水的质量比为2:1,乙醇水混合液的加入量为混合分散液体积的20%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解2h,加入到超声分散30min的陈化液中,在60℃下回流反应4h,其中乙醇水溶液中乙醇与水的质量比为2:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:12,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的5%;
d)在60℃下旋转蒸发干燥后在70℃下真空干燥13h,得到表面含双键的改性二氧化钛;
(1.2)将苯乙烯、Bis-GMA和DMPOH溶解在DMF中得到电喷溶液,电喷溶液中Bis-GMA占苯乙烯和Bis-GMA总量的10wt%,DMF占苯乙烯和Bis-GMA总量的50wt%,DMPOH占苯乙烯和Bis-GMA总量的0.5wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以200rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为400nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中改性二氧化钛的加入量为电喷溶液质量的15%,静电喷雾的参数为:高压电源的输出电压10kV,喷雾口与凝固浴池的距离13cm,温度25℃,推进泵的推进速度4mL/h,推进器的直径15mm,推进器的体积3mL;
(1.4)静电喷雾结束后用甲醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,包覆二氧化钛纳米颗粒的中空多孔微球,结构示意图如图1所示,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和Bis-GMA结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为500nm,交联球的壁厚为50nm,二氧化钛纳米颗粒的直径为310nm,交联球内部二氧化钛纳米颗粒的数量为1个,交联球的表面小孔的分布密度为1~10个/1000nm2,小孔的孔径为25~30nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为561℃,热分解温度为410℃;
(2)将100份的PA切片与80份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀30min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为280℃,熔融挤出的压力为5MPa;干燥处理的温度为75℃,干燥处理的时间为30min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为25wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为1.0wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为0.60bar/g。
实施例2
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为5:200:1;
b)向混合分散液中滴加乙醇水混合液,在60℃下反应4h,室温陈化10h得到陈化液,乙醇水混合液中乙醇与加入量为混合分散液体积的30%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解3h,加入到超声分散40min的陈化液中,在65℃下回流反应4.5h,其中乙醇水溶液中乙醇与水的质量比为3:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:11,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的6%;
d)在50℃下旋转蒸发干燥后在80℃下真空干燥14h,得到表面含双键的改性二氧化钛;
(1.2)将苯乙烯、EBPADMA和CQ溶解在三氯甲烷中得到电喷溶液,电喷溶液中EBPADMA占苯乙烯和EBPADMA总量的15wt%,三氯甲烷占苯乙烯和EBPADMA总量的60wt%,CQ占苯乙烯EBPADMA总量的0.6wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以300rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为420nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中改性二氧化钛的加入量为电喷溶液质量的20%,静电喷雾的参数为:高压电源的输出电压11kV,喷雾口与凝固浴池的距离12cm,温度30℃,推进泵的推进速度3mL/h,推进器的直径13mm,推进器的体积4mL;
(1.4)静电喷雾结束后用乙醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,制得的包覆二氧化钛纳米颗粒的中空多孔微球,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和Bis-GMA结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为700nm,交联球的壁厚为60nm,二氧化钛纳米颗粒的直径为330nm,交联球内部二氧化钛纳米颗粒的数量为1个,交联球的表面小孔的分布密度为15~25个/1000nm2,小孔的孔径为10~18nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为532℃,热分解温度为415℃;
