Nothing Special   »   [go: up one dir, main page]

CN105978725B - Non-fragile distributed fault estimation method based on sensor network - Google Patents

Non-fragile distributed fault estimation method based on sensor network Download PDF

Info

Publication number
CN105978725B
CN105978725B CN201610318373.2A CN201610318373A CN105978725B CN 105978725 B CN105978725 B CN 105978725B CN 201610318373 A CN201610318373 A CN 201610318373A CN 105978725 B CN105978725 B CN 105978725B
Authority
CN
China
Prior art keywords
fault
fragile
fault estimation
distributed
estimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610318373.2A
Other languages
Chinese (zh)
Other versions
CN105978725A (en
Inventor
董宏丽
路阳
刘玉敏
步贤业
于雅静
姜寅令
吴攀超
高宏宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201610318373.2A priority Critical patent/CN105978725B/en
Publication of CN105978725A publication Critical patent/CN105978725A/en
Application granted granted Critical
Publication of CN105978725B publication Critical patent/CN105978725B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明提出一种基于传感器网络的非脆弱性分布式故障估计方法,其为一种随机发生的非线性和传感器发生随机增益变化的故障估计方法,涉及随机发生增益变化和随机发生非线性的时变系统非脆弱分布式故障估计器的设计。本发明首次把非脆弱分布式故障估计问题引入传感器网络环境下的非线性时变系统中。利用L2增益理论和随机分析技术获得充分条件,保证了所需分布式故障估计器的存在,与现有的线性故障估计方法相比,本发明的故障估计方法可以同时处理随机发生的不确定性和随机发生的非线性现象,达到抗非线性扰动的目的。

The present invention proposes a non-fragile distributed fault estimation method based on a sensor network, which is a fault estimation method for randomly occurring nonlinearity and random gain changes of sensors, involving random gain changes and random nonlinearity Design of nonfragile distributed fault estimators for variable systems. The invention first introduces the non-fragile distributed fault estimation problem into the nonlinear time-varying system under the sensor network environment. Using the L2 gain theory and stochastic analysis techniques to obtain sufficient conditions ensures the existence of the required distributed fault estimator. Compared with the existing linear fault estimation method, the fault estimation method of the present invention can simultaneously deal with random occurrence of uncertainties Non-linear phenomena that occur randomly and randomly, to achieve the purpose of resisting nonlinear disturbances.

Description

一种基于传感器网络的非脆弱性分布式故障估计方法A Nonfragile Distributed Fault Estimation Method Based on Sensor Networks

技术领域technical field

本发明属于故障诊断与主动容错控制领域,涉及一种基于传感器网络的非脆弱性分布式故障估计方法,其为一种随机发生的非线性和传感器发生随机增益变化的故障估计方法,本发明适用于非线性复杂动态系统的故障估计。The invention belongs to the field of fault diagnosis and active fault-tolerant control, and relates to a non-fragile distributed fault estimation method based on a sensor network. Fault estimation for nonlinear complex dynamic systems.

背景技术Background technique

随着现代科学技术水平的飞速发展,控制系统的规模和复杂程度日益提高,系统中的传感器、控制器和执行器数量大大增加。在这种复杂的控制系统之中,传统的点对点专线传输设计不能满足其成本效益、灵活性和可维护性等方面的要求。因此,必须将通信网络引入到控制系统,以网络为载体来连接控制系统中的不同部件。但通信网络的引入及其他部件的增加又增加了故障的发生,因此,故障估计是控制系统中一种重要的研究问题,在飞行器编队、全局定位系统、目标跟踪系统等领域的信号估计任务中获得广泛应用。With the rapid development of modern science and technology, the scale and complexity of control systems are increasing day by day, and the number of sensors, controllers and actuators in the system has increased greatly. In this complex control system, the traditional point-to-point dedicated line transmission design cannot meet the requirements of cost-effectiveness, flexibility and maintainability. Therefore, it is necessary to introduce the communication network into the control system, and use the network as a carrier to connect different components in the control system. However, the introduction of the communication network and the increase of other components have increased the occurrence of faults. Therefore, fault estimation is an important research problem in the control system. In the signal estimation tasks in the fields of aircraft formation, global positioning system, and target tracking system Get widely used.

但是,目前现有的故障估计方法不能同时处理随机发生的非线性和分布式传感器增益变化,进而影响故障估计性能。However, current existing fault estimation methods cannot simultaneously handle randomly occurring nonlinear and distributed sensor gain variations, which in turn affect fault estimation performance.

