CN112255917B - Positioning and driving control method and device, system, electronic device and storage medium - Google Patents
Positioning and driving control method and device, system, electronic device and storage medium Download PDFInfo
- Publication number
- CN112255917B CN112255917B CN202011115466.8A CN202011115466A CN112255917B CN 112255917 B CN112255917 B CN 112255917B CN 202011115466 A CN202011115466 A CN 202011115466A CN 112255917 B CN112255917 B CN 112255917B
- Authority
- CN
- China
- Prior art keywords
- vector
- state
- mathematical model
- decoding
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 238000003860 storage Methods 0.000 title claims abstract description 30
- 239000013598 vector Substances 0.000 claims abstract description 289
- 238000005259 measurement Methods 0.000 claims abstract description 74
- 230000002159 abnormal effect Effects 0.000 claims abstract description 53
- 238000013178 mathematical model Methods 0.000 claims description 75
- 230000006870 function Effects 0.000 claims description 69
- 238000005553 drilling Methods 0.000 claims description 60
- 239000011159 matrix material Substances 0.000 claims description 25
- 230000005856 abnormality Effects 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 17
- 230000005540 biological transmission Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 11
- 230000007613 environmental effect Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本公开涉及控制技术领域,尤其涉及一种定位行驶控制方法及装置、系统、电子设备和存储介质。The present disclosure relates to the field of control technology, and in particular, to a positioning and driving control method and device, a system, an electronic device and a storage medium.
背景技术Background technique
近些年来,作为国民生产的支柱行业,石油行业一直受着社会各界的广泛关注。海洋石油的勘探开发已有100多年的历史。海洋钻井平台作为海洋石油开采的必备装备,从一开始就与海洋石油的勘探开发同步发展。移动式钻井平台(船)不是在固定海域作业,应适应移位、不同海域、不同水深、不同方位的作业。因此对于其动力定位系统的设计一直是一个关键技术问题。In recent years, as a pillar industry of national production, the petroleum industry has been receiving extensive attention from all walks of life. The exploration and development of offshore oil has a history of more than 100 years. Offshore drilling platforms, as the necessary equipment for offshore oil exploration, have been developing simultaneously with the exploration and development of offshore oil from the very beginning. Mobile drilling platforms (ships) do not operate in fixed sea areas, and should be adapted to operations in displacement, different sea areas, different water depths and different orientations. Therefore, the design of its dynamic positioning system has always been a key technical problem.
而目前针对钻井平台动力系统的控制方法无法解决在传感器出现异常值时的情况,由于传感器长期在恶劣的环境中工作,很容易发生故障、老化等,因此所得到的输出值很可能是异常值,很大程度上偏离正常值,进而影响远程的判断,给出错误的控制信号,无法完成钻井平台位置的有效控制。另外,由于海洋钻井平台的数据通常通过网络传向远端,所以其数据传输安全问题成为系统安全人员关注的焦点。However, the current control method for the power system of the drilling platform cannot solve the situation when the sensor has abnormal value. Since the sensor works in a harsh environment for a long time, it is prone to failure and aging, so the obtained output value is likely to be an abnormal value. , which deviates from the normal value to a large extent, which affects the remote judgment, gives wrong control signals, and cannot complete the effective control of the position of the drilling platform. In addition, because the data of the offshore drilling platform is usually transmitted to the remote end through the network, the security of its data transmission has become the focus of system security personnel.
发明内容SUMMARY OF THE INVENTION
本公开提出了一种定位行驶控制方法及装置、系统、电子设备和存储介质技术方案,以实现被控对象在传感器的测量输出异常时的行驶。The present disclosure proposes a positioning driving control method, device, system, electronic device and storage medium technical scheme, so as to realize the driving of the controlled object when the measurement output of the sensor is abnormal.
根据本公开的一方面,提供了一种定位行驶控制方法,包括:According to an aspect of the present disclosure, there is provided a positioning driving control method, comprising:
根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益;Determine the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the controlled object when the sensor's measurement output is abnormal;
根据所述控制器以及第一时刻的方位信息对应的解码向量,得到第二时刻的方位信息对应的解码向量;According to the controller and the decoding vector corresponding to the orientation information at the first moment, the decoding vector corresponding to the orientation information at the second moment is obtained;
基于所述第二时刻的方位信息对应的解码向量,确定所述被控对象的行驶。Based on the decoding vector corresponding to the orientation information at the second moment, the driving of the controlled object is determined.
优选地,所述根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益的方法,包括:Preferably, the method for determining the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the controlled object when the measurement output of the sensor is abnormal, includes:
获取被控对象角度和位置对应的数学模型及所述数学模型中的传感器的测量输出异常向量;Obtain the mathematical model corresponding to the angle and position of the controlled object and the measurement output abnormal vector of the sensor in the mathematical model;
根据所述数学模型及所述测量输出异常向量确定状态观测器,以及根据解码器确定中间状态向量;Determine a state observer from the mathematical model and the measured output anomaly vector, and determine an intermediate state vector from a decoder;
根据所述状态观测器的估计向量及所述中间状态向量确定编码向量;以及,对所述编码向量进行解码,得到解码向量;Determine a coding vector according to the estimated vector of the state observer and the intermediate state vector; and, decode the coding vector to obtain a decoded vector;
根据所述解码向量及所述数学模型的状态观测模型确定所述被控对象的控制器,并求取所述控制器的增益;Determine the controller of the controlled object according to the decoding vector and the state observation model of the mathematical model, and obtain the gain of the controller;
以及/或,所述方位信息至少包括位置以及/或速度;And/or, the orientation information includes at least position and/or speed;
以及/或,所述被控对象为海洋钻井平台。And/or, the accused object is an offshore drilling platform.
优选地,所述根据所述数学模型及所述测量输出异常向量确定状态观测器的方法,包括:Preferably, the method for determining a state observer according to the mathematical model and the measurement output anomaly vector includes:
获取所述测量输出异常向量,根据所述测量输出异常向量确定饱和函数;obtaining the measurement output abnormality vector, and determining a saturation function according to the measurement output abnormality vector;
根据所述饱和函数及所述数学模型的状态观测模型确定所述状态观测器;determining the state observer according to the saturation function and the state observation model of the mathematical model;
以及/或,and/or,
所述根据解码器确定中间状态向量的方法,包括:根据数学模型的状态观测模型及所述解码器上一解码时刻解码向量,得到此时刻的中间状态向量;The method for determining an intermediate state vector according to the decoder, comprising: obtaining the intermediate state vector at this moment according to the state observation model of the mathematical model and the decoding vector at the last decoding moment of the decoder;
以及/或,所述根据所述状态观测器的估计向量及所述中间状态向量确定编码向量的方法,包括:And/or, the method for determining a coding vector according to the estimated vector of the state observer and the intermediate state vector, comprising:
根据在同一编码时刻的所述估计向量及所述中间状态向量的差值,确定编码向量。A coding vector is determined according to the difference between the estimated vector and the intermediate state vector at the same coding moment.
优选地,所述根据所述测量输出异常向量确定饱和函数的方法,包括:Preferably, the method for determining a saturation function according to the measured output anomaly vector includes:
获取所述测量输出异常向量对应的设定最大值向量;obtaining the set maximum value vector corresponding to the measurement output abnormal vector;
确定所述测量输出异常向量的绝对值;determining the absolute value of the measured output anomaly vector;
根据所述绝对值及其对应的设定最大值向量确定饱和函数的大小,以及根据所述测量输出异常向量确定所述饱和函数的符号。The magnitude of the saturation function is determined according to the absolute value and its corresponding set maximum value vector, and the sign of the saturation function is determined according to the measured output anomaly vector.
优选地,所述对所述编码向量进行解码,得到解码向量的方法,包括:Preferably, the method for decoding the encoded vector to obtain the decoded vector includes:
根据所述编码向量得到多个码字,并确定所述多个码字的对应超矩形的多个中心点;Obtain a plurality of codewords according to the coding vector, and determine a plurality of center points of the corresponding hyperrectangles of the plurality of codewords;
分别根据所述多个中心点对相应的码字进行解码,得到所述解码向量。The corresponding codewords are decoded according to the plurality of center points, respectively, to obtain the decoding vector.