(2)将100份的PA切片与100份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀40min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为250℃,熔融挤出的压力为5MPa;干燥处理的温度为68℃,干燥处理的时间为40min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为50wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为0.6wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为1.12bar/g。
实施例3
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为6:250:1;
b)向混合分散液中滴加乙醇水混合液,在65℃下反应4.5h,室温陈化11h得到陈化液,乙醇水混合液中乙醇与水的质量比为3:1,乙醇水混合液的加入量为混合分散液体积的25%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解2.5h,加入到超声分散50min的陈化液中,在70℃下回流反应5h,其中乙醇水溶液中乙醇与水的质量比为4:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:10,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的7%;
d)在70℃下旋转蒸发干燥后在75℃下真空干燥12h,得到表面含双键的改性二氧化钛;
(1.2)将苯乙烯、UDMA以及DMPOH与CQ的混合物(质量比为1:1)溶解在二氯甲烷中得到电喷溶液,电喷溶液中UDMA占苯乙烯和UDMA总量的5wt%,二氯甲烷占苯乙烯和UDMA总量的70wt%,DMPOH与CQ的混合物占苯乙烯和UDMA总量的0.7wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以400rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为440nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中所述改性二氧化钛的加入量为电喷溶液质量的25%,静电喷雾的参数为:高压电源的输出电压12kV,喷雾口与凝固浴池的距离11cm,温度35℃,推进泵的推进速度2mL/h,推进器的直径11mm,推进器的体积5mL;
(1.4)静电喷雾结束后用甲醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,制得的包覆二氧化钛纳米颗粒的中空多孔微球,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和UDMA结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为900nm,交联球的壁厚为70nm,二氧化钛纳米颗粒的直径为350nm,交联球内部二氧化钛纳米颗粒的数量为1个,交联球的表面小孔的分布密度为52~60个/1000nm2,小孔的孔径为20~24nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为535℃,热分解温度为390℃;
(2)将100份的PA切片与120份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀32min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为275℃,熔融挤出的压力为7MPa;干燥处理的温度为72℃,干燥处理的时间为40min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为65wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为0.9wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为1.34bar/g。
实施例4
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为4:180:1;
b)向混合分散液中滴加乙醇水混合液,在63℃下反应4h,室温陈化12h得到陈化液,乙醇水混合液中乙醇与水的质量比为4:1,乙醇水混合液的加入量为混合分散液体积的22%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解3h,加入到超声分散60min的陈化液中,在60℃下回流反应5h,其中乙醇水溶液中乙醇与水的质量比为5:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:9,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的8%;
d)在50℃下旋转蒸发干燥后在70℃下真空干燥15h,得到表面含双键的改性二氧化钛;
(1.2)将苯乙烯、TEGDMA和CQ溶解在四氢呋喃中得到电喷溶液,电喷溶液中TEGDMA占苯乙烯和TEGDMA总量的20wt%,四氢呋喃占苯乙烯和TEGDMA总量的80wt%,CQ占苯乙烯和TEGDMA总量的0.8wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以500rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为450nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中所述改性二氧化钛的加入量为电喷溶液质量的30%,静电喷雾的参数为:高压电源的输出电压13kV,喷雾口与凝固浴池的距离10cm,温度40℃,推进泵的推进速度1mL/h,推进器的直径10mm,推进器的体积6mL;