发明内容Contents of the invention

为了解决上面所述的技术问题,本发明提出一种基于传感器网络的非脆弱性分布式故障估计方法,其为一种随机发生的非线性和传感器发生随机增益变化的故障估计方法。其解决了控制系统中现有故障估计方法不能同时处理随机发生的非线性和分布式传感器增益变化,进而影响故障估计性能的问题。In order to solve the above-mentioned technical problems, the present invention proposes a non-vulnerable distributed fault estimation method based on sensor networks, which is a fault estimation method with randomly occurring nonlinearity and random gain changes of sensors. It solves the problem that the existing fault estimation methods in the control system cannot simultaneously deal with randomly occurring nonlinear and distributed sensor gain changes, thereby affecting the performance of fault estimation.

依据本发明的技术方案,一种基于传感器网络的非脆弱性分布式故障估计方法包括以下步骤:According to the technical solution of the present invention, a non-vulnerable distributed fault estimation method based on sensor networks includes the following steps:

步骤一、使用传感器网络从控制系统中,提取故障数据并预处理;Step 1. Use the sensor network to extract fault data from the control system and preprocess it;

步骤二、基于预处理的数据,建立带有随机发生增益变化和随机发生非线性现象的时变系统的非脆弱分布式故障估计器的动态模型;Step 2. Based on the preprocessed data, a dynamic model of a non-fragile distributed fault estimator for a time-varying system with randomly occurring gain changes and randomly occurring nonlinear phenomena is established;

步骤三、对具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器的动态模型进行故障估计Step 3. Fault estimation for a dynamic model of a non-fragile distributed fault estimator for nonlinear time-varying systems with stochastically occurring gain changes

步骤四、根据步骤三建立的具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器动态模型,计算故障估计误差:Step 4. Calculate the fault estimation error according to the non-fragile distributed fault estimator dynamic model of nonlinear time-varying system with stochastic gain changes established in step 3:

步骤五、根据步骤四获得的故障估计误差,获得故障估计增广系统;Step 5. Obtain the fault estimation augmentation system according to the fault estimation error obtained in step 4;

步骤六、利用故障估计增广系统,通过构建函数和利用已知的约束条件,分析故障估计器是否满足平均性能约束Step 6. Use the fault estimation augmentation system to analyze whether the fault estimator satisfies the average performance constraints by constructing functions and using known constraints

步骤七、若步骤六满足性能约束,计算故障估计器参数矩阵,实现对具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器设计。Step 7. If step 6 satisfies the performance constraints, calculate the parameter matrix of the fault estimator to realize the design of a non-fragile distributed fault estimator for nonlinear time-varying systems with randomly occurring gain changes.

本发明的故障估计方法同时考虑了随机发生增益变化和随机发生非线性存在于离散时变系统对故障估计性能的影响,利用约束条件和随机分析技术全面考虑了随机发生增益变化的有效信息,与现有的非线性复杂动态系统的故障估计方法相比,本发明的故障估计方法可以同时处理随机发生的非线性和随机发生的增益变化,得到了基于线性矩阵不等式解的故障估计方法,达到抗非线性扰动的目的,且具有易于求解与实现的优点。The fault estimation method of the present invention takes into account the influence of random gain changes and stochastic nonlinearities on the performance of fault estimation in discrete time-varying systems, and fully considers the effective information of random gain changes by using constraint conditions and stochastic analysis techniques. Compared with the existing fault estimation methods for nonlinear complex dynamic systems, the fault estimation method of the present invention can simultaneously deal with randomly occurring nonlinear and randomly occurring gain changes, and obtains a fault estimation method based on linear matrix inequality solutions, achieving anti- The purpose of nonlinear disturbance, and has the advantage of being easy to solve and implement.

附图说明Description of drawings

图1为本发明所述方法流程示意图;Fig. 1 is a schematic flow chart of the method of the present invention;

图2是传感器节点的故障估计误差示意图;Fig. 2 is a schematic diagram of a fault estimation error of a sensor node;

图3是故障信号和传感器节点对故障信号的估计示意图。Fig. 3 is a schematic diagram of the fault signal and the estimation of the fault signal by sensor nodes.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

符号说明:Symbol Description:

