reviewed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
reviewed
approved
proposed
reviewed
editing
proposed
Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfun.pdf">Enumerative Formulas for Some Functions on Finite Sets</a>.
0, 0, 24, 72, 144, 240, 360, 504, 672, 864, 1080, 1320, 1584, 1872, 2184, 2520, 2880, 3264, 3672, 4104, 4560, 5040, 5544, 6072, 6624, 7200, 7800, 8424, 9072, 9744, 10440, 11160, 11904, 12672, 13464, 14280, 15120, 15984, 16872, 17784, 18720, 19680, 20664, 21672
Sum_{n>=12} 1/a(n) = 1/12.
Sum_{n>=12} (-1)^(n+1)/a(n) = (2*log(2) - 1)/12.
Product_{n>=12} (1 - 1/a(n)) = -(12/Pi)*cos(Pi/sqrt(3)).
Product_{n>=12} (1 + 1/a(n)) = (12/Pi)*cos(Pi/sqrt(6)). (End)
L. Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. , Band III_2. , Heft 3, Leipzig: B. G. Teubner, 1906. , p. 341.
Milan Janjic, <a href="httphttps://wwwpmf.pmfblunibl.org/janjicwp-content/uploads/2017/10/enumfun.pdf">Enumerative Formulas for Some Functions on Finite Sets</a>
Leo Tavares, <a href="/A064200/a064200.jpg">Illustration: Twin Stars</a>.
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/12.
Product_{n>=1} (1 - 1/a(n)) = -(12/Pi)*cos(Pi/sqrt(3)).
Product_{n>=1} (1 + 1/a(n)) = (12/Pi)*cos(Pi/sqrt(6)). (End)
approved
editing
editing
approved