(1.4)静电喷雾结束后用乙醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,制得的包覆二氧化钛纳米颗粒的中空多孔微球,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和TEGDMA结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为1000nm,交联球的壁厚为80nm,二氧化钛纳米颗粒的直径为300nm,交联球内部二氧化钛纳米颗粒的数量为2个,交联球的表面小孔的分布密度为30~55个/1000nm2,小孔的孔径为20~30nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为540℃,热分解温度为385℃;
(2)将100份的PA切片与150份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀34min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为240℃,熔融挤出的压力为6MPa;干燥处理的温度为60℃,干燥处理的时间为32min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为80wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为1.2wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为1.68bar/g。
实施例5
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为5:240:1;
b)向混合分散液中滴加乙醇水混合液,在60℃下反应5h,室温陈化12h得到陈化液,乙醇水混合液中乙醇与水的质量比为2:1,乙醇水混合液的加入量为混合分散液体积的28%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解2.5h,加入到超声分散35min的陈化液中,在65℃下回流反应4h,其中乙醇水溶液中乙醇与水的质量比为2:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:8,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的9%;
d)在65℃下旋转蒸发干燥后在80℃下真空干燥12h,得到表面含双键的改性二氧化钛;
(1.2)将苯乙烯、D3MA和DMPOH溶解在DMF和三氯甲烷的混合物(质量比为1:2)中得到电喷溶液,电喷溶液中D3MA占苯乙烯和D3MA总量的25wt%,DMF和三氯甲烷的混合物占苯乙烯和D3MA总量的55wt%,DMPOH占苯乙烯和D3MA总量的0.9wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以250rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为460nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中所述改性二氧化钛的加入量为电喷溶液质量的35%,静电喷雾的参数为:高压电源的输出电压14kV,喷雾口与凝固浴池的距离9cm,温度45℃,推进泵的推进速度2mL/h,推进器的直径8mm,推进器的体积6mL;
(1.4)静电喷雾结束后用甲醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,制得的包覆二氧化钛纳米颗粒的中空多孔微球,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和D3MA结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为1250nm,交联球的壁厚为90nm,二氧化钛纳米颗粒的直径为330nm,交联球内部二氧化钛纳米颗粒的数量为3个,交联球的表面小孔的分布密度为1~8个/1000nm2,小孔的孔径为10~20nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为538℃,热分解温度为400℃;
(2)将100份的PA切片与90份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀30min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为255℃,熔融挤出的压力为6MPa;干燥处理的温度为70℃,干燥处理的时间为35min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为60wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为0.7wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为1.92bar/g。
实施例6
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为6:170:1;
b)向混合分散液中滴加乙醇水混合液,在62℃下反应4h,室温陈化11h得到陈化液,乙醇水混合液中乙醇与水的质量比为4:1,乙醇水混合液的加入量为混合分散液体积的24%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解2h,加入到超声分散45min的陈化液中,在70℃下回流反应4.5h,其中乙醇水溶液中乙醇与水的质量比为3:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:12,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的10%;