本文中,MT表示矩阵M的转置。Rn表示n维欧几里得空间,Rn×m表示所有n×m阶实矩阵的集合。I和0分别表示单位矩阵、零矩阵。矩阵P>0表示P为实对称正定矩阵,E{x}和E{x|y}分别代表随机变量x的数学期望和y条件下随机变量x的数学期望。||x||代表向量x的欧几里得范数。diag{A1,A2,…,An}表示对角块是矩阵A1,A2,…,An的块对角矩阵,符号*在对称块矩阵中表示对称项的省略。如果M是一个对称矩阵,则λmax(M)代表M的最大特征值。符号表示克罗内克尔乘积。若文中某处没有明确指定矩阵维数,则假定其维数适合矩阵的代数运算。Herein, MT denotes the transpose of matrix M. R n represents the n-dimensional Euclidean space, and R n×m represents the collection of all n×m order real matrices. I and 0 represent the identity matrix and the zero matrix, respectively. The matrix P>0 means that P is a real symmetric positive definite matrix, and E{x} and E{x|y} respectively represent the mathematical expectation of the random variable x and the mathematical expectation of the random variable x under the condition of y. ||x|| represents the Euclidean norm of the vector x. diag{A 1 ,A 2 ,…,A n } indicates that the diagonal block is a block diagonal matrix of the matrix A 1 ,A 2 ,…,A n , and the symbol * indicates omission of symmetric items in the symmetric block matrix. If M is a symmetric matrix, then λ max (M) represents the largest eigenvalue of M. symbol denotes the Kronecker product. Where the dimension of a matrix is not explicitly specified somewhere in the text, its dimension is assumed to be suitable for the algebraic operations on the matrix.

本发明提出的是一种在传感器网络环境下具有随机发生增益变化和随机发生非线性现象的时变系统非脆弱分布式故障估计方法,如图1-3所示。图1为本发明所述方法流程示意图。图2是传感器节点的故障估计误差示意图,图中虚线为传感器节点1的故障估计误差,带星号实线为传感器节点2的故障估计误差,点划线为传感器节点3的故障估计误差,带五角星实线为传感器节点4的故障估计误差,带叉号实线为传感器节点5的故障估计误差。图3是故障信号和传感器节点对故障信号的估计示意图,图中实线为故障信号,虚线为传感器节点1的故障估计,带星号实线为传感器节点2的故障估计,点划线为传感器节点3的故障估计,带五角星实线为传感器节点4的故障估计,带叉号实线为传感器节点5的故障估计。The present invention proposes a non-fragile distributed fault estimation method for a time-varying system with random gain changes and random nonlinear phenomena in a sensor network environment, as shown in Figures 1-3. Fig. 1 is a schematic flow chart of the method of the present invention. Figure 2 is a schematic diagram of the fault estimation error of sensor nodes. The dotted line in the figure is the fault estimation error of sensor node 1, the solid line with asterisks is the fault estimation error of sensor node 2, and the dotted line is the fault estimation error of sensor node 3. The solid line of the five-pointed star is the fault estimation error of sensor node 4, and the solid line with a cross is the fault estimation error of sensor node 5. Figure 3 is a schematic diagram of the fault signal and the estimation of the fault signal by sensor nodes. The solid line in the figure is the fault signal, the dotted line is the fault estimation of sensor node 1, the solid line with asterisks is the fault estimation of sensor node 2, and the dotted line is the sensor The fault estimation of node 3, the solid line with a five-pointed star is the fault estimation of sensor node 4, and the solid line with a cross is the fault estimation of sensor node 5.

一种基于传感器网络的非脆弱性分布式故障估计方法,该方法包括以下步骤:A non-fragile distributed fault estimation method based on sensor networks, the method includes the following steps:

步骤一、使用传感器网络从控制系统中,提取故障数据并预处理;Step 1. Use the sensor network to extract fault data from the control system and preprocess it;

步骤二、基于预处理的数据,建立带有随机发生增益变化和随机发生非线性现象的时变系统的非脆弱分布式故障估计器的动态模型;Step 2. Based on the preprocessed data, a dynamic model of a non-fragile distributed fault estimator for a time-varying system with randomly occurring gain changes and randomly occurring nonlinear phenomena is established;

步骤三、对具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器的动态模型进行故障估计Step 3. Fault estimation for a dynamic model of a non-fragile distributed fault estimator for nonlinear time-varying systems with stochastically occurring gain changes

步骤四、根据步骤三建立的具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器动态模型,计算故障估计误差:Step 4. Calculate the fault estimation error according to the non-fragile distributed fault estimator dynamic model of nonlinear time-varying system with stochastic gain changes established in step 3:

步骤五、根据步骤四获得的故障估计误差,获得故障估计增广系统;Step 5. Obtain the fault estimation augmentation system according to the fault estimation error obtained in step 4;

步骤六、利用故障估计增广系统,通过构建函数和利用已知的约束条件,分析故障估计器是否满足平均性能约束Step 6. Use the fault estimation augmentation system to analyze whether the fault estimator satisfies the average performance constraints by constructing functions and using known constraints

步骤七、若步骤六满足性能约束,计算故障估计器参数矩阵,实现对具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器设计。Step 7. If step 6 satisfies the performance constraints, calculate the parameter matrix of the fault estimator to realize the design of a non-fragile distributed fault estimator for nonlinear time-varying systems with randomly occurring gain changes.