优选地,所述根据所述解码向量及所述数学模型的状态观测模型确定所述被控对象的控制器,并求取所述控制器的增益的方法,包括:Preferably, the method of determining the controller of the controlled object according to the decoding vector and the state observation model of the mathematical model, and obtaining the gain of the controller, includes:
根据所述解码向量确定所述被控对象中动力设备具有待确定增益的控制器;According to the decoding vector, determine the controller of the power equipment in the controlled object with the gain to be determined;
基于所述数学模型的状态观测模型控制器确定所述被控对象闭环形式对应的数学模型;The state observation model controller based on the mathematical model determines the mathematical model corresponding to the closed-loop form of the controlled object;
根据所述闭环形式对应的数学模型及输入-状态稳定指标确定增益矩阵,并根据所述增益矩阵求解所述待确定增益,得到所述控制器的增益。A gain matrix is determined according to the mathematical model corresponding to the closed-loop form and the input-state stability index, and the to-be-determined gain is solved according to the gain matrix to obtain the gain of the controller.
根据本公开的一方面,提供了一种定位行驶控制装置,包括:According to an aspect of the present disclosure, there is provided a positioning driving control device, comprising:
增益确定单元,用于根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益;a gain determination unit, configured to determine the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the controlled object when the measurement output of the sensor is abnormal;
方位确定单元,用于根据所述控制器以及第一时刻的方位信息对应的解码向量,得到第二时刻的方位信息对应的解码向量;an orientation determining unit, configured to obtain a decoding vector corresponding to the orientation information at the second moment according to the controller and the decoding vector corresponding to the orientation information at the first moment;
定位行驶单元,基于所述第二时刻的方位信息对应的解码向量,确定所述被控对象的行驶。The positioning and driving unit determines the driving of the controlled object based on the decoding vector corresponding to the orientation information at the second moment.
根据本公开的一方面,提供了一种定位行驶控制系统,应用于海洋钻井平台,包括:According to an aspect of the present disclosure, a positioning and driving control system is provided, applied to an offshore drilling platform, including:
钻井平台动力系统;Drilling platform power system;
所述钻井平台动力系统,用于根据所述海洋钻井平台在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益;以及根据所述控制器以及第一时刻的方位信息对应的解码向量,得到第二时刻的方位信息对应的解码向量;The drilling platform power system is used to determine the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the offshore drilling platform when the sensor's measurement output is abnormal; and corresponding to the controller and the orientation information at the first moment. to obtain the decoding vector corresponding to the orientation information at the second moment;
所述钻井平台动力系统基于所述第二时刻的方位信息对应的解码向量,确定所述海洋钻井平台的行驶。The drilling platform power system determines the running of the offshore drilling platform based on the decoding vector corresponding to the orientation information at the second moment.
根据本公开的一方面,提供了一种电子设备,包括:According to an aspect of the present disclosure, there is provided an electronic device, comprising:
处理器;processor;
用于存储处理器可执行指令的存储器;memory for storing processor-executable instructions;
其中,所述处理器被配置为:执行上述定位行驶控制方法。Wherein, the processor is configured to: execute the above positioning driving control method.
根据本公开的一方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述定位行驶控制方法。According to an aspect of the present disclosure, there is provided a computer-readable storage medium having computer program instructions stored thereon, the computer program instructions implementing the above positioning driving control method when executed by a processor.
在本公开实施例中,提出了一种定位行驶控制方法及装置、系统、电子设备和存储介质技术方案,以实现被控对象在传感器的测量输出异常时的行驶。解决了传感器产生异常值时,给行驶带来影响的问题。In the embodiments of the present disclosure, a positioning driving control method and device, system, electronic device and storage medium technical solution are proposed, so as to realize the driving of the controlled object when the measurement output of the sensor is abnormal. Solved the problem that when the sensor generates abnormal values, it will affect the driving.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。Other features and aspects of the present disclosure will become apparent from the following detailed description of exemplary embodiments with reference to the accompanying drawings.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate embodiments consistent with the present disclosure, and together with the description, serve to explain the technical solutions of the present disclosure.
图1示出根据本公开实施例的定位行驶控制方法的流程图;FIG. 1 shows a flowchart of a positioning driving control method according to an embodiment of the present disclosure;
图2示出根据本公开实施例的定位行驶控制系统的框图;FIG. 2 shows a block diagram of a positioning driving control system according to an embodiment of the present disclosure;
图3示出根据本公开实施例的扰动分量(环境干扰向量)图;3 illustrates a graph of disturbance components (environmental disturbance vectors) according to an embodiment of the present disclosure;
图4示出根据本公开实施例的海洋钻井平台动力定位闭环系统实际状态向量x1,k,状态估计向量轨迹以及解码向量轨迹;Fig. 4 shows the actual state vector x 1,k of the closed-loop system of dynamic positioning of the offshore drilling platform according to the embodiment of the present disclosure, and the trajectory of the state estimation vector and the decoded vector track;
图5是本发明实施例提供的海洋钻井平台动力定位闭环系统实际状态向量x2,k,状态估计轨迹以及解码向量轨迹;FIG. 5 is the actual state vector x 2,k of the closed-loop dynamic positioning system of the offshore drilling platform provided by the embodiment of the present invention, and the state estimation trajectory and the decoded vector track;
图6是本发明实施例提供的海洋钻井平台动力定位闭环系统的解码误差w1,k以及w2,k轨迹;Fig. 6 is the decoding error w 1,k and w 2,k trajectories of the closed-loop system of dynamic positioning of the offshore drilling platform provided by the embodiment of the present invention;
图7是根据一示例性实施例示出的一种电子设备800的框图;FIG. 7 is a block diagram of an
图8是根据一示例性实施例示出的一种电子设备1900的框图。FIG. 8 is a block diagram of an
具体实施方式Detailed ways
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。Various exemplary embodiments, features and aspects of the present disclosure will be described in detail below with reference to the accompanying drawings. The same reference numbers in the figures denote elements that have the same or similar functions. While various aspects of the embodiments are shown in the drawings, the drawings are not necessarily drawn to scale unless otherwise indicated.
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。The term "and/or" in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently B these three cases. In addition, the term "at least one" herein refers to any combination of any one of the plurality or at least two of the plurality, for example, including at least one of A, B, and C, and can mean including from A, B, and C. Any one or more elements selected from the set of B and C.
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。In addition, in order to better illustrate the present disclosure, numerous specific details are set forth in the following detailed description. It will be understood by those skilled in the art that the present disclosure may be practiced without certain specific details. In some instances, methods, means, components and circuits well known to those skilled in the art have not been described in detail so as not to obscure the subject matter of the present disclosure.
可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。It can be understood that the above-mentioned method embodiments mentioned in the present disclosure can be combined with each other to form a combined embodiment without violating the principle and logic.
此外,本公开还提供了定位行驶控制装置、控制系统、电子设备、计算机可读存储介质、程序,上述均可用来实现本公开提供的任一种定位行驶控制方法,相应技术方案和描述和参见方法部分的相应记载,不再赘述。In addition, the present disclosure also provides a positioning and driving control device, a control system, an electronic device, a computer-readable storage medium, and a program, all of which can be used to implement any positioning and driving control method provided by the present disclosure. For the corresponding technical solutions and descriptions, refer to The corresponding records in the method part are not repeated here.
在本公开的实施例中,MT表示矩阵M的转置,M-1表示矩阵M的逆阵。表示n维欧几里得空间,表示所有n×m阶实矩阵的集合。表示整数集合。I和0分别表示单位矩阵、零矩阵。矩阵P>0表示P为实对称正定矩阵,和分别代表随机变量x的数学期望和y条件下随机变量x的数学期望。||x||代表向量x的欧几里得范数。diag{A1,A2,…,An}表示对角块是矩阵A1,A2,...,An的块对角矩阵,符号*在对称块矩阵中表示对称项的省略。如果M表示一个对称矩阵,那么λmax(M),λmin(M)分别表示M的最大及最小特征值。符号表示克罗内克乘积运算。如果函数是严格递增的,那么称γ(·)为类函数。如果并且当s→∞时,γ(s)→∞,那么我们称函数γ(·)为类函数。对于映射如果对于确定的k为类函数,并且对于确定的s,当k→∞,值为0,那么称为类函数。若说明书中没有明确指定矩阵维数,则假定其维数适合矩阵的代数运算。In the embodiment of the present disclosure, MT represents the transpose of the matrix M, and M −1 represents the inverse of the matrix M. represents an n-dimensional Euclidean space, represents the set of all real matrices of order n×m. Represents a collection of integers. I and 0 represent the identity matrix and the zero matrix, respectively. The matrix P>0 means that P is a real symmetric positive definite matrix, and represent the mathematical expectation of the random variable x and the mathematical expectation of the random variable x under the condition of y, respectively. ||x|| represents the Euclidean norm of the vector x. diag{A 1 ,A 2 ,…,A n } indicates that the diagonal block is a block diagonal matrix of matrices A 1 ,A 2 ,...,A n , and the symbol * in the symmetric block matrix indicates the omission of symmetric terms. If M represents a symmetric matrix, then λ max (M) and λ min (M) represent the largest and smallest eigenvalues of M, respectively. symbol Represents the Kronecker product operation. if function is strictly increasing, then γ( ) is called as class function. if And when s→∞, γ(s)→∞, then we call the function γ(·) as class function. for mapping If for a certain k is class function, and for a certain s, when k→∞, the value is 0, then it is called for class function. If the matrix dimension is not explicitly specified in the specification, it is assumed that its dimension is suitable for the algebraic operation of the matrix.
