Nothing Special   »   [go: up one dir, main page]

login
Search: a182033 -id:a182033
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of f(-x) * psi(x^2) * phi(x^3) / f(-x^3)^3 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
+10
6
1, -1, 0, 4, -6, 1, 11, -19, 4, 31, -50, 11, 77, -122, 28, 173, -273, 62, 370, -573, 130, 751, -1149, 261, 1461, -2214, 498, 2750, -4125, 923, 5022, -7472, 1663, 8936, -13202, 2919, 15551, -22817, 5019, 26521, -38681, 8467, 44417, -64438, 14035, 73197
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/12) * eta(q) * eta(q^4)^2 * eta(q^6)^5 / (eta(q^2) * eta(q^3)^5 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ -1, 0, 4, -2, -1, 0, -1, -2, 4, 0, -1, 0, ...].
a(n) = A132179(2*n) = A062242(4*n) = A062244(4*n) = A132301(4*n) = A182056(4*n) = A182036(6*n) = A182032(12*n - 1).
a(n) = A058531(12*n) = A093073(12*n) = A132976(12*n) = A143840(12*n) = A164268(12*n) = A164612(12*n) = A182033(12*n) = A193261(12*n). - Michael Somos, Jan 29 2015
EXAMPLE
G.f. = 1 - x + 4*x^3 - 6*x^4 + x^5 + 11*x^6 - 19*x^7 + 4*x^8 + 31*x^9 + ...
G.f. = q^-1 - q^11 + 4*q^35 - 6*q^47 + q^59 + 11*q^71 - 19*q^83 + 4*q^95 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 3, 0, x^3] QPochhammer[ x] / (2 x^(1/4) QPochhammer[ x^3]^3), {x, 0, n}]; (* Michael Somos, Jan 29 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^5 / (eta(x^2 + A) * eta(x^3 + A)^5 * eta(x^12 + A)^2), n))};
KEYWORD
sign
AUTHOR
Michael Somos, Oct 14 2013
STATUS
approved
Expansion of c(q) * c(q^6) / c(q^2)^2 in powers of q where c() is a cubic AGM theta function.
+10
3
1, 1, 0, -2, -3, 0, 5, 7, 0, -12, -15, 0, 26, 32, 0, -50, -63, 0, 92, 114, 0, -168, -201, 0, 295, 350, 0, -496, -591, 0, 818, 967, 0, -1332, -1554, 0, 2126, 2468, 0, -3324, -3855, 0, 5126, 5916, 0, -7824, -8970, 0, 11793, 13471, 0, -17548, -20007, 0, 25857, 29384, 0, -37788, -42771, 0
OFFSET
1,4
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of eta(q^2)^2 * eta(q^3)^3 * eta(q^18)^3 / (eta(q) * eta(q^6)^7) in powers of q.
Euler transform of period 18 sequence [ 1, -1, -2, -1, 1, 3, 1, -1, -2, -1, 1, 3, 1, -1, -2, -1, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = 4*v - 4*u^2 + 4*v^2 + 2*w^2 + 8*u*v + 8*v*w + 18*u*v*w + 3*u*w^2 - 12*u^2*w - 12*u^2*v + 6*v^2*w - 3*v^3 - 9*u^2*w^2 - 18*u^2*v*w - 9*u*v^2*w - 9*u^2*v^2 - 9*v^3*w.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = 2*u6*u1 - 2*u3*u2 + u6*u2^2 - 3*u6*u3*u2 - 3*u3^2*u2 - 4*u3*u2^2 - 3*u3^2*u2^2 + 6*u3^2*u1 - 4*u3*u2*u1 + 4*u6*u2*u1 + u6*u1^2 + 2*u3*u1^2 + 6*u3^2*u1^2 + 3*u6*u3*u1^2 - 6*u6*u3*u2^2 + 6*u3^2*u2*u1 - 6*u6*u3*u2*u1.
Convolution inverse is A182033. - Michael Somos, Feb 19 2015
a(3*n) = 0. - Michael Somos, Feb 19 2015
EXAMPLE
G.f. = q + q^2 - 2*q^4 - 3*q^5 + 5*q^7 + 7*q^8 - 12*q^10 - 15*q^11 + ...
MATHEMATICA
eta[x_] := x^(1/24)*QPochhammer[x]; A122830[n_] := SeriesCoefficient[
eta[q^2]^2* eta[q^3]^3*eta[q^18]^3/(eta[q]*eta[q^6]^7 ), {q, 0, n}]; Table[A122830[n], {n, 0, 50}] (* G. C. Greubel, Aug 11 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 * eta(x^18 + A)^3 / (eta(x + A) * eta(x^6 + A)^7), n))};
CROSSREFS
Cf. A182033.
KEYWORD
sign
AUTHOR
Michael Somos, Sep 12 2006
STATUS
approved
Expansion of (f(-x^2) / phi(-x^3))^2 in powers of x where phi(), f() are Ramanujan theta functions.
+10
3
1, 0, -2, 4, -1, -8, 14, -4, -23, 40, -10, -60, 98, -24, -140, 224, -54, -304, 478, -112, -627, 968, -224, -1236, 1884, -432, -2346, 3540, -801, -4320, 6454, -1448, -7742, 11472, -2556, -13548, 19936, -4408, -23226, 33952, -7462, -39080, 56800, -12416, -64660
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2/3) * b(q^2) * c(q^2) / (3 * f(-q^3)^4) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of q^(-1/6) * (eta(q^2) * eta(q^6) / eta(q^3)^2)^2 in powers of q.
Euler transform of period 6 sequence [ 0, -2, 4, -2, 0, 0, ...].
G.f.: Product_{k>0} ( (1 - x^(2*k)) * (1 - x^(6*k)) / (1 - x^(3*k))^2 )^2.
a(n) = A092848(2*n) = A128111(2*n) = A182057(4*n) = A062242(4*n + 1) = A182056(4*n + 1) = A139032(6*n + 1) = A164615(6*n + 1) = A182033(6*n + 1) = A058531(12*n + 2) = A093073(12*n + 2) = A128143(12*n + 2) = A128145(12*n + 2) = A143840(12*n + 2) = A182032(12*n + 2) = A193261(12*n + 2).
-a(n) = A062244(4*n + 1) = A182034(6*n + 1) = A182035(6*n + 1) = A128144(12*n + 2) = A132976(12*n + 3) = A164268(12*n + 2) = A164612(12*n + 3) = A182035(12*n + 2).
EXAMPLE
G.f. = 1 - 2*x^2 + 4*x^3 - x^4 - 8*x^5 + 14*x^6 - 4*x^7 - 23*x^8 + 40*x^9 + ...
G.f. = q - 2*q^13 + 4*q^19 - q^25 - 8*q^31 + 14*q^37 - 4*q^43 - 23*q^49 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2] QPochhammer[ x^6] / QPochhammer[ x^3]^2)^2, {x, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A) / eta(x^3 + A)^2)^2, n))};
KEYWORD
sign
AUTHOR
Michael Somos, Dec 03 2013
STATUS
approved

Search completed in 0.006 seconds