Nothing Special   »   [go: up one dir, main page]

login
Search: a133179 -id:a133179
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of c(q^2)^2 / (c(q) * c(q^6)) in powers of q where c() is a cubic AGM theta function.
+10
4
1, -1, 1, 1, 0, -1, 1, 0, 0, -1, 0, 2, -1, 0, -2, 0, 0, -1, 1, 0, 4, 2, 0, -4, 0, 0, -1, -2, 0, 8, -3, 0, -8, -1, 0, -2, 4, 0, 14, 4, 0, -14, 1, 0, -4, -4, 0, 24, -6, 0, -23, -1, 0, -6, 5, 0, 40, 8, 0, -38, 1, 0, -10, -8, 0, 63, -10, 0, -60, -2, 0, -16, 11
OFFSET
-1,12
LINKS
FORMULA
Expansion of eta(q) * eta(q^6)^7 / (eta(q^2)^2 * eta(q^3)^3 * eta(q^18)^3) in powers of q.
Euler transform of period 18 sequence [ -1, 1, 2, 1, -1, -3, -1, 1, 2, 1, -1, -3, -1, 1, 2, 1, -1, 0, ...].
a(3*n) = 0 unless n=0. a(3*n + 1) = a(6*n + 2) = A092848(n). a(3*n + 2) = A062242(n). a(6*n + 4) = a(12*n + 8) = - A164614(n). a(6*n + 5) = A132179(n).
Convolution inverse of A122830.
EXAMPLE
1/q - 1 + q + q^2 - q^4 + q^5 - q^8 + 2*q^10 - q^11 - 2*q^13 - q^16 + ...
MATHEMATICA
eta[x_] := x^(1/24)*QPochhammer[x]; A182033[n_] := SeriesCoefficient[ eta[q]*eta[q^6]^7/(eta[q^2]^2*eta[q^3]^3*eta[q^18]^3 ), {q, 0, n}]; Table[A182033[n], {n, -1, 50}] (* G. C. Greubel, Aug 18 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^7 / (eta(x^2 + A)^2 * eta(x^3 + A)^3 * eta(x^18 + A)^3), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 07 2012
STATUS
approved
Left half of Pascal's triangle (A034868) modulo 2.
+10
2
1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Row sums yield: 1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 2, 2, 4, 2, 4, 4, 8, ...(see A048896).
FORMULA
T(n,k) = mod(binomial(n, k), 2), 0 <= k <= floor(n/2). - G. C. Greubel, Aug 12 2017
EXAMPLE
Triangle begins:
1,
1,
1, 0,
1, 1,
1, 0, 0,
1, 1, 0,
1, 0, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 1, 0, 0, 0,
1, 0, 1, 0, 0, 0,
1, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 0, 0,
1, 1, 0, 0, 1, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0,
...
Triangle (right aligned) begins:
1,
1,
1, 0,
1, 1,
1, 0, 0,
1, 1, 0,
1, 0, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 1, 0, 0, 0,
1, 0, 1, 0, 0, 0,
1, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 0, 0,
1, 1, 0, 0, 1, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0,
...
MAPLE
# From N. J. A. Sloane, Mar 22 2015:
for n from 0 to 20 do
lprint(seq(binomial(n, k) mod 2, k=0..floor(n/2))); od:
# For row sums:
f:=n->add(binomial(n, k) mod 2, k=0..floor(n/2));
[seq(f(n), n=0..60)];
MATHEMATICA
Table[Mod[Binomial[n, k], 2], {n, 0, 10}, {k, 0, Floor[n/2]}] (* G. C. Greubel, Aug 12 2017 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Philippe Deléham, Oct 10 2007
EXTENSIONS
Corrected by N. J. A. Sloane, Mar 22 2015 at the suggestion of Kevin Ryde
STATUS
approved

Search completed in 0.006 seconds