Nothing Special   »   [go: up one dir, main page]

Münch et al., 2018 - Google Patents

Multi-bit non-volatile spintronic flip-flop

Münch et al., 2018

View PDF
Document ID
13501240729259549641
Author
Münch C
Bishnoi R
Tahoori M
Publication year
Publication venue
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE)

External Links

Snippet

As leakage increases proportionally with the technology downscaling, it becomes extremely challenging to manage to meet the total power budget. This is because, CMOS-based logic blocks can not be completely power-gated as their flip-flops always require a retention …
Continue reading at www.date-conference.com (PDF) (other versions)

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction for memory cells of the field-effect type
    • G11C11/419Read-write circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0054Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • G06F1/3287Power saving by switching off individual functional units in a computer system, i.e. selective power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift register stack stores, push-down stores
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/78Power analysis and optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode

Similar Documents

Publication Publication Date Title
Senni et al. Non-volatile processor based on MRAM for ultra-low-power IoT devices
Chabi et al. Ultra low power magnetic flip-flop based on checkpointing/power gating and self-enable mechanisms
Singh et al. Robust SRAM designs and analysis
US20140149773A1 (en) Latch circuit and data processing system
Bishnoi et al. Design of defect and fault-tolerant nonvolatile spintronic flip-flops
Bishnoi et al. Asynchronous asymmetrical write termination (AAWT) for a low power STT-MRAM
Siddiqua et al. Enhancing NBTI recovery in SRAM arrays through recovery boosting
Roohi et al. NV-clustering: Normally-off computing using non-volatile datapaths
Raha et al. Designing energy-efficient intermittently powered systems using spin-Hall-effect-based nonvolatile SRAM
Huang et al. A low-power low-VDD nonvolatile latch using spin transfer torque MRAM
Xue et al. An adaptive 3T-3MTJ memory cell design for STT-MRAM-based LLCs
Koike et al. A power-gated MPU with 3-microsecond entry/exit delay using MTJ-based nonvolatile flip-flop
Zhao et al. Racetrack memory based reconfigurable computing
Zand et al. Fundamentals, modeling, and application of magnetic tunnel junctions
Usami et al. Energy efficient write verify and retry scheme for MTJ based flip-flop and application
Thirumala et al. Exploring the design of energy-efficient intermittently powered systems using reconfigurable ferroelectric transistors
US9659650B2 (en) Multistate register having a flip flop and multiple memristive devices
Wang et al. A 1.0 V 45nm nonvolatile magnetic latch design and its robustness analysis
Xue et al. ODESY: A novel 3T-3MTJ cell design with optimized area density, scalability and latency
Münch et al. Multi-bit non-volatile spintronic flip-flop
Bishnoi et al. Low-power multi-port memory architecture based on spin orbit torque magnetic devices
Huang et al. Racetrack memory-based nonvolatile storage elements for multicontext FPGAs
Senni et al. Embedded systems to high performance computing using STT-MRAM
Gebregiorgis et al. Spintronic normally-off heterogeneous system-on-chip design
Monga et al. Energy-efficient data retention in D flip-flops using STT-MTJ