d)在55℃下旋转蒸发干燥后在75℃下真空干燥16h,得到表面含双键的改性二氧化钛;
(1.2)将Bis-GMA与EBPADMA的混合物(质量比为2:1)、苯乙烯以及DMPOH和CQ的混合物(质量比为1:1)溶解在二氯甲烷和四氢呋喃的混合物(质量比为1:2)中得到电喷溶液,电喷溶液中Bis-GMA与EBPADMA的混合物占苯乙烯和Bis-GMA与EBPADMA的混合物总量的20wt%,二氯甲烷和四氢呋喃的混合物占苯乙烯和Bis-GMA与EBPADMA的混合物总量的65wt%,DMPOH和CQ的混合物占苯乙烯和Bis-GMA与EBPADMA的混合物总量的1.0wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以350rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为480nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中所述改性二氧化钛的加入量为电喷溶液质量的40%,静电喷雾的参数为:高压电源的输出电压15kV,喷雾口与凝固浴池的距离8cm,温度50℃,推进泵的推进速度3mL/h,推进器的直径7mm,推进器的体积7mL;
(1.4)静电喷雾结束后用乙醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,制得的包覆二氧化钛纳米颗粒的中空多孔微球,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为1300nm,交联球的壁厚为100nm,二氧化钛纳米颗粒的直径为360nm,交联球内部二氧化钛纳米颗粒的数量为3个,交联球的表面小孔的分布密度为10~15个/1000nm2,小孔的孔径为30~40nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为545℃,热分解温度为410℃;
(2)将100份的PA切片与130份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀38min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为270℃,熔融挤出的压力为7MPa;干燥处理的温度为65℃,干燥处理的时间为30min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为20wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为1.0wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为2.38bar/g。
实施例7
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为4:230:1;
b)向混合分散液中滴加乙醇水混合液,在65℃下反应4.5h,室温陈化10h得到陈化液,乙醇水混合液中乙醇与水的质量比为2:1,乙醇水混合液的加入量为混合分散液体积的30%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解3h,加入到超声分散55min的陈化液中,在60℃下回流反应4.5h,其中乙醇水溶液中乙醇与水的质量比为4:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:10,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的9%;
d)在50℃下旋转蒸发干燥后在80℃下真空干燥16h,得到表面含双键的改性二氧化钛;
(1.2)将UDMA与D3MA的混合物(质量比为1:2)、苯乙烯以及DMPOH溶解在DMF、三氯甲烷与二氯甲烷的混合物(质量比为1:1:2)中得到电喷溶液,电喷溶液中UDMA与D3MA的混合物占苯乙烯和UDMA与D3MA的混合物总量的5wt%,DMF、三氯甲烷与二氯甲烷的混合物占苯乙烯和UDMA与D3MA的混合物总量的75wt%,DMPOH占苯乙烯和UDMA与D3MA的混合物总量的1.1wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以450rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为500nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中所述改性二氧化钛的加入量为电喷溶液质量的18%,静电喷雾的参数为:高压电源的输出电压10kV,喷雾口与凝固浴池的距离7cm,温度25℃,推进泵的推进速度1mL/h,推进器的直径6mm,推进器的体积8mL;
(1.4)静电喷雾结束后用甲醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,制得的包覆二氧化钛纳米颗粒的中空多孔微球,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为1500nm,交联球的壁厚为50nm,二氧化钛纳米颗粒的直径为300nm,交联球内部二氧化钛纳米颗粒的数量为3个,交联球的表面小孔的分布密度为14~20个/1000nm2,小孔的孔径为60~65nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为545℃,热分解温度为392℃;