图1示出根据本公开实施例的定位行驶控制方法的流程图,如图1所示,所述定位行驶控制方法,包括:步骤S101:根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益;步骤S102:根据所述控制器以及第一时刻的方位信息对应的解码向量,得到第二时刻的方位信息对应的解码向量;步骤S103:基于所述第二时刻的方位信息对应的解码向量,确定(控制)所述被控对象的行驶。以实现被控对象在传感器的测量输出异常时的行驶。解决了传感器产生异常值时,给行驶带来影响的问题。其中,第一时刻为在第二时刻之前的时刻,例如:第一时刻为上午9:00,第二时刻为上午9:05。FIG. 1 shows a flowchart of a positioning driving control method according to an embodiment of the present disclosure. As shown in FIG. 1 , the positioning driving control method includes: step S101 : according to the orientation information of the controlled object when the measurement output of the sensor is abnormal The corresponding decoding vector determines the gain corresponding to the controller; Step S102: According to the controller and the decoding vector corresponding to the bearing information at the first moment, obtain the decoding vector corresponding to the bearing information at the second moment; Step S103: Based on the first moment The decoded vector corresponding to the orientation information at the two moments determines (controls) the driving of the controlled object. In order to realize the driving of the controlled object when the measurement output of the sensor is abnormal. Solved the problem that when the sensor generates abnormal values, it will affect the driving. The first time is the time before the second time, for example, the first time is 9:00 am, and the second time is 9:05 am.
本公开在确定控制器对应的增益后,控制器可以根据第一时刻的方位信息对应的解码向量得到第二时刻的方位信息对应的解码向量,所述被控对象基于所述第二时刻的方位信息对应的解码向量进行行驶。本公开引入编码解码通信协议,使数据在传输过程中即使被窃取也没有办法获得真实的数据,有效的避免了数据不安全的现象。因此,本公开不仅理论上具有创新性,而且也能满足工程应用需求。In the present disclosure, after the gain corresponding to the controller is determined, the controller can obtain the decoding vector corresponding to the orientation information at the second moment according to the decoding vector corresponding to the orientation information at the first moment, and the controlled object is based on the orientation at the second moment. The decoding vector corresponding to the information is used for driving. The present disclosure introduces an encoding and decoding communication protocol, so that even if the data is stolen during the transmission process, there is no way to obtain the real data, which effectively avoids the phenomenon of data insecurity. Therefore, the present disclosure is not only innovative in theory, but also can meet the needs of engineering applications.
步骤S101:根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益。Step S101: Determine the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the controlled object when the measurement output of the sensor is abnormal.
在本公开中,所述根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益的方法,包括:获取被控对象角度和位置测量对应的数学模型及所述数学模型中的传感器的测量输出异常向量;根据所述数学模型及所述测量输出异常向量确定状态观测器,以及根据解码器确定中间状态向量;根据所述状态观测器的估计向量及所述中间状态向量确定编码向量;以及,对所述编码向量进行解码,得到解码向量;根据所述解码向量及所述数学模型的状态观测模型确定所述被控对象的控制器,并求取所述控制器的增益。其中,所述方位信息至少包括位置以及/或速度;所述被控对象可为海洋钻井平台。In the present disclosure, the method for determining the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the controlled object when the measurement output of the sensor is abnormal includes: obtaining the mathematical model corresponding to the angle and position measurement of the controlled object and the The measurement output abnormal vector of the sensor in the mathematical model; the state observer is determined according to the mathematical model and the measurement output abnormal vector, and the intermediate state vector is determined according to the decoder; according to the estimated vector of the state observer and the The intermediate state vector determines a coding vector; and, decode the coding vector to obtain a decoding vector; determine the controller of the controlled object according to the decoding vector and the state observation model of the mathematical model, and obtain the Controller gain. Wherein, the orientation information includes at least position and/or speed; the controlled object may be an offshore drilling platform.
在本公开的实施例中,在所述获取被控对象角度和位置对应的数学模型之前,确定所述数学模型,所述确定所述数学模型的方法,包括:获取所述被控对象的环境干扰向量、动力设备的控制输入向量以及方位信息对应的向量;基于所述环境干扰向量、动力设备的控制输入向量以及方位信息对应的向量确定所述数学模型。In an embodiment of the present disclosure, before acquiring the mathematical model corresponding to the angle and position of the controlled object, the mathematical model is determined, and the method for determining the mathematical model includes: acquiring the environment of the controlled object The interference vector, the control input vector of the power equipment, and the vector corresponding to the orientation information; the mathematical model is determined based on the environmental disturbance vector, the control input vector of the power equipment, and the vector corresponding to the orientation information.
例如,可以通过位置传感器和速度传感器实时测量钻井平台在三个不同自由度上的位置和速度测量信息,三个不同自由度上的位置和速度测量信息为方位信息对应的向量,被控对象的环境干扰向量为风、浪、流等环境干扰力(非线性外部扰动信号),动力设备的控制输入向量为控制输入信号(向量),基于所述环境干扰向量、动力设备的控制输入向量以及方位信息对应的向量确定所述数学模型。For example, the position and velocity measurement information of the drilling platform in three different degrees of freedom can be measured in real time through the position sensor and the velocity sensor. The position and velocity measurement information in the three different degrees of freedom is the vector corresponding to the orientation information. The environmental disturbance vector is the environmental disturbance force (non-linear external disturbance signal) such as wind, wave and current, and the control input vector of the power equipment is the control input signal (vector), based on the environmental disturbance vector, the control input vector of the power equipment and the orientation The vector corresponding to the information determines the mathematical model.
在本公开的实施例中,所述数学模型,包括:状态观测模型以及传感器测量输出模型;所述状态观测模型,用于根据K时刻的所述扰动分量、动力设备的控制输入向量及方位信息确定K+1时刻的方位信息;所述传感器测量输出模型,用于测量K时刻的方位信息对应的测量输出。In the embodiment of the present disclosure, the mathematical model includes: a state observation model and a sensor measurement output model; the state observation model is used for the disturbance component at time K, the control input vector of the power equipment, and the orientation information The orientation information at
在本公开的实施例中,所述状态观测模型的确定方法,包括:确定所述环境干扰向量对应的非线性外部扰动函数,以及根据K时刻的所述方位信息对应的向量及所述非线性外部扰动函数确定K时刻的扰动分量;根据K时刻的所述扰动分量、动力设备的控制输入向量及方位信息以及K+1时刻的方位信息确定所述状态观测模型的系数矩阵;基于所述系数矩阵及对应的K时刻的所述扰动分量、动力设备的控制输入向量及方位信息确定所述状态观测模型。具体地说,可以对环境干扰向量做线性回归,得到环境干扰向量对应的非线性外部扰动函数。同理,可以对K时刻的所述扰动分量、动力设备的控制输入向量及方位信息以及K+1时刻的方位信息做线性回归,确定所述状态观测模型的系数矩阵。In the embodiment of the present disclosure, the method for determining the state observation model includes: determining a nonlinear external disturbance function corresponding to the environmental disturbance vector, and a vector corresponding to the orientation information at time K and the nonlinear The external disturbance function determines the disturbance component at time K; determines the coefficient matrix of the state observation model according to the disturbance component at time K, the control input vector and orientation information of the power equipment, and the orientation information at
在本公开的实施例中,给出了海洋钻井平台的动力定位系统的数学模型,数学模型包括高频运动和低频运动模型;风、浪、流等环境干扰力(非线性外部扰动信号)的数学模型以及推力器的动态数学模型。海洋钻井平台的数学模型,如下:In the embodiment of the present disclosure, the mathematical model of the dynamic positioning system of the offshore drilling platform is given, and the mathematical model includes high-frequency motion and low-frequency motion models; Mathematical models and dynamic mathematical models of thrusters. The mathematical model of the offshore drilling platform is as follows:
在公式(1)中,为K时刻钻井平台位置及速度信息组成的状态向量,初始状态为s0满足‖s0‖2≤0,其中‖‖2为2范数,0为设定已知常数;为K时刻传感器的测量输出;为推力器(动力设备)的控制输入信号(向量);为非线性外部扰动函数。系数矩阵E,D,B,N为适当维数的实值矩阵。In formula (1), is the state vector composed of the position and velocity information of the drilling platform at time K, the initial state is s 0 satisfies ‖s 0 ‖ 2 ≤ 0 , where ‖‖ 2 is the 2 norm, and 0 is a known constant; is the measurement output of the sensor at time K; It is the control input signal (vector) of the thruster (power equipment); is a nonlinear external disturbance function. The coefficient matrices E, D, B, N are real-valued matrices of appropriate dimensions.
