Miao et al., 2014 - Google Patents
Li2ZrO3-coated 0.4 Li2MnO3· 0.6 LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion batteryMiao et al., 2014
- Document ID
- 4510272741440579517
- Author
- Miao X
- Ni H
- Zhang H
- Wang C
- Fang J
- Yang G
- Publication year
- Publication venue
- Journal of Power Sources
External Links
Snippet
To improve the high-rate capacity and cycle ability, minor Li 2 ZrO 3 successfully coat the nanoparticles of 0.4 Li 2 MnO 3· 0.6 LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LMO) via sol–gel method. The crystal structure and electrochemical properties of the bare and coated material are …
- 229910014427 LiNi1/3Co1/3Mn1/3O2 0 title abstract description 6
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Miao et al. | Li2ZrO3-coated 0.4 Li2MnO3· 0.6 LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery | |
Li et al. | Li2TiO3 and Li2ZrO3 co-modification LiNi0. 8Co0. 1Mn0. 1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries | |
Shi et al. | Enhanced cycling stability of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification of MgO with melting impregnation method | |
Chen et al. | Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for Li-ion batteries | |
Chong et al. | Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries | |
Chen et al. | Stable layered P3/P2 Na 0.66 Co 0.5 Mn 0.5 O 2 cathode materials for sodium-ion batteries | |
He et al. | Improved electrochemical performances of nanocrystalline Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 cathode material for Li-ion batteries | |
Lu et al. | Cerium fluoride coated layered oxide Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as cathode materials with improved electrochemical performance for lithium ion batteries | |
Chen et al. | Improve the structure and electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 cathode material by nano-Al2O3 ultrasonic coating | |
Zhao et al. | Synthesis, characterization, and electrochemistry of cathode material Li [Li0. 2Co0. 13Ni0. 13Mn0. 54] O2 using organic chelating agents for lithium-ion batteries | |
Jung et al. | Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries | |
Wu et al. | Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2–MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries | |
Han et al. | The effect of MgO coating on Li1. 17Mn0. 48Ni0. 23Co0. 12O2 cathode material for lithium ion batteries | |
Kong et al. | Improved electrochemical performance of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material coated with ultrathin ZnO | |
Ming et al. | Effect of Nb and F co-doping on Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for high-performance lithium-ion batteries | |
Ming et al. | Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications | |
Zhang et al. | Enhanced electrochemical performances of Li1. 2Ni0. 2Mn0. 6O2 cathode materials by coating LiAlO2 for lithium-ion batteries | |
Xu et al. | The preparation and role of Li2ZrO3 surface coating LiNi0. 5Co0. 2Mn0. 3O2 as cathode for lithium-ion batteries | |
Xu et al. | Facile synthesis of P2-type Na 0.4 Mn 0.54 Co 0.46 O 2 as a high capacity cathode material for sodium-ion batteries | |
Wang et al. | Enhanced electrochemical performance of Li-rich cathode Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification with lithium ion conductor Li3PO4 | |
Zou et al. | Improvement of the electrochemical performance of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 cathode material by Al2O3 surface coating | |
Huang et al. | Structural and electrochemical characterization of Mg-doped Li1. 2 [Mn0. 54Ni0. 13Co0. 13] O2 cathode material for lithium ion batteries | |
Wu et al. | Surface modification of a cobalt-free layered Li [Li 0.2 Fe 0.1 Ni 0.15 Mn 0.55] O 2 oxide with the FePO 4/Li 3 PO 4 composite as the cathode for lithium-ion batteries | |
Li et al. | Surface modification of Sr-doped LaMnO3 coating by spray drying on Ni-rich LiNi0. 8Mn0. 1Co0. 1O2 cathode material for lithium-ion batteries | |
Liu et al. | Facile and scalable fabrication of K+-doped Li1. 2Ni0. 2Co0. 08Mn0. 52O2 cathode with ultra high capacity and enhanced cycling stability for lithium ion batteries |