(2)将100份的PA切片与150份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀40min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为260℃,熔融挤出的压力为5MPa;干燥处理的温度为80℃,干燥处理的时间为35min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为35wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为1.1wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为2.41bar/g。
实施例8
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为6:150:1;
b)向混合分散液中滴加乙醇水混合液,在67℃下反应4h,室温陈化12h得到陈化液,乙醇水混合液中乙醇与水的质量比为5:1,乙醇水混合液的加入量为混合分散液体积的26%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解2.5h,加入到超声分散30min的陈化液中,在65℃下回流反应4.5h,其中乙醇水溶液中乙醇与水的质量比为5:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:12,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的7%;
d)在70℃下旋转蒸发干燥后在70℃下真空干燥14h,得到表面含双键的改性二氧化钛;
(1.2)将Bis-GMA、EBPADMA与UDMA的混合物(质量比为1:1:1)、苯乙烯以及CQ溶解在DMF中得到电喷溶液,电喷溶液中Bis-GMA、EBPADMA与UDMA的混合物占苯乙烯和Bis-GMA、EBPADMA与UDMA的混合物总量的10wt%,DMF占苯乙烯和Bis-GMA、EBPADMA与UDMA的混合物总量的80wt%,CQ占苯乙烯和Bis-GMA、EBPADMA与UDMA的混合物总量的1.2wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以500rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为400nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中所述改性二氧化钛的加入量为电喷溶液质量的27%,静电喷雾的参数为:高压电源的输出电压12kV,喷雾口与凝固浴池的距离13cm,温度35℃,推进泵的推进速度2mL/h,推进器的直径5mm,推进器的体积9mL;
(1.4)静电喷雾结束后用甲醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,制得的包覆二氧化钛纳米颗粒的中空多孔微球,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为1500nm,交联球的壁厚为50nm,二氧化钛纳米颗粒的直径为310nm,交联球内部二氧化钛纳米颗粒的数量为4个,交联球的表面小孔的分布密度为1~5个/1000nm2,小孔的孔径为70~80nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为550℃,热分解温度为418℃;
(2)将100份的PA切片与90份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀35min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为240℃,熔融挤出的压力为7MPa;干燥处理的温度为66℃,干燥处理的时间为39min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为50wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为1.2wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为2.54bar/g。
实施例9
一种消光PA母粒的制备方法,步骤如下:
(1)制备包覆二氧化钛纳米颗粒的中空多孔微球;
(1.1)制备改性二氧化钛:
a)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液,其中混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为4:220:1;
b)向混合分散液中滴加乙醇水混合液,在70℃下反应4h,室温陈化10h得到陈化液,乙醇水混合液中乙醇与水的质量比为3:1,乙醇水混合液的加入量为混合分散液体积的20%;
c)将γ-甲基丙烯酰氧基丙基三甲氧基硅烷滴入乙醇水溶液中,在室温下搅拌水解2h,加入到超声分散60min的陈化液中,在70℃下回流反应4.5h,其中乙醇水溶液中乙醇与水的质量比为5:1,γ-甲基丙烯酰氧基丙基三甲氧基硅烷与乙醇水溶液的质量比为1:9,γ-甲基丙烯酰氧基丙基三甲氧基硅烷的加入量为陈化液中二氧化钛质量的5%;
d)在60℃下旋转蒸发干燥后在80℃下真空干燥15h,得到表面含双键的改性二氧化钛;
(1.2)将UDMA、TEGDMA与D3MA的混合物(质量比为1:2:2)、苯乙烯以及DMPOH与CQ的混合物(质量比为2:1)溶解在三氯甲烷中得到电喷溶液,电喷溶液中UDMA、TEGDMA与D3MA的混合物占苯乙烯和UDMA、TEGDMA与D3MA的混合物总量的25wt%,三氯甲烷占苯乙烯和UDMA、TEGDMA与D3MA的混合物总量的50wt%,DMPOH与CQ的混合物占苯乙烯和UDMA、TEGDMA与D3MA的混合物总量的0.5wt%;