在本公开中,所述根据所述数学模型及所述测量输出异常向量确定状态观测器的方法,包括:获取所述测量输出异常向量,根据所述测量输出异常向量确定饱和函数;根据所述饱和函数及所述数学模型的状态观测模型确定所述状态观测器。本公开引入饱和函数来缓解传感器异常值给系统性能带来的影响。In the present disclosure, the method for determining a state observer according to the mathematical model and the measurement output abnormality vector includes: acquiring the measurement output abnormality vector, determining a saturation function according to the measurement output abnormality vector; A saturation function and a state observation model of the mathematical model determine the state observer. The present disclosure introduces a saturation function to alleviate the impact of sensor outliers on system performance.
在本公开的实施例中,数学模型及可能出现的传感器的测量输出大于或等于设定值(向量),则认为是测量输出异常值(向量)。例如,大于或等于设定值(向量),则认为是测量输出异常值(向量)。In the embodiment of the present disclosure, if the measurement output of the mathematical model and the possible sensor is greater than or equal to the set value (vector), it is regarded as an abnormal value (vector) of the measurement output. E.g, If it is greater than or equal to the set value (vector), it is considered to be an abnormal value (vector) of the measurement output.
在本公开中,所述根据所述测量输出异常向量确定饱和函数的方法,包括:获取所述测量输出异常向量对应的设定最大值向量;确定所述测量输出异常向量的绝对值;根据所述绝对值及其对应的设定最大值向量确定饱和函数的大小,以及根据所述测量输出异常向量确定所述饱和函数的符号。In the present disclosure, the method for determining a saturation function according to the measurement output abnormality vector includes: acquiring a set maximum value vector corresponding to the measurement output abnormality vector; determining the absolute value of the measurement output abnormality vector; The magnitude of the saturation function is determined by the absolute value and its corresponding set maximum vector, and the sign of the saturation function is determined according to the measured output anomaly vector.
其中,所述根据所述绝对值及其对应的设定最大值向量确定饱和函数的大小的方法为,取所述绝对值及其对应的设定最大值向量的最小值确定饱和函数的大小。Wherein, the method for determining the size of the saturation function according to the absolute value and its corresponding set maximum value vector is to take the minimum value of the absolute value and its corresponding set maximum value vector to determine the size of the saturation function.
在本公开的实施例中,根据所述饱和函数及所述数学模型的状态观测模型确定所述状态观测器,其形式如下:In the embodiment of the present disclosure, the state observer is determined according to the saturation function and the state observation model of the mathematical model, and its form is as follows:
在公式(2)中为状态在k时刻的估计向量;为状态在k+1时刻的估计向量;为估计向量的初始向量;Ke为待设计的观测器增益;为饱和函数,用来抵抗传感器异常值,定义如下:In formula (2) state the estimated vector at time k; state The estimated vector at
其中,为在设定最大值向量中的第ι个元素对应的设定最大值,其中sign为符号函数。yn为k时刻(n时刻)传感器的测量输出;在k时刻(n时刻)的估计向量。in, is in the set maximum vector The set maximum value corresponding to the ith element of , where sign is a sign function. y n is the measurement output of the sensor at time k (time n); The estimated vector at time k (time n).
为了确保上述步骤二中饱和上下限选择的合理性,利用计算机对现有钻井平台已有的大量数据进行统计与分析,进而来选择饱和函数的设定最大值为 In order to ensure the rationality of the selection of the upper and lower limits of saturation in the
在本公开中,引入了编码解码机制,保证数据在传输过程中的安全性。所述根据解码器确定中间状态向量的方法,包括:根据数学模型的状态观测模型及所述解码器上一解码时刻解码向量,得到此时刻的中间状态向量。In the present disclosure, an encoding and decoding mechanism is introduced to ensure the security of data during transmission. The method for determining the intermediate state vector according to the decoder includes: decoding the vector according to the state observation model of the mathematical model and the decoder at the last decoding time to obtain the intermediate state vector at this time.
在本公开的实施例中,将上一解码时刻解码向量带入数学模型的状态观测模型得到此时刻的中间状态向量即:In the embodiment of the present disclosure, the decoding vector at the last decoding time is The state observation model brought into the mathematical model gets the intermediate state vector at this moment which is:
其中,时刻k与编码时刻ld相对应。 The time k corresponds to the encoding time ld.
在本公开中,所述根据所述状态观测器的估计向量及所述中间状态向量确定编码向量的方法,包括:根据在同一编码时刻的所述估计向量及所述中间状态向量的差值,确定编码向量。In the present disclosure, the method for determining a coding vector according to the estimated vector of the state observer and the intermediate state vector includes: according to the difference between the estimated vector and the intermediate state vector at the same coding moment, Determine the encoding vector.
在本公开的实施例中,根据在同一编码时刻的所述估计向量及所述中间状态向量的差值,确定编码向量ζ(ld)。In the embodiment of the present disclosure, the encoding vector ζ(ld) is determined according to the difference between the estimated vector and the intermediate state vector at the same encoding moment.
在本公开的实施例中,所述对所述编码向量进行解码,得到解码向量的方法,包括:根据所述编码向量得到多个码字,并确定所述多个码字的对应超矩形的多个中心点;分别根据所述多个中心点对相应的码字进行解码,得到所述解码向量。In the embodiment of the present disclosure, the method for decoding the encoding vector to obtain the decoding vector includes: obtaining a plurality of codewords according to the encoding vector, and determining the corresponding hyperrectangles of the plurality of codewords. a plurality of center points; the corresponding codewords are decoded according to the plurality of center points, respectively, to obtain the decoding vector.
对于对编码向量ζ(ld)编码得到一系列多码字求一系列多码字对应超矩形的中心点,其中,超矩形具有多个子超矩形例如,每个子超矩形内具有中心点;利用子超矩形内的中心点对相应的码字进行解码。其中,nx为编码向量的维数,超矩形c为编码区间,q为编码区间划分的个数,d为编码步长,l=1,2,3...,其中ld为编码时刻,其中‖‖2为2范数。for Encode the encoding vector ζ(ld) to get a series of multi-codewords Find the center point of a series of multi-codewords corresponding to a hyperrectangle, where the hyperrectangle has multiple sub-hyperrectangles For example, each sub-super-rectangle has a center point; the corresponding codeword is decoded using the center point in the sub-super-rectangle. Among them, nx is the dimension of the encoding vector, the super rectangle c is the coding interval, q is the number of divisions of the coding interval, d is the coding step size, l=1, 2, 3..., where ld is the coding time, and ‖‖ 2 is the 2 norm.
