Nothing Special   »   [go: up one dir, main page]

login
A133179
A modular binomial sum transform of 2^n .
3
1, 1, 1, 3, 1, 3, 5, 15, 1, 3, 5, 15, 17, 51, 85, 255, 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/2)} mod(binomial(n,k),2) * 2^k.
EXAMPLE
1;
1;
1, 2;
1, 3;
1, 4, 6;
1, 5, 10 ;...
A034868 modulo 2:
1;
1;
1, 0;
1, 1;
1, 0, 0;
1, 1, 0 ;...
a(0)=1*2^0 = 1;
a(1)=1*2^0 = 1;
a(2)=1*2^0+0*2^1 = 1;
a(3)=1*2^0+1*2^1 = 3;
a(4)=1*2^0+0*2^1+0*2^2 = 1
a(5)=1*2^0+1*2^1+0*2^2 = 3
MATHEMATICA
A133179[n_] := Sum[2^k*Mod[Binomial[n, k], 2], {k, 0, Floor[n/2]}]; Table[A133179[n], {n, 0, 50}] (* G. C. Greubel, Aug 11 2017 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Philippe Deléham, Oct 10 2007
STATUS
approved