(1.3)将表面含双键的改性二氧化钛加入到电喷溶液中以200rpm的转速机械搅拌1h使改性二氧化钛在电喷溶液中分散均匀,在波长为430nm的可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,其中所述改性二氧化钛的加入量为电喷溶液质量的39%,静电喷雾的参数为:高压电源的输出电压14kV,喷雾口与凝固浴池的距离10cm,温度45℃,推进泵的推进速度3mL/h,推进器的直径15mm,推进器的体积10mL;
(1.4)静电喷雾结束后用乙醇洗涤包覆二氧化钛纳米颗粒的中空多孔微球并干燥,制得的包覆二氧化钛纳米颗粒的中空多孔微球,主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成,其中交联球内部中空,表面多孔且具有交联结构,交联结构由含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物分子链之间相互交联形成,二氧化钛纳米颗粒与交联球之间通过共价键连接,交联球的直径为600nm,交联球的壁厚为100nm,二氧化钛纳米颗粒的直径为340nm,交联球内部二氧化钛纳米颗粒的数量为1个,交联球的表面小孔的分布密度为30~37个/1000nm2,小孔的孔径为10~13nm。包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度为546℃,热分解温度为398℃;
(2)将100份的PA切片与110份的包覆二氧化钛纳米颗粒的中空多孔微球在高速混合器内混合均匀36min后熔融挤出造粒并经干燥处理制得消光PA母粒,其中熔融挤出的温度为280℃,熔融挤出的压力为6MPa;干燥处理的温度为60℃,干燥处理的时间为40min。
最终制得的消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球,其中消光PA母粒中二氧化钛的含量为65wt%;当消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为0.6wt%。添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为2.86bar/g。
Claims (8)
1.一种消光PA母粒,其特征是:消光PA母粒中均匀分散有包覆二氧化钛纳米颗粒的中空多孔微球;
所述包覆二氧化钛纳米颗粒的中空多孔微球主要由二氧化钛纳米颗粒及包覆在二氧化钛纳米颗粒表面的交联球组成;
所述交联球内部中空,表面多孔且具有交联结构,所述交联结构由含苯乙烯和双官能度二甲基丙烯酸酯类单体结构单元的共聚物分子链之间相互交联形成;
所述二氧化钛纳米颗粒与交联球之间通过共价键连接;
所述包覆二氧化钛纳米颗粒的中空多孔微球的制备方法为:
将苯乙烯、双官能度二甲基丙烯酸酯类有机单体和光引发剂溶解在溶剂中得到电喷溶液,再将表面含双键的改性二氧化钛加入到电喷溶液中以200~500rpm的转速机械搅拌1h分散均匀,在可见光条件下进行静电喷雾制得包覆二氧化钛纳米颗粒的中空多孔微球,最后用甲醇或乙醇洗涤并干燥;
所述双官能度二甲基丙烯酸酯类有机单体为Bis-GMA、EBPADMA、UDMA、TEGDMA和D3MA中的一种以上;所述光引发剂为DMPOH和/或CQ;所述可见光的波长为400~500nm;所述溶剂为DMF、三氯甲烷、二氯甲烷和四氢呋喃中的一种以上;
所述电喷溶液中双官能度二甲基丙烯酸酯类有机单体占苯乙烯和双官能度二甲基丙烯酸酯类有机单体总量的5~25wt%,溶剂占苯乙烯和双官能度二甲基丙烯酸酯类有机单体总量的50~80wt%,光引发剂占苯乙烯和双官能度二甲基丙烯酸酯类有机单体总量的0.5~1.2wt%;所述改性二氧化钛的加入量为电喷溶液质量的15~40%;
所述静电喷雾的参数为:高压电源的输出电压10~15kV,喷雾口与凝固浴池的距离7~13cm,温度25~50℃,推进泵的推进速度1~4mL/h,推进器的直径5~15mm,推进器的体积3~10mL;
添加消光PA母粒后二氧化钛的含量为5wt%的PA树脂的过滤压力值为0.60~2.86bar/g。
2.根据权利要求1所述的一种消光PA母粒,其特征在于,所述消光PA母粒中二氧化钛的含量为20~80wt%;由消光PA母粒制备的纤维达到全消光效果时,纤维中二氧化钛的含量为0.6~1.2wt%。
3.根据权利要求1所述的一种消光PA母粒,其特征在于,所述包覆二氧化钛纳米颗粒的中空多孔微球的熔融温度>530℃,热分解温度>380℃;
所述交联球的直径为500~1500nm,所述交联球的壁厚为50~100nm;所述二氧化钛纳米颗粒的直径为300~400nm;所述交联球内部二氧化钛纳米颗粒的数量为1~4个。
4.根据权利要求3所述的一种消光PA母粒,其特征在于,当交联球内部二氧化钛纳米颗粒的数量≤2时,所述交联球的表面小孔的分布密度为1~60个/1000nm2,小孔的孔径为10~30nm;
当交联球内部二氧化钛纳米颗粒的数量>2时,所述交联球的表面小孔的分布密度为1~20个/1000nm2,小孔的孔径为10~80nm。
5.根据权利要求1所述的一种消光PA母粒,其特征在于,所述改性二氧化钛的制备步骤如下:
(1)将二氧化钛分散在无水乙醇中超声搅拌后逐滴加入钛酸正丁酯得到混合分散液;所述混合分散液中二氧化钛、无水乙醇和钛酸正丁酯的质量比为4~6:150~250:1;
(2)向混合分散液中滴加乙醇水混合液,在60~70℃下反应4~5h,室温陈化10~12h得到陈化液;所述乙醇水混合液中乙醇与水的质量比为2~5:1,所述乙醇水混合液的加入量为混合分散液体积的20~30%;
(3)将硅烷偶联剂滴入乙醇水溶液中,在室温下搅拌水解2~3h,加入到超声分散30~60min的陈化液中,在60~70℃下回流反应4~5h;所述乙醇水溶液中乙醇与水的质量比为2~5:1,所述硅烷偶联剂与乙醇水溶液的质量比为1:8~12,所述硅烷偶联剂的加入量为陈化液中二氧化钛质量的5~10%,所述硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷;
(4)在50~70℃下旋转蒸发干燥后在70~80℃下真空干燥12~16h,得到表面含双键的改性二氧化钛。