其中,根据状态观测器得到的在k时刻的估计向量时刻k与编码时刻ld对应(时刻K=时刻ld)时,将转换为其中编码时刻ld属于状态观测器输出的时段。例如:编码时刻ld为3、6、9,则状态观测器输出的时段K为1-10任何一个整数值。根据动态数学模型及上一解码时刻ld-1解码向量得到此时刻ld的中间状态向量 Among them, the estimated vector at time k obtained according to the state observer When the time k corresponds to the encoding time ld (time K=time ld), the convert to Among them, the coding time ld belongs to the period of the output of the state observer. For example, if the coding time ld is 3, 6, or 9, the period K output by the state observer is any integer value from 1 to 10. According to the dynamic mathematical model and the last decoding time ld-1 decoding vector Get the intermediate state vector of ld at this moment
在编码过程中,编码器根据其形式如下的公式进行编码:During encoding, the encoder encodes according to a formula whose form is:
不在编码时刻,即时刻K不等于编码时刻ld,将k时刻的解码向量赋值给k时刻的中间状态向量;根据动态数学模型及上一解码时刻ld-1解码向量得到此时刻ld的中间状态向量 If it is not at the encoding time, that is, the time K is not equal to the encoding time ld, the decoding vector at time k is assigned to the intermediate state vector at time k; according to the dynamic mathematical model and the previous decoding time ld-1 decoding vector Get the intermediate state vector of ld at this moment
解码器其形式如下的公式进行解码:The decoder decodes with a formula of the form:
对编码向量ζ(ld)编码得到一系列码字 Encode the coding vector ζ(ld) to get a series of codewords
求一系列码字对应超矩形的中心点,其中,超矩形具有多个子超矩形,每个子超矩形内具有中心点;利用每个子超矩形内的中心点对相应的码字进行解码。Find the center point of a series of codewords corresponding to the super-rectangle, wherein the super-rectangle has multiple sub-super-rectangles, and each sub-super-rectangle has a center point; use the center point in each sub-super-rectangle to decode the corresponding codeword.
其中,c为编码向量的编码区间,q为编码区间划分的个数。 Among them, c is the coding interval of the coding vector, and q is the number of divisions of the coding interval.
在本公开的实施例中,在编码解码机制设置的过程中,编码周期d和量化区间个数q会很大程度影响解码误差进而影响控制器性能。因此,编码周期大小与量化区间个数可以根据钻井平台实际运行工况进行实时调整,本公开可以选择d=3,q=10。In the embodiment of the present disclosure, in the process of setting the encoding and decoding mechanism, the encoding period d and the number of quantization intervals q will greatly affect the decoding error and thus affect the performance of the controller. Therefore, the size of the coding period and the number of quantization intervals can be adjusted in real time according to the actual operating conditions of the drilling platform, and d=3 and q=10 can be selected in the present disclosure.
在公开中,所述根据所述解码向量及所述数学模型的状态观测模型确定所述被控对象的控制器,并求取所述控制器的增益的方法,包括:根据所述解码向量确定所述被控对象中动力设备具有待确定增益的控制器基于所述数学模型的状态观测模型控制器确定所述被控对象闭环形式对应的数学模型;根据所述闭环形式对应的数学模型及输入-状态稳定指标确定增益矩阵,并根据所述增益矩阵求解所述待确定增益,得到所述控制器的增益。In the disclosure, the method of determining the controller of the controlled object according to the decoding vector and the state observation model of the mathematical model, and obtaining the gain of the controller, includes: determining according to the decoding vector The power equipment in the controlled object has a controller with a gain to be determined The state observation model controller based on the mathematical model determines the mathematical model corresponding to the closed-loop form of the controlled object; determines the gain matrix according to the mathematical model corresponding to the closed-loop form and the input-state stability index, and solves the problem according to the gain matrix The to-be-determined gain is the gain of the controller.
在本公开的实施例中,基于解码所得到海洋钻井平台的位置及速度对应的解码向量令动力设备设计控制器,进而得到被控对象的闭环形式对应的数学模型,即海洋钻井平台动力定位闭环系统,其形式如下:In the embodiment of the present disclosure, the decoding vector corresponding to the position and speed of the offshore drilling platform obtained by decoding power equipment Design the controller, and then obtain the mathematical model corresponding to the closed-loop form of the controlled object, that is, the closed-loop dynamic positioning system of the offshore drilling platform, and its form is as follows:
xk+1=(E+BKc)xk+Df(xk)+BKcwk (4);x k+1 =(E+BK c )x k +Df(x k )+BK c w k (4);
其中,Kc为待确定增益,解码误差 Among them, K c is the gain to be determined, and the decoding error
运用输入-状态稳定性定理并求解下列凸优化问题即可获得控制器增益矩阵:The controller gain matrix can be obtained by applying the input-state stability theorem and solving the following convex optimization problem:
其中,Q,Z为待求正定矩阵,矩阵G11,G12,G22,以及正标量μ3待求。另外Γ=[B(BTB)-1(BT)⊥]T,B⊥为BT的零空间正交基,也就是BTB⊥=0。控制器的待确定增益为 Among them, Q, Z are positive definite matrices to be obtained, matrices G 11 , G 12 , G 22 , and the positive scalar μ3 to be found. in addition Γ=[B(B T B) -1 (B T ) ⊥ ] T , B ⊥ is the null space orthonormal basis of B T , that is, B T B ⊥ =0. The to-be-determined gain of the controller is
基于上述步骤S101,本公开实质上提出了一种测量输出异常时的控制器确定方法及装置、控制系统、电子设备及存储介质,包括:根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益。以实现被控对象在传感器的测量输出异常时的行驶。解决了传感器产生异常值时,给行驶带来影响的问题。Based on the above step S101, the present disclosure essentially proposes a controller determination method and device, a control system, an electronic device and a storage medium when the measurement output is abnormal, including: orientation information of the controlled object when the measurement output of the sensor is abnormal The corresponding decoding vector determines the corresponding gain of the controller. In order to realize the driving of the controlled object when the measurement output of the sensor is abnormal. Solved the problem that when the sensor generates abnormal values, it will affect the driving.
在本公开公开的实施例中,所述根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益的方法,包括:获取被控对象角度和位置对应的数学模型及所述数学模型中的传感器的测量输出异常向量;根据所述数学模型及所述测量输出异常向量确定状态观测器,以及根据解码器确定中间状态向量;根据所述状态观测器的估计向量及所述中间状态向量确定编码向量;以及,对所述编码向量进行解码,得到解码向量;根据所述解码向量及所述数学模型的状态观测模型确定所述被控对象的控制器,并求取所述控制器的增益。其中,所述方位信息至少包括位置以及/或速度;所述被控对象为海洋钻井平台的动力装置。具体可详见上述定位控制方法中的详细说明。In the embodiments disclosed in the present disclosure, the method for determining the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the controlled object when the sensor's measurement output is abnormal includes: acquiring mathematical equations corresponding to the angle and position of the controlled object. Model and measurement output anomaly vector of the sensor in the mathematical model; determine a state observer according to the mathematical model and the measurement output anomaly vector, and determine an intermediate state vector according to the decoder; according to the estimated vector of the state observer and the intermediate state vector to determine a coding vector; and, decode the coding vector to obtain a decoded vector; determine the controller of the controlled object according to the decoded vector and the state observation model of the mathematical model, and find Take the gain of the controller. Wherein, the orientation information includes at least position and/or speed; the controlled object is a power device of an offshore drilling platform. For details, please refer to the detailed description in the above positioning control method.
步骤S102:根据所述控制器以及第一时刻的方位信息对应的解码向量,得到第二时刻的方位信息对应的解码向量。Step S102: Obtain a decoding vector corresponding to the orientation information at the second moment according to the controller and the decoding vector corresponding to the orientation information at the first moment.
本公开在确定控制器对应的增益后,控制器可以根据第一时刻的方位信息对应的解码向量得到第二时刻的方位信息对应的解码向量,所述被控对象基于所述第二时刻的方位信息对应的解码向量进行行驶。其中,所述方位信息至少包括位置以及/或速度,第一时刻为在第二时刻之前的时刻,例如:第一时刻为上午9:00,第二时刻为上午9:05。同时,本公开利用编码解码机制保证数据在网络传输过程中的安全。In the present disclosure, after the gain corresponding to the controller is determined, the controller can obtain the decoding vector corresponding to the orientation information at the second moment according to the decoding vector corresponding to the orientation information at the first moment, and the controlled object is based on the orientation at the second moment. The decoding vector corresponding to the information is used for driving. The orientation information includes at least position and/or speed, and the first time is the time before the second time, for example, the first time is 9:00 am and the second time is 9:05 am. At the same time, the present disclosure utilizes an encoding and decoding mechanism to ensure the security of data during network transmission.
