Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A064200 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = 12*n*(n-1).
(history; published version)
#39 by Michel Marcus at Wed Feb 22 01:50:00 EST 2023
STATUS

reviewed

approved

#38 by Joerg Arndt at Wed Feb 22 01:40:21 EST 2023
STATUS

proposed

reviewed

#37 by Amiram Eldar at Wed Feb 22 01:09:50 EST 2023
STATUS

editing

proposed

#36 by Amiram Eldar at Wed Feb 22 01:06:38 EST 2023
LINKS

Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfun.pdf">Enumerative Formulas for Some Functions on Finite Sets</a>.

#35 by Amiram Eldar at Wed Feb 22 00:49:56 EST 2023
DATA

0, 0, 24, 72, 144, 240, 360, 504, 672, 864, 1080, 1320, 1584, 1872, 2184, 2520, 2880, 3264, 3672, 4104, 4560, 5040, 5544, 6072, 6624, 7200, 7800, 8424, 9072, 9744, 10440, 11160, 11904, 12672, 13464, 14280, 15120, 15984, 16872, 17784, 18720, 19680, 20664, 21672

#34 by Amiram Eldar at Wed Feb 22 00:49:12 EST 2023
FORMULA

Sum_{n>=12} 1/a(n) = 1/12.

Sum_{n>=12} (-1)^(n+1)/a(n) = (2*log(2) - 1)/12.

Product_{n>=12} (1 - 1/a(n)) = -(12/Pi)*cos(Pi/sqrt(3)).

Product_{n>=12} (1 + 1/a(n)) = (12/Pi)*cos(Pi/sqrt(6)). (End)

#33 by Amiram Eldar at Wed Feb 22 00:46:33 EST 2023
REFERENCES

L. Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. , Band III_2. , Heft 3, Leipzig: B. G. Teubner, 1906. , p. 341.

#32 by Amiram Eldar at Wed Feb 22 00:44:24 EST 2023
LINKS

Milan Janjic, <a href="httphttps://wwwpmf.pmfblunibl.org/janjicwp-content/uploads/2017/10/enumfun.pdf">Enumerative Formulas for Some Functions on Finite Sets</a>

Leo Tavares, <a href="/A064200/a064200.jpg">Illustration: Twin Stars</a>.

#31 by Amiram Eldar at Wed Feb 22 00:43:37 EST 2023
FORMULA

From Amiram Eldar, Feb 22 2023: (Start)

Sum_{n>=1} 1/a(n) = 1/12.

Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/12.

Product_{n>=1} (1 - 1/a(n)) = -(12/Pi)*cos(Pi/sqrt(3)).

Product_{n>=1} (1 + 1/a(n)) = (12/Pi)*cos(Pi/sqrt(6)). (End)

STATUS

approved

editing

#30 by Harvey P. Dale at Sat Dec 17 15:23:46 EST 2022
STATUS

editing

approved