6.制备如权利要求1~5任一项所述的一种消光PA母粒的方法,其特征是:将PA切片与包覆二氧化钛纳米颗粒的中空多孔微球混合均匀后熔融挤出造粒经干燥处理制得消光PA母粒。
7.根据权利要求6所述的方法,其特征在于,按重量份数计,混合时PA切片为100份,包覆二氧化钛纳米颗粒的中空多孔微球为80~150份。
8.根据权利要求6所述的方法,其特征在于,所述混合均匀是指在高速混合器内混合30~40min;所述熔融挤出的温度为240~280℃,所述熔融挤出的压力为5~7MPa;所述干燥处理的温度为60~80℃,所述干燥处理的时间为30~40min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810029321.2A CN108059825B (zh) | 2018-01-12 | 2018-01-12 | 一种消光pa母粒及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810029321.2A CN108059825B (zh) | 2018-01-12 | 2018-01-12 | 一种消光pa母粒及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108059825A CN108059825A (zh) | 2018-05-22 |
CN108059825B true CN108059825B (zh) | 2020-05-12 |
Family
ID=62141530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810029321.2A Active CN108059825B (zh) | 2018-01-12 | 2018-01-12 | 一种消光pa母粒及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108059825B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104250350A (zh) * | 2014-09-30 | 2014-12-31 | 复旦大学 | 一种具有通孔结构的聚合物多孔材料的制备方法 |
-
2018
- 2018-01-12 CN CN201810029321.2A patent/CN108059825B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104250350A (zh) * | 2014-09-30 | 2014-12-31 | 复旦大学 | 一种具有通孔结构的聚合物多孔材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
全消光涤纶FDY生产技术;钱樟宝;《纺织学报》;20070831;第28卷(第8期);第26-30页 * |
高档全消光功能性聚酰胺66树脂加工技术;徐洁;《聚酯工业》;20130531;第26卷(第3期);第37-39页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108059825A (zh) | 2018-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108144558B (zh) | 一种包覆二氧化钛纳米颗粒的中空多孔微球及其制备方法 | |
CN108060468B (zh) | 一种消光pet纤维的熔体直纺制备方法 | |
CN106835304B (zh) | 一种静电纺丝-电动喷涂装置及其应用 | |
CN108192299A (zh) | 一种消光抗紫外高性能pet母粒及其制备方法 | |
CN108977045B (zh) | 纳米纤维素分散石墨烯化学改性水性木器涂料的方法 | |
CN103173892A (zh) | 一种纳米竹纤维复合材料的制备方法 | |
CN108246216B (zh) | 一种核壳结构有机/无机复合中空多孔微球及其制备方法 | |
CN110028702A (zh) | 一种纳米二氧化硅掺杂纳米纤维素材料及其制备方法和应用 | |
CN109706534A (zh) | 一种超高分子量聚乙烯纤维用色油及其制备方法 | |
CN108059825B (zh) | 一种消光pa母粒及其制备方法 | |
CN108277550B (zh) | 一种消光pet纤维及其切片纺制备方法 | |
CN103074733A (zh) | 一种静电纺制备温敏性半乳糖乙烯酯纳米载药纤维膜的方法 | |
CN108148364B (zh) | 一种消光抗紫外高性能pet膜及其制备方法 | |
CN113788914B (zh) | 一种sebs/at复合增韧剂及其制备方法、及高性能pet/pa6发泡材料 | |
CN108299678B (zh) | 一种聚合物用消光剂二氧化钛悬浮液的制备方法 | |
CN105506858A (zh) | 静电纺丝制备纤维素增强纳米复合纤维薄膜的方法 | |
CN104141173B (zh) | 可光固化纤维素酯纳米纤维膜的制备方法 | |
CN108728924A (zh) | 一种无卤阻燃增强尼龙66纳米纤维及其制备方法 | |
CN108164631B (zh) | 苯乙烯-双官能度单体共聚物中空多孔微球及制备方法 | |
CN102604453B (zh) | 一种木器纳米复合专用封闭漆及其制备方法 | |
CN113235227A (zh) | 一种复合薄膜的制备方法及应用 | |
CN108456947B (zh) | 一种抗紫外pet纤维及其制备方法 | |
CN1899677B (zh) | 中空纤维膜制法 | |
CN113564747B (zh) | TiO2核壳纳米粒子复合红外吸收纤维的制备方法 | |
CN113668231A (zh) | 一种改性纳米氧化锌及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |