Nothing Special   »   [go: up one dir, main page]

Li et al., 2014 - Google Patents

Synthesis and electrochemical performance of cathode material Li1. 2Co0. 13Ni0. 13Mn0. 54O2 from spent lithium-ion batteries

Li et al., 2014

Document ID
13780490688233642539
Author
Li L
Zhang X
Chen R
Zhao T
Lu J
Wu F
Amine K
Publication year
Publication venue
Journal of Power Sources

External Links

Snippet

Li-rich layered oxide Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 has been successfully re- synthesized using the ascorbic acid leaching solution of spent lithium-ion batteries as the raw materials. A combination of oxalic acid co-precipitation, hydrothermal and calcination …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2

Similar Documents

Publication Publication Date Title
Li et al. Synthesis and electrochemical performance of cathode material Li1. 2Co0. 13Ni0. 13Mn0. 54O2 from spent lithium-ion batteries
Liu et al. A cation/anion co-doped Li1. 12Na0. 08Ni0. 2Mn0. 6O1. 95F0. 05 cathode for lithium ion batteries
Li et al. Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance
Zhou et al. Na2V6O16· 0.14 H2O nanowires as a novel anode material for aqueous rechargeable lithium battery with good cycling performance
Miao et al. Li2ZrO3-coated 0.4 Li2MnO3· 0.6 LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery
Liu et al. CaF2-coated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as cathode materials for Li-ion batteries
Santhanam et al. High rate cycling performance of Li1. 05Ni1/3Co1/3Mn1/3O2 materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries
Shi et al. Enhanced cycling stability of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification of MgO with melting impregnation method
Yoon et al. Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity
Wang et al. A new cathode material Na2V6O16· xH2O nanowire for lithium ion battery
Park et al. Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2
Wang et al. The structure, morphology, and electrochemical properties of Li1+ xNi1/6Co1/6Mn4/6O2. 25+ x/2 (0.1≤ x≤ 0.7) cathode materials
Liu et al. Enhancing electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 by lithium-ion conductor surface modification
Wei et al. Electrochemical performance of high-capacity nanostructured Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathode material for lithium ion battery by hydrothermal method
Zhong et al. Low temperature combustion synthesis and performance of spherical 0.5 Li2MnO3–LiNi0. 5Mn0. 5O2 cathode material for Li-ion batteries
Chen et al. Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries
Yao et al. Multi-shelled porous LiNi0. 5Mn1. 5O4 microspheres as a 5áV cathode material for lithium-ion batteries
Wang et al. Microwave-irradiation synthesis of Li1. 3NixCoyMn1− x− yO2. 4 cathode materials for lithium ion batteries
Cong et al. (PO4) 3− polyanions doped LiNi1/3Co1/3Mn1/3O2: an ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries
Tang et al. Synthesis and electrochemical properties of NaV 3 O 8 nanoflakes as high-performance cathode for Li-ion battery
Zhou et al. Novel solid-state preparation and electrochemical properties of Li1. 13 [Ni0. 2Co0. 2Mn0. 47] O2 material with a high capacity by acetate precursor for Li-ion batteries
Xu et al. Hierarchical hollow structured lithium nickel cobalt manganese oxide microsphere synthesized by template-sacrificial route as high performance cathode for lithium ion batteries
Wang et al. Gel-combustion synthesis and electrochemical performance of LiNi 1/3 Mn 1/3 Co 1/3 O 2 as cathode material for lithium-ion batteries
Guo et al. Protective and ion conductive: High-Rate Ni-Rich cathode with enhanced cyclic stability via One-Step bifunctional dual-layer coating
Zhang et al. Annealing temperature-dependent electrochemical properties of Aeroxide P25 TiO2 nanoparticles as anode material for lithium storage