其中,基于传感器网络的非脆弱性分布式故障估计方法中的步骤二具体为建立具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器的动态模型,其状态空间形式为:Among them, the second step in the sensor network-based non-fragile distributed fault estimation method is specifically to establish a dynamic model of a non-fragile distributed fault estimator for a nonlinear time-varying system with random gain changes, and its state space form is:

x(k+1)=A(k)x(k)+α(k)h(x(k))+D(k)w(k)+G(k)f(k) (1)x(k+1)=A(k)x(k)+α(k)h(x(k))+D(k)w(k)+G(k)f(k) (1)

故障估计器节点i的模型表达式为:The model expression for fault estimator node i is:

yi(k)=Ci(k)x(k)+Ei(k)v(k)+Hi(k)f(k)i=1,2,…,n (2)y i (k)=C i (k)x(k)+E i (k)v(k)+H i (k)f(k)i=1,2,...,n (2)

式中,表示系统的状态向量,是系统的输入干扰,为需要检测的故障。为故障估计器节点i得到的测量输出,v(k)∈l2[0,N)是外部扰动。A(k),D(k),G(k),Ci(k),Ei(k)和Hi(k)为已知的适当维度的实时变矩阵。其中随机变量用来描述随机发生的非线性现象,服从伯努利白序列分布。k∈[0,N],[0,N]={0,1,…,N}是一个有限时域空间。非线性向量值函数h(0)=0满足[h(x)-h(y)-Ψ(x-y)]T[h(x)-h(y)-Ω(x-y)]≤0,Ψ与Ω为具有相应维数的已知实数矩阵。In the formula, represents the state vector of the system, is the input disturbance of the system, for the faults to be detected. is the measurement output obtained by fault estimator node i , v(k)∈l 2 [0,N) is the external disturbance. A(k), D(k), G(k), C i (k), E i (k) and H i (k) are known real-time varying matrices of appropriate dimensions. where the random variable It is used to describe randomly occurring nonlinear phenomena and obeys the Bernoulli white sequence distribution. k∈[0,N], [0,N]={0,1,...,N} is a finite time domain space. nonlinear vector-valued function h(0)=0 satisfies [h(x)-h(y)-Ψ(xy)] T [h(x)-h(y)-Ω(xy)]≤0, Ψ and Ω have corresponding dimensions The known real matrix of numbers.

基于传感器网络的非脆弱性分布式故障估计方法中的步骤三具体为对具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器的动态模型进行故障估计;The third step in the non-fragile distributed fault estimation method based on the sensor network is specifically to perform fault estimation on the dynamic model of the non-fragile distributed fault estimator of the nonlinear time-varying system with randomly occurring gain changes;

建立故障估计器模型如下:The fault estimator model is established as follows:

式中是故障估计器节点i的状态估计向量,aij是传感器节点连接权重系数,是故障估计器节点i的输出残差,Kij(k),Hij(k)和Lij(k)是故障估计器节点i所需要求得的参数矩阵,随机变量σ1k、σ2k控制故障估计器发生增益变化的概率,数学期望为方差是ΔKij(k)和ΔHij(k)表示故障估计器产生的增益变化,ΔKij(k)=Kij(k)HaFa(k)Ea,ΔHij(k)=Hij(k)HbFb(k)Eb,其中Ha Hb Ea和Eb均为已知维数相当的矩阵,Fa(k)与Fb(k)是未知的矩阵且满足I为单位矩阵。Ni表示传感器节点的集合。In the formula is the state estimation vector of fault estimator node i, a ij is the sensor node connection weight coefficient, is the output residual of fault estimator node i, K ij (k), H ij (k) and L ij (k) are the parameter matrix required by fault estimator node i, random variables σ 1k , σ 2k control The probability of a gain change of the fault estimator, the mathematical expectation is variance is ΔK ij (k) and ΔH ij (k) represent the gain variation produced by the fault estimator, ΔK ij (k)=K ij (k)H a F a (k)E a , ΔH ij (k)=H ij ( k)H b F b (k)E b , where H a H b E a and E b are matrices with known dimensions, F a (k) and F b (k) are unknown matrices and satisfy I is the identity matrix. N i represents a collection of sensor nodes.

基于传感器网络的非脆弱性分布式故障估计方法中的步骤四具体为:根据步骤三建立的具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器动态模型,计算故障估计误差:The fourth step in the non-fragile distributed fault estimation method based on sensor networks is specifically: according to the non-fragile distributed fault estimator dynamic model of the nonlinear time-varying system with random gain changes established in step 3, calculate the fault estimation error :

残差减去故障得到故障估计误差方程:Subtracting the fault from the residual gives the fault estimation error equation:

式中,为k时刻的故障估计误差,是故障估计器的输出残差,为需要检测的故障。In the formula, is the fault estimation error at time k, is the output residual of the fault estimator, for the faults to be detected.

基于传感器网络的非脆弱性分布式故障估计方法中的步骤五具体为:根据步骤四获得的故障估计误差,获得故障估计增广系统;The fifth step in the sensor network-based non-fragile distributed fault estimation method is specifically: according to the fault estimation error obtained in step four, an augmented fault estimation system is obtained;

上式中, 式(5)矩阵的形式为:In the above formula, The form of the matrix of formula (5) is:

其中为已知常数。当时,aij=0,矩阵是稀疏矩阵, in is a known constant. when When , a ij =0, the matrix is a sparse matrix,

基于传感器网络的非脆弱性分布式故障估计方法中的步骤六具体为:利用故障估计增广系统,通过构建函数和利用已知的约束条件,分析故障估计器是否满足平均H性能约束;Step six in the non-fragile distributed fault estimation method based on sensor networks is specifically: using the fault estimation augmentation system, by constructing functions and using known constraints, analyzing whether the fault estimator satisfies the average H performance constraint;

利用公式:Use the formula:

假定故障估计器的参数矩阵Kij(k),Hij(k)和Lij(k)已知,通过构建函数(7):Assuming that the parameter matrices K ij (k), H ij (k) and L ij (k) of the fault estimator are known, by constructing the function (7):

J(k)=ηT(k+1)P(k+1)η(k+1)-ηT(k)P(k)η(k) (7)J(k)= ηT (k+1)P(k+1)η(k+1) -ηT (k)P(k)η(k) (7)

在向量ξ(k)非零的情况下,判断参数Kij(k),Hij(k)和Lij(k)是否满足平均H性能约束;公式(6)中矩阵具体形式:When the vector ξ(k) is non-zero, judge whether the parameters K ij (k), H ij (k) and L ij (k) satisfy the average H performance constraint; the specific form of the matrix in formula (6):

I2=[I 0]I1=[I 0]T I 2 =[I 0]I 1 =[I 0] T

γ>0为一个给定的正标量,Si>0(i=1,2,…,n)为一系列正定矩阵,{P(k)}0≤k≤N+1是一系列正定矩阵。diag{…}表示对角矩阵,X为矩阵,ET为矩阵E的转置,ETXT为矩阵ET和矩阵XT的乘积。表示n维欧几里得空间,表示n×m维实矩阵的集合。表示x的数学期望,表示在y的条件下x的数学期望。表示克罗内克积,||x||表示x的欧几里得范数。γ>0 is a given positive scalar, S i >0 (i=1,2,…,n) is a series of positive definite matrices, {P(k)} 0≤k≤N+1 is a series of positive definite matrices . diag{…} represents a diagonal matrix, X is a matrix, E T is the transpose of matrix E, and E T X T is the product of matrix E T and matrix X T. represents n-dimensional Euclidean space, Represents a collection of n×m dimensional real matrices. represents the mathematical expectation of x, Indicates the mathematical expectation of x conditional on y. Represents the Kronecker product, and ||x|| represents the Euclidean norm of x.

基于传感器网络的非脆弱性分布式故障估计方法中的步骤七具体为:若步骤六满足性能约束,计算故障估计器参数矩阵Kij(k)Hij(k)Lij(k)(i,j)∈ε,实现对具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器设计。Step seven in the non-fragile distributed fault estimation method based on sensor networks is specifically: if step six meets the performance constraints, calculate the fault estimator parameter matrix K ij (k)H ij (k)L ij (k)(i, j) ∈ε, enabling the design of non-fragile distributed fault estimators for nonlinear time-varying systems with randomly occurring gain changes.

进一步地,提供另一种基于传感器网络的非脆弱性分布式故障估计方法,其与上述方法不同之处在于:步骤六中所述的约束条件为:Further, another sensor network-based non-vulnerable distributed fault estimation method is provided, which is different from the above method in that the constraints described in step six are:

其中:in:

R=diag{S1,S2,…,Sn} R=diag{S 1 ,S 2 ,…,S n }

式中,为故障估计误差,ξ(k)是非零向量,给定的干扰抑制指标初始状态,为故障估计器初始状态估计向量,e(0)是初始估计误差,的转置。In the formula, is the fault estimation error, ξ(k) is a non-zero vector, and the given interference suppression index for initial state, is the initial state estimation vector of the fault estimator, e(0) is the initial estimation error, for transpose.

采用本发明所述方法进行仿真:Adopt method described in the present invention to carry out emulation:

系统参数:System parameters:

非线性函数为:The nonlinear function is:

传感器节点的参数为:The parameters of the sensor nodes are:

C1(k)=[0.5 0.1sin(2k)],C2(k)=[0.4 0.2],C3(k)=[0.6 0.4sin(2k)],C 1 (k)=[0.5 0.1 sin(2k)], C 2 (k)=[0.4 0.2], C 3 (k)=[0.6 0.4 sin(2k)],

C4(k)=[0.3sin(4k) 0],C5(k)=[0.2sin(3k) 0.1sin(2k)],E1(k)=0.1,C 4 (k)=[0.3sin(4k) 0], C 5 (k)=[0.2sin(3k) 0.1sin(2k)], E 1 (k)=0.1,

E2(k)=0.31,E3(k)=0.23,E4(k)=0.2,E5(k)=0.11,H1(k)=0.6,H2(k)=0.8,H3(k)=0.7,E 2 (k)=0.31, E 3 (k)=0.23, E 4 (k)=0.2, E 5 (k)=0.11, H 1 (k)=0.6, H 2 (k)=0.8, H 3 (k) = 0.7,

H4(k)=0.9,H5(k)=0.4,Hb=1,Eb=0.3H 4 (k)=0.9, H 5 (k)=0.4, Hb = 1, Eb = 0.3

此外,随机变量α(k)的概率为0.8,外部干扰ω(k)=exp(-k),故障信号为正定矩阵Si=diag{2,2}(i=1,2,…,5),系统的初始状x(0)=[0.26 -0.2]T,估计器的初始状态为 In addition, the probability of the random variable α(k) is 0.8, the external disturbance ω(k)=exp(-k), The fault signal is Positive definite matrix S i =diag{2,2}(i=1,2,…,5), the initial state of the system x(0)=[0.26 -0.2] T , the initial state of the estimator is

公式(6)、公式(7)和公式(8)进行求解,得到故障估计器参数矩阵Kij(k)、Hij(k)和Lij(k)满足平均H性能约束。Formula (6), formula (7) and formula (8) are solved, and the fault estimator parameter matrices K ij (k), H ij (k) and L ij (k) are obtained to satisfy the average H performance constraint.

故障估计增益求解:Fault estimation gain solution:

根据步骤七,得到故障估计器参数矩阵Kij(k)、Hij(k)和Lij(k)为如下形式:According to step seven, the fault estimator parameter matrices K ij (k), H ij (k) and L ij (k) are obtained as follows:

故障估计器效果:Fault estimator effect:

图2是传感器节点的故障估计误差示意图,图3是故障信号和传感器节点的故障估计示意图。Fig. 2 is a schematic diagram of fault estimation errors of sensor nodes, and Fig. 3 is a schematic diagram of fault signals and fault estimation of sensor nodes.

由图2、图3可见,针对具有随机发生增益变化和随机发生非线性现象的时变系统,所发明的非脆弱分布式故障估计器设计方法可有效地估计出目标状态。It can be seen from Fig. 2 and Fig. 3 that for time-varying systems with random gain changes and random nonlinear phenomena, the invented non-fragile distributed fault estimator design method can effectively estimate the target state.

本发明提出的一种基于传感器网络的非脆弱性分布式故障估计方法,其为一种随机发生的非线性和传感器发生随机增益变化的故障估计方法,涉及随机发生增益变化和随机发生非线性的时变系统非脆弱分布式故障估计器的设计。本发明解决了非脆弱分布式故障估计问题至今还没有解决的随机发生增益变化和随机发生非线性两种现象同时存在于离散时变系统,进而影响故障估计性能的难题,本发明首次把非脆弱分布式故障估计问题引入传感器网络环境下的非线性时变系统中。利用L2增益理论和随机分析技术获得充分条件,保证了所需分布式故障估计器的存在,与现有的线性故障估计方法相比,本发明的故障估计方法可以同时处理随机发生的不确定性和随机发生的非线性现象,达到抗非线性扰动的目的,本发明适用于非线性复杂动态系统的故障估计。A non-vulnerable distributed fault estimation method based on sensor networks proposed by the present invention is a fault estimation method for randomly occurring nonlinearity and random gain changes of sensors, involving stochastic gain changes and random nonlinearity Design of nonfragile distributed fault estimators for time-varying systems. The present invention solves the non-fragile distributed fault estimation problem that has not been solved so far. The two phenomena of random gain change and random nonlinearity exist in the discrete time-varying system at the same time, and then affect the performance of fault estimation. The present invention combines the non-fragile The distributed fault estimation problem is introduced into the nonlinear time-varying system under the sensor network environment. Using the L2 gain theory and stochastic analysis techniques to obtain sufficient conditions ensures the existence of the required distributed fault estimator. Compared with the existing linear fault estimation method, the fault estimation method of the present invention can simultaneously deal with random occurrence of uncertainties Non-linear phenomena that occur randomly and randomly, and achieve the purpose of resisting nonlinear disturbances. The invention is suitable for fault estimation of nonlinear complex dynamic systems.

如上述,已经清楚详细地描述了本发明提出的方法。尽管本发明的优选实施例详细描述并解释了本发明,但是本领域普通的技术人员可以理解,在不背离所附权利要求定义的本发明的精神和范围的情况下,可以在形式和细节中做出多种修改。As above, the method proposed by the present invention has been described clearly and in detail. While the preferred embodiment of the invention has been described and explained in detail, it will be understood by those skilled in the art that changes in form and details may be made without departing from the spirit and scope of the invention as defined by the appended claims. Make various modifications.

Claims (1)

1.一种基于传感器网络的非脆弱性分布式故障估计方法,该方法包括以下步骤:1. A non-fragile distributed fault estimation method based on sensor network, the method may further comprise the steps: 步骤一、使用传感器网络从控制系统中,提取故障数据并预处理;Step 1. Use the sensor network to extract fault data from the control system and preprocess it; 步骤二、基于预处理的数据,建立带有随机发生增益变化和随机发生非线性现象的时变系统的非脆弱分布式故障估计器的动态模型;Step 2. Based on the preprocessed data, a dynamic model of a non-fragile distributed fault estimator for a time-varying system with randomly occurring gain changes and randomly occurring nonlinear phenomena is established; 步骤三、对具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器的动态模型进行故障估计;Step 3, performing fault estimation on the dynamic model of the non-fragile distributed fault estimator of the nonlinear time-varying system with randomly occurring gain changes; 步骤四、根据步骤三建立的具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器动态模型,计算故障估计误差;Step 4. Calculate the fault estimation error according to the non-fragile distributed fault estimator dynamic model of the nonlinear time-varying system with randomly occurring gain changes established in step 3; 步骤五、根据步骤四获得的故障估计误差,获得故障估计增广系统;Step 5. Obtain the fault estimation augmentation system according to the fault estimation error obtained in step 4; 步骤六、利用故障估计增广系统,通过构建函数和利用已知的约束条件,分析故障估计器是否满足平均性能约束;Step 6. Utilize the fault estimation augmentation system to analyze whether the fault estimator satisfies the average performance constraint by constructing functions and using known constraints; 步骤七、若步骤六满足平均性能约束,计算故障估计器参数矩阵,实现对具有随机发生增益变化的非线性时变系统的非脆弱分布式故障估计器设计。Step 7. If step 6 satisfies the average performance constraint, calculate the fault estimator parameter matrix to realize the non-fragile distributed fault estimator design for nonlinear time-varying systems with randomly occurring gain changes.
CN201610318373.2A 2016-05-13 2016-05-13 Non-fragile distributed fault estimation method based on sensor network Active CN105978725B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610318373.2A CN105978725B (en) 2016-05-13 2016-05-13 Non-fragile distributed fault estimation method based on sensor network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610318373.2A CN105978725B (en) 2016-05-13 2016-05-13 Non-fragile distributed fault estimation method based on sensor network

Publications (2)

Publication Number Publication Date
CN105978725A CN105978725A (en) 2016-09-28
CN105978725B true CN105978725B (en) 2017-05-03

Family

ID=56992489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610318373.2A Active CN105978725B (en) 2016-05-13 2016-05-13 Non-fragile distributed fault estimation method based on sensor network

Country Status (1)

Country Link
CN (1) CN105978725B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106357794A (en) * 2016-10-11 2017-01-25 苏州继企机电科技有限公司 Distributed-network-based mechanical arm system failure detection method
CN107563103B (en) * 2017-10-16 2020-11-10 东北石油大学 A Consistency Filter Design Method Based on Local Conditions
CN108008632B (en) * 2017-12-11 2021-02-05 东北石油大学 State estimation method and system of time-lag Markov system based on protocol
CN108445759B (en) * 2018-03-13 2020-01-07 江南大学 A Random Fault Detection Method for Networked Systems Under Sensor Saturation Constraints
CN108737266B (en) * 2018-04-28 2021-02-12 国网江苏省电力有限公司苏州供电分公司 Dynamic routing method based on double estimators
CN108732926A (en) * 2018-06-05 2018-11-02 东北石油大学 Networked system method for estimating state based on insufficient information
CN108959808B (en) * 2018-07-23 2022-05-03 哈尔滨理工大学 Optimized distributed state estimation method based on sensor network
CN110262334B (en) * 2019-06-17 2021-05-28 江南大学 A finite-time H∞ control method for state-saturated systems under stochastic communication protocols
CN112051737B (en) * 2020-08-28 2021-05-28 江南大学 A finite-time-domain H∞ control method for nonlinear time-varying wind power generator system under dynamic dispatch protocol
CN112255917B (en) * 2020-10-19 2022-06-07 东北石油大学 Positioning and driving control method and device, system, electronic device and storage medium
CN113008290B (en) * 2021-03-08 2022-04-01 清华大学 Sensor composite fault detection and separation method, storage medium and electronic device
CN113204193B (en) * 2021-05-06 2022-10-25 北京航空航天大学 Aircraft fault tolerance control method, device and electronic device
CN116339355B (en) * 2023-03-03 2023-10-20 新兴际华(北京)智能装备技术研究院有限公司 Underwater vehicle and formation tracking control method and device thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714520A (en) * 2014-12-29 2015-06-17 东华大学 Fault estimation method under sensor network environment and based on Green space theory
CN104865956A (en) * 2015-03-27 2015-08-26 重庆大学 Bayesian-network-based sensor fault diagnosis method in complex system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050114023A1 (en) * 2003-11-26 2005-05-26 Williamson Walton R. Fault-tolerant system, apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714520A (en) * 2014-12-29 2015-06-17 东华大学 Fault estimation method under sensor network environment and based on Green space theory
CN104865956A (en) * 2015-03-27 2015-08-26 重庆大学 Bayesian-network-based sensor fault diagnosis method in complex system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于信息融合的控制系统故障诊断;马林立等;《红外与激光工程》;20020225;第31卷(第01期);36-40 *

Also Published As

Publication number Publication date
CN105978725A (en) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105978725B (en) Non-fragile distributed fault estimation method based on sensor network
Qin et al. Neural network-based adaptive consensus control for a class of nonaffine nonlinear multiagent systems with actuator faults
Wang et al. Distributed adaptive neural control for stochastic nonlinear multiagent systems
CN106444701B (en) Leader-follower type multi-agent system finite time Robust Fault Diagnosis design method
Li et al. Integrated fault estimation and non‐fragile fault‐tolerant control design for uncertain Takagi–Sugeno fuzzy systems with actuator fault and sensor fault
Xu et al. A Bregman splitting scheme for distributed optimization over networks
Nguyen et al. Takagi–Sugeno fuzzy observer design for nonlinear descriptor systems with unmeasured premise variables and unknown inputs
CN106547207B (en) Construction method of nonlinear multi-input multi-output system hybrid observer
Li et al. A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation
CN108732926A (en) Networked system method for estimating state based on insufficient information
Xie et al. Consensus for multi‐agent systems with distributed adaptive control and an event‐triggered communication strategy
CN111090945B (en) Actuator and sensor fault estimation design method for switching system
CN105204499A (en) Helicopter collaborative formation fault diagnosis method based on unknown input observer
CN104267716B (en) A kind of Distributed Flight Control System Fault diagnosis design method based on multi-agent Technology
Zhang et al. Decentralized adaptive output feedback fault detection and control for uncertain nonlinear interconnected systems
CN111781827B (en) Satellite formation control method based on neural network and sliding mode control
CN109491244B (en) A Fault Diagnosis Method of UAV Formation System Based on Sliding Mode Observer
Yin et al. Consensus of fractional‐order uncertain multi‐agent systems based on output feedback
Wen et al. Robust containment of uncertain linear multi‐agent systems under adaptive protocols
Yu et al. Fault‐tolerant control for descriptor stochastic systems with extended sliding mode observer approach
Xu et al. Fault‐tolerant consensus control of second‐order multi‐agent system based on sliding mode control theory
Li et al. Distributed composite output consensus protocols of higher‐order multi‐agent systems subject to mismatched disturbances
CN113325708A (en) Fault estimation method of multi-unmanned aerial vehicle system based on heterogeneous multi-agent
Lai et al. Formation tracking for nonlinear multi‐agent systems with delays and noise disturbance
Ren et al. Non-fragile H∞ filtering for nonlinear systems with randomly occurring gain variations and channel fadings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20161227

Address after: 163318 Daqing province high tech Zone, Northeast Petroleum University, Institute of electric power, Heilongjiang, 132

Applicant after: Northeast Petroleum University

Address before: Chongshan Road Huanggu District of Shenyang City, Liaoning Province, Liaoning University No. 66 110036

Applicant before: Lu Hui

GR01 Patent grant
GR01 Patent grant