在本公开的实施例中,被控对象的闭环形式对应的数学模型为xk+1=(E+BKc)xk+Df(xk)+BKcwk,其中待确定增益Kc已经在上述方法中确定,为已知量。基于第一时刻K的方位信息xk对应的解码向量(第一时刻的位置及速度对应的解码向量)通过被控对象的闭环形式对应的数学模型(控制器),可以得到第一时刻K下一时刻的第二时刻K+1的方位信息对应的解码向量(第二时刻的位置及速度对应的解码向量)其中,解码误差即第一时刻K的方位信息xk对应的解码向量与第一时刻K的方位信息xk的差值。In the embodiment of the present disclosure, the mathematical model corresponding to the closed-loop form of the controlled object is x k+1 =(E+BK c )x k +Df(x k )+BK c w k , where the gain K c to be determined is It has been determined in the above method and is a known quantity. The decoding vector corresponding to the orientation information x k based on the first moment K (the decoding vector corresponding to the position and velocity at the first moment) Through the mathematical model (controller) corresponding to the closed-loop form of the controlled object, the decoding vector corresponding to the orientation information of the second time K+1 at the second time K+1 at the next time from the first time K can be obtained (the decoding vector corresponding to the position and speed at the second time vector) Among them, the decoding error That is, the decoding vector corresponding to the orientation information x k at the first moment K The difference from the orientation information x k at the first moment K.
在本公开或本公开的实施例中,控制器是根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量进行确定的,利用可抵抗传感器测量异常值的观测器得到观测的信息,并利用编码解码机制保证数据在网络传输过程中的安全。In the present disclosure or the embodiments of the present disclosure, the controller determines according to the decoding vector corresponding to the orientation information of the controlled object when the measurement output of the sensor is abnormal, and obtains the observed information by using an observer capable of resisting the abnormal value measured by the sensor. , and use the encoding and decoding mechanism to ensure the security of data during network transmission.
步骤S103:基于所述第二时刻的方位信息对应的解码向量,确定(控制)所述被控对象的行驶。所述被控对象基于所述第二时刻的方位信息对应的解码向量进行行驶。也就是说,当控制器输出第二时刻的方位信息对应的解码向量后,作为被控对象(海洋钻井平台)的控制信号,被控对象(海洋钻井平台)基于所述第二时刻的方位信息对应的解码向量进行行驶。以实现被控对象在传感器的测量输出异常时的行驶。解决了传感器产生异常值时,给行驶带来影响的问题。Step S103: Determine (control) the driving of the controlled object based on the decoding vector corresponding to the orientation information at the second time. The controlled object travels based on the decoded vector corresponding to the orientation information at the second moment. That is to say, after the controller outputs the decoding vector corresponding to the orientation information at the second moment, as a control signal of the controlled object (offshore drilling platform), the controlled object (offshore drilling platform) is based on the orientation information at the second moment. The corresponding decoded vector is used for driving. In order to realize the driving of the controlled object when the measurement output of the sensor is abnormal. Solved the problem that when the sensor generates abnormal values, it will affect the driving.
本公开通过位置和速度传感器实时测量钻井平台在三个不同自由度上的位置和速度测量信息。利用可抵抗传感器测量异常值的观测器得到观测的信息,并利用编码解码机制保证数据在网络传输过程中的安全。利用解码信息得到解码误差,利用输入-状态稳定性定理,获得使海洋钻井平台按照指定位置行驶的控制器设计方法。相比于已有的基于观测器的控制器设计方法,本发明的控制方法能够在编码解码机制下抵抗传感器异常值,得出了依赖线性矩阵不等式解的控制方法,达到抵抗异常值及保障数据传输安全的目的,更具有现实意义且易于求解与实现。The present disclosure measures the position and velocity measurement information of the drilling platform in three different degrees of freedom in real time through the position and velocity sensors. The observed information is obtained by the observer which can resist the abnormal value measured by the sensor, and the coding and decoding mechanism is used to ensure the security of the data in the network transmission process. Using the decoding information to get the decoding error, and using the input-state stability theorem, the controller design method to make the offshore drilling platform run according to the specified position is obtained. Compared with the existing observer-based controller design method, the control method of the present invention can resist the abnormal value of the sensor under the coding and decoding mechanism, and obtains a control method that relies on the solution of the linear matrix inequality, so as to resist the abnormal value and guarantee the data. The purpose of transmission security is more realistic and easy to solve and realize.
为了得到控制器存在的充分条件(5),运用了如下定义1及引理1。In order to obtain the sufficient condition (5) for the existence of the controller, the following
定义1:考虑一个非线性系统:Definition 1: Consider a nonlinear system:
ρk+1=g(ρk,νk) (6);ρ k+1 =g(ρ k ,ν k ) (6);
其中及分别代表系统状态,外部输入以及连续的非线性函数满足g(0,0)=0。对于系统(6),假设存在一个类函数α(·,·)和一个类函数β(·)使对于和以下条件成立:in and Respectively represent the system state, the external input and the continuous nonlinear function satisfy g(0,0)=0. For system (6), suppose there is a class function α(·,·) and a The class function β( ) makes for and The following conditions hold:
‖ρk‖2≤α(‖ρ0‖2,k)+β(‖νk‖∞);‖ρ k ‖ 2 ≤α(‖ρ 0 ‖ 2 ,k)+β(‖ν k ‖ ∞ );
那么我们称系统(6)是输入-状态稳定的,其中 Then we call system (6) input-state stable, where
引理1:假设存在李雅普诺夫函数V(k,ρk):一个类函数三个类函数σ1(·),σ2(·)和σ3(·)使对于和以下两个不等式成立:Lemma 1: Suppose there is a Lyapunov function V(k,ρ k ): One class function three The class functions σ 1 (·), σ 2 (·) and σ 3 (·) make for and The following two inequalities hold:
σ1(‖ρk‖2)≤V(k,‖ρk‖2)≤σ2(‖ρk‖2);σ 1 (‖ρ k ‖ 2 )≤V(k,‖ρ k ‖ 2 )≤σ 2 (‖ρ k ‖ 2 );
V(k+1,ρk+1)-V(k,ρk)≤-σ3(‖ρk‖2)+θ(‖νk‖2);V(k+1,ρ k+1 )-V(k,ρ k )≤-σ 3 (‖ρ k ‖ 2 )+θ(‖ν k ‖ 2 );
那么非线性系统(6)是输入-输出稳定的。定义2中的α(·,·)和β(·)可以选择为:Then the nonlinear system (6) is input-output stable. α(·,·) and β(·) in
其中表示单调函数σ1(·)的反函数,同样。in represents the inverse of the monotone function σ 1 (·), same.
本公开提出的所述定位行驶控制方法的执行主体可以是定位行驶控制装置,例如,定位行驶控制方法可以由终端设备或服务器或其它处理设备执行,其中,终端设备可以为用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字处理(Personal DigitalAssistant,PDA)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该定位行驶控制方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。The executing subject of the positioning driving control method proposed in the present disclosure may be a positioning driving control device. For example, the positioning driving control method may be executed by a terminal device or a server or other processing device, wherein the terminal device may be a user equipment (User Equipment, UE), mobile devices, user terminals, terminals, cellular phones, cordless phones, Personal Digital Assistant (PDA), handheld devices, computing devices, in-vehicle devices, wearable devices, and the like. In some possible implementations, the positioning and driving control method may be implemented by the processor calling computer-readable instructions stored in the memory.
本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的撰写顺序并不意味着严格的执行顺序而对实施过程构成任何限定,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。Those skilled in the art can understand that in the above method of the specific implementation, the writing order of each step does not mean a strict execution order but constitutes any limitation on the implementation process, and the specific execution order of each step should be based on its function and possible Internal logic is determined.
本公开提出的所述定位行驶控制装置,包括:增益确定单元,用于根据被控对象在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益;方位确定单元,用于根据所述控制器以及第一时刻的方位信息对应的解码向量,得到第二时刻的方位信息对应的解码向量;定位行驶单元,基于所述第二时刻的方位信息对应的解码向量,确定所述被控对象的行驶。以实现被控对象在传感器的测量输出异常时的行驶。解决了传感器产生异常值时,给行驶带来影响的问题。The positioning and driving control device proposed in the present disclosure includes: a gain determination unit for determining the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the controlled object when the measurement output of the sensor is abnormal; the orientation determination unit for According to the controller and the decoding vector corresponding to the orientation information at the first moment, the decoding vector corresponding to the orientation information at the second moment is obtained; the positioning and driving unit determines the decoding vector corresponding to the orientation information at the second moment based on the decoding vector The driving of the controlled object. In order to realize the driving of the controlled object when the measurement output of the sensor is abnormal. Solved the problem that when the sensor generates abnormal values, it will affect the driving.
图2示出根据本公开实施例的定位行驶控制系统的框图,如图2所示,所述定位行驶控制系统,应用于海洋钻井平台,包括:钻井平台动力系统;所述钻井平台动力系统,用于根据所述海洋钻井平台在传感器的测量输出异常时的方位信息对应的解码向量确定控制器对应的增益;以及根据所述控制器以及第一时刻的方位信息对应的解码向量,得到第二时刻的方位信息对应的解码向量;所述钻井平台动力系统基于所述第二时刻的方位信息对应的解码向量,确定所述海洋钻井平台的行驶。以实现被控对象在传感器的测量输出异常时的行驶。解决了传感器产生异常值时,给行驶带来影响的问题。2 shows a block diagram of a positioning and driving control system according to an embodiment of the present disclosure. As shown in FIG. 2 , the positioning and driving control system, applied to an offshore drilling platform, includes: a drilling platform power system; the drilling platform power system, For determining the gain corresponding to the controller according to the decoding vector corresponding to the orientation information of the offshore drilling platform when the measurement output of the sensor is abnormal; and according to the decoding vector corresponding to the controller and the orientation information at the first moment, obtain the second The decoding vector corresponding to the orientation information at the time; the drilling platform power system determines the driving of the offshore drilling platform based on the decoding vector corresponding to the orientation information at the second time. In order to realize the driving of the controlled object when the measurement output of the sensor is abnormal. Solved the problem that when the sensor generates abnormal values, it will affect the driving.
在图2中,所述钻井平台动力系统,包括:作为被控对象的海洋钻井平台1、传感器2、状态观测器3、编码器4、解码器5以及控制器6。在被控对象的闭环形式对应的数学模型为xk+1=(E+BKc)xk+Df(xk)+BKcwk,其中待确定增益Kc已经在上述方法中确定,为已知量。传感器2实时测量各时刻的方位信息,若传感器的测量输出异常时,状态观测器3输出方位信息对应的估计向量,估计向量经过编码器4进行编码,并通过解码器5进行解码,得到解码向量,控制器6根据上一时刻的方位信息对应的解码向量得到下一时刻的方位信息对应的解码向量,海洋钻井平台1根据所述下一时刻的方位信息对应的解码向量确定(控制)所述海洋钻井平台的行驶。In FIG. 2 , the drilling platform power system includes: an
基于第一时刻K的方位信息xk对应的解码向量(第一时刻的位置及速度对应的解码向量)通过被控对象的闭环形式对应的数学模型,可以得到第一时刻K下一时刻的第二时刻K+1的方位信息对应的解码向量(第二时刻的位置及速度对应的解码向量)其中,解码误差即第一时刻K的方位信息xk对应的解码向量与第一时刻K的方位信息xk的差值。The decoding vector corresponding to the orientation information x k based on the first moment K (the decoding vector corresponding to the position and velocity at the first moment) Through the mathematical model corresponding to the closed-loop form of the controlled object, the decoding vector corresponding to the orientation information of the second time K+1 at the second time K+1 at the next time from the first time K can be obtained (the decoding vector corresponding to the position and speed of the second time) Among them, the decoding error That is, the decoding vector corresponding to the orientation information x k at the first moment K The difference from the orientation information x k at the first moment K.
在一些实施例中,本公开实施例提供的装置或系统具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。In some embodiments, the functions or modules included in the apparatus or system provided by the embodiments of the present disclosure may be used to execute the methods described in the above method embodiments. For specific implementation, reference may be made to the above method embodiments. For brevity , which will not be repeated here.
根据上述算法,以某海洋钻井平台为研究对象,主要参数为平台全长74.2m,宽18.6m,垂线宽度84.6m,设计吃水6.35m,平台净重4205t,主发动机功率为3530kW。该平台模型参数经过多次海试辨识得到如下参数:According to the above algorithm, taking an offshore drilling platform as the research object, the main parameters are the platform's total length of 74.2m, width of 18.6m, vertical width of 84.6m, design draft of 6.35m, platform net weight of 4205t, and main engine power of 3530kW. The platform model parameters have been identified through multiple sea trials to obtain the following parameters:
N=[1.85 -0.4]. N=[1.85-0.4].
外部干扰如下:External disturbances are as follows:
饱和函数σ(Nek)满足以下条件:The saturation function σ(Ne k ) satisfies the following conditions:
公式(5)进行求解,得到控制器的增益Kc为如下:Formula (5) is solved, and the gain K c of the controller is obtained as follows:
将控制器的增益代入的海洋钻井平台动力定位系统在传感器的测量输出异常时的控制器,实现在编码解码机制下对具有传感器异常值的海洋钻井平台的控制,得到仿真结果图3至图6。Substitute the gain of the controller into the controller of the dynamic positioning system of the offshore drilling platform when the measurement output of the sensor is abnormal, and realize the control of the offshore drilling platform with the abnormal value of the sensor under the coding and decoding mechanism. The simulation results are shown in Figure 3 to Figure 6 .
图3示出根据本公开实施例的扰动分量(环境干扰向量)图;图4示出根据本公开实施例的海洋钻井平台动力定位闭环系统实际状态向量x1,k,状态估计向量轨迹以及解码向量轨迹;图5是本发明实施例提供的海洋钻井平台动力定位闭环系统实际状态向量x2,k,状态估计轨迹以及解码向量轨迹;图6是本发明实施例提供的海洋钻井平台动力定位闭环系统的解码误差w1,k以及w2,k轨迹。由图3至图6可见,在编码解码机制下,对于具有传感器异常值的海洋钻井平台,本公开提出的抵抗传感器异常值的控制器可有效地控制海洋钻井平台。Fig. 3 shows the disturbance component (environmental disturbance vector) diagram according to the embodiment of the present disclosure; Fig. 4 shows the actual state vector x 1,k of the closed-loop system of dynamic positioning of the offshore drilling platform according to the embodiment of the present disclosure, and the trajectory of the state estimation vector and the decoded vector trajectory; Figure 5 is the actual state vector x 2,k of the closed-loop system of dynamic positioning of the offshore drilling platform provided by the embodiment of the present invention, and the state estimation trajectory and the decoded vector Trajectory; FIG. 6 is the trajectory of decoding errors w 1,k and w 2,k of the closed-loop system of dynamic positioning of the offshore drilling platform provided by the embodiment of the present invention. It can be seen from FIG. 3 to FIG. 6 that, under the coding and decoding mechanism, for an offshore drilling platform with sensor abnormal values, the controller against sensor abnormal values proposed in the present disclosure can effectively control the offshore drilling platform.
本公开实施例还提出一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。计算机可读存储介质可以是非易失性计算机可读存储介质。Embodiments of the present disclosure further provide a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the foregoing method is implemented. The computer-readable storage medium may be a non-volatile computer-readable storage medium.
本公开实施例还提出一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为上述定位行驶控制方法。电子设备可以被提供为终端、服务器或其它形态的设备。An embodiment of the present disclosure further provides an electronic device, including: a processor; a memory for storing instructions executable by the processor; wherein, the processor is configured for the above-mentioned positioning and driving control method. The electronic device may be provided as a terminal, server or other form of device.
