Wang et al., 2012 - Google Patents
The structure, morphology, and electrochemical properties of Li1+ xNi1/6Co1/6Mn4/6O2. 25+ x/2 (0.1≤ x≤ 0.7) cathode materialsWang et al., 2012
- Document ID
- 3644007013229418923
- Author
- Wang J
- Yuan G
- Zhang M
- Qiu B
- Xia Y
- Liu Z
- Publication year
- Publication venue
- Electrochimica Acta
External Links
Snippet
Li1+ xNi1/6Co1/6Mn4/6O2. 25+ x/2 (0.1≤ x≤ 0.7) cathode materials have been synthesized by a simple carbonate co-precipitation method. The effects of the lithium content on the structure, physical property, and electrochemical performance of the samples have …
- 239000010406 cathode material 0 title abstract description 12
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | The structure, morphology, and electrochemical properties of Li1+ xNi1/6Co1/6Mn4/6O2. 25+ x/2 (0.1≤ x≤ 0.7) cathode materials | |
Jang et al. | Synthesis and improved electrochemical performance of Al (OH) 3-coated Li [Ni1/3Mn1/3Co1/3] O2 cathode materials at elevated temperature | |
Li et al. | Retarded phase transition by fluorine doping in Li-rich layered Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material | |
Wang et al. | Electrochemical properties of 0.6 Li [Li1/3Mn2/3] O2–0.4 LiNixMnyCo1− x− yO2 cathode materials for lithium-ion batteries | |
Liu et al. | CaF2-coated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as cathode materials for Li-ion batteries | |
Lim et al. | Electrochemical characterization of Li2MnO3–Li [Ni1/3Co1/3Mn1/3] O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries | |
Miao et al. | Li2ZrO3-coated 0.4 Li2MnO3· 0.6 LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery | |
Shi et al. | Enhanced cycling stability of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification of MgO with melting impregnation method | |
Li et al. | Synthesis and electrochemical performance of cathode material Li1. 2Co0. 13Ni0. 13Mn0. 54O2 from spent lithium-ion batteries | |
He et al. | Improved electrochemical performances of nanocrystalline Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 cathode material for Li-ion batteries | |
Wu et al. | Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2–MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries | |
Yang et al. | Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries | |
Kong et al. | Effects of Li source and calcination temperature on the electrochemical properties of LiNi0. 5Co0. 2Mn0. 3O2 lithium-ion cathode materials | |
Cheng et al. | Enhanced electrochemical performances of 5áV spinel LiMn1. 58Ni0. 42O4 cathode materials by coating with LiAlO2 | |
Xu et al. | Facile synthesis of P2-type Na 0.4 Mn 0.54 Co 0.46 O 2 as a high capacity cathode material for sodium-ion batteries | |
Wang et al. | Microwave-irradiation synthesis of Li1. 3NixCoyMn1− x− yO2. 4 cathode materials for lithium ion batteries | |
Yan et al. | Effect of precipitators on the morphologies and electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 via rapid nucleation and post-solvothermal method | |
Durai et al. | Electrochemical properties of BiFeO3 nanoparticles: anode material for sodium-ion battery application | |
Yao et al. | Multi-shelled porous LiNi0. 5Mn1. 5O4 microspheres as a 5áV cathode material for lithium-ion batteries | |
Chen et al. | Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries | |
Song et al. | Electrochemical properties of LiNi1− yTiyO2 and LiNi0. 975M0. 025O2 (M= Zn, Al, and Ti) synthesized by the solid-state reaction method | |
Li et al. | Porous LiMn2O4 with Al2O3 coating as high-performance positive materials | |
Santhanam et al. | Influence of lithium content on high rate cycleability of layered Li1+ xNi0. 30Co0. 30Mn0. 40O2 cathodes for high power lithium-ion batteries | |
Wang et al. | Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery | |
Su et al. | Template-assisted formation of porous vanadium oxide as high performance cathode materials for lithium ion batteries |