图7是根据一示例性实施例示出的一种电子设备800的框图。例如,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。FIG. 7 is a block diagram of an
参照图7,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。7, an
处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。The
存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为电子设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述电子设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当电子设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。The I/
传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到电子设备800的打开/关闭状态,组件的相对定位行驶,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。电子设备800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。In an exemplary embodiment,
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由电子设备800的处理器820执行以完成上述方法。In an exemplary embodiment, a non-volatile computer-readable storage medium, such as a
图8是根据一示例性实施例示出的一种电子设备1900的框图。例如,电子设备1900可以被提供为一服务器。参照图8,电子设备1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述定位行驶控制方法。FIG. 8 is a block diagram of an
电子设备1900还可以包括一个电源组件1926被配置为执行电子设备1900的电源管理,一个有线或无线网络接口1950被配置为将电子设备1900连接到网络,和一个输入输出(I/O)接口1958。电子设备1900可以操作基于存储在存储器1932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。The
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由电子设备1900的处理组件1922执行以完成上述方法。In an exemplary embodiment, a non-volatile computer-readable storage medium is also provided, such as
本公开可以是定位行驶控制系统、定位行驶控制方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。The present disclosure may be a position and drive control system, a position and travel control method, and/or a computer program product. The computer program product may include a computer-readable storage medium having computer-readable program instructions loaded thereon for causing a processor to implement various aspects of the present disclosure.
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。A computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device. The computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. More specific examples (non-exhaustive list) of computer readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM) or flash memory), static random access memory (SRAM), portable compact disk read only memory (CD-ROM), digital versatile disk (DVD), memory sticks, floppy disks, mechanically coded devices, such as printers with instructions stored thereon Hole cards or raised structures in grooves, and any suitable combination of the above. Computer-readable storage media, as used herein, are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (eg, light pulses through fiber optic cables), or through electrical wires transmitted electrical signals.
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。The computer readable program instructions described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network, and/or a wireless network. The network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。Computer program instructions for carrying out operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or instructions in one or more programming languages. Source or object code, written in any combination, including object-oriented programming languages, such as Smalltalk, C++, etc., and conventional procedural programming languages, such as the "C" language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through the Internet connect). In some embodiments, custom electronic circuits, such as programmable logic circuits, field programmable gate arrays (FPGAs), or programmable logic arrays (PLAs), can be personalized by utilizing state information of computer readable program instructions. Computer readable program instructions are executed to implement various aspects of the present disclosure.
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processor of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams. These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium storing the instructions includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions. In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions.
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。Various embodiments of the present disclosure have been described above, and the foregoing descriptions are exemplary, not exhaustive, and not limiting of the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the various embodiments, the practical application or technical improvement over technology in the marketplace, or to enable others of ordinary skill in the art to understand the various embodiments disclosed herein.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011115466.8A CN112255917B (en) | 2020-10-19 | 2020-10-19 | Positioning and driving control method and device, system, electronic device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011115466.8A CN112255917B (en) | 2020-10-19 | 2020-10-19 | Positioning and driving control method and device, system, electronic device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112255917A CN112255917A (en) | 2021-01-22 |
CN112255917B true CN112255917B (en) | 2022-06-07 |
Family
ID=74244042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011115466.8A Active CN112255917B (en) | 2020-10-19 | 2020-10-19 | Positioning and driving control method and device, system, electronic device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112255917B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102508431A (en) * | 2011-11-04 | 2012-06-20 | 江苏科技大学 | Thrust distribution method for power positioning system of offshore drilling platform |
US8210283B1 (en) * | 2011-12-22 | 2012-07-03 | Hunt Energy Enterprises, L.L.C. | System and method for surface steerable drilling |
CN103499921A (en) * | 2013-09-11 | 2014-01-08 | 西安交通大学 | Fault diagnosis method for variable structure fuzzy system sensor and application thereof in flight control system |
CN104675380A (en) * | 2015-01-28 | 2015-06-03 | 扬州大学 | Online oil-drilling drill string monitoring system and fault diagnosis method |
CN104714520A (en) * | 2014-12-29 | 2015-06-17 | 东华大学 | Fault estimation method under sensor network environment and based on Green space theory |
CL2015000009A1 (en) * | 2012-07-06 | 2015-08-21 | Tech Resources Pty Ltd | Method to drill to a position relative to a geological limit in a geological formation, where the method includes detecting drilling parameters while a drilling is being drilled in the geological formation, using said parameters to locate the position of a drill, generating a map of geological model, use the detected parameters and use a auger controller; system; auger. |
CN105978725A (en) * | 2016-05-13 | 2016-09-28 | 芦慧 | Non-fragile distributed fault estimation method based on sensor network |
CN106005264A (en) * | 2016-05-12 | 2016-10-12 | 哈尔滨工程大学 | Automatic monitoring and control technology-based drilling platform propeller auxiliary anchoring positioning system |
CN111323007A (en) * | 2020-02-12 | 2020-06-23 | 北京市商汤科技开发有限公司 | Positioning method and device, electronic equipment and storage medium |
-
2020
- 2020-10-19 CN CN202011115466.8A patent/CN112255917B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102508431A (en) * | 2011-11-04 | 2012-06-20 | 江苏科技大学 | Thrust distribution method for power positioning system of offshore drilling platform |
US8210283B1 (en) * | 2011-12-22 | 2012-07-03 | Hunt Energy Enterprises, L.L.C. | System and method for surface steerable drilling |
CL2015000009A1 (en) * | 2012-07-06 | 2015-08-21 | Tech Resources Pty Ltd | Method to drill to a position relative to a geological limit in a geological formation, where the method includes detecting drilling parameters while a drilling is being drilled in the geological formation, using said parameters to locate the position of a drill, generating a map of geological model, use the detected parameters and use a auger controller; system; auger. |
CN103499921A (en) * | 2013-09-11 | 2014-01-08 | 西安交通大学 | Fault diagnosis method for variable structure fuzzy system sensor and application thereof in flight control system |
CN104714520A (en) * | 2014-12-29 | 2015-06-17 | 东华大学 | Fault estimation method under sensor network environment and based on Green space theory |
CN104675380A (en) * | 2015-01-28 | 2015-06-03 | 扬州大学 | Online oil-drilling drill string monitoring system and fault diagnosis method |
CN106005264A (en) * | 2016-05-12 | 2016-10-12 | 哈尔滨工程大学 | Automatic monitoring and control technology-based drilling platform propeller auxiliary anchoring positioning system |
CN105978725A (en) * | 2016-05-13 | 2016-09-28 | 芦慧 | Non-fragile distributed fault estimation method based on sensor network |
CN111323007A (en) * | 2020-02-12 | 2020-06-23 | 北京市商汤科技开发有限公司 | Positioning method and device, electronic equipment and storage medium |
Non-Patent Citations (1)
Title |
---|
彭勇胜.面向轨迹数据的行为挖掘关键技术研究.《万方学位论文》.2020,第1-81页. * |
Also Published As
Publication number | Publication date |
---|---|
CN112255917A (en) | 2021-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109766954B (en) | A target object processing method, device, electronic device and storage medium | |
CN111612070B (en) | Image description generation method and device based on scene graph | |
CN111223040B (en) | Network training method and device, image generation method and device | |
US12045578B2 (en) | Method for determining text similarity, storage medium and electronic device | |
US20210312289A1 (en) | Data processing method and apparatus, and storage medium | |
CN111462238B (en) | Attitude estimation optimization method and device and storage medium | |
CN109165738B (en) | Neural network model optimization method and device, electronic device and storage medium | |
CN111539410B (en) | Character recognition method and device, electronic equipment and storage medium | |
CN110188871B (en) | Operation method, device and related product | |
KR102389766B1 (en) | Image processing method and apparatus, electronic device and storage medium | |
CN112001364A (en) | Image recognition method and device, electronic device and storage medium | |
CN112084344A (en) | Knowledge graph reasoning method, device and storage medium | |
CN109920016B (en) | Image generation method and device, electronic equipment and storage medium | |
CN112269595A (en) | Image processing method, device, computer equipment and storage medium | |
WO2022193507A1 (en) | Image processing method and apparatus, device, storage medium, program, and program product | |
CN111242303A (en) | Network training method and device, and image processing method and device | |
CN113139484B (en) | Crowd positioning method and device, electronic equipment and storage medium | |
CN112269904B (en) | Data processing method and device | |
CN111985635A (en) | Method, device and medium for accelerating neural network inference processing | |
CN109447258B (en) | Neural network model optimization method and device, electronic device and storage medium | |
CN112255917B (en) | Positioning and driving control method and device, system, electronic device and storage medium | |
CN108024005B (en) | Information processing method and device, intelligent terminal, server and system | |
CN113344131A (en) | Network training method and device, electronic equipment and storage medium | |
CN110163372B (en) | Operation method, device and related product | |
CN111860552B (en) | Model training method and device based on nuclear self-encoder and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |