Alois P. Heinz, <a href="/A003430/b003430_1.txt">Table of n, a(n) for n = 0..1000</a> (terms n = 1..100 from Jean-François Alcover)
Alois P. Heinz, <a href="/A003430/b003430_1.txt">Table of n, a(n) for n = 0..1000</a> (terms n = 1..100 from Jean-François Alcover)
editing
approved
Jean-François Alcover, Alois P. Heinz, <a href="/A003430/b003430_1.txt">Table of n, a(n) for n = 0..1000</a> (terms n = 1..100</a> from Jean-François Alcover)
approved
editing
editing
approved
1, 1, 2, 5, 15, 48, 167, 602, 2256, 8660, 33958, 135292, 546422, 2231462, 9199869, 38237213, 160047496, 674034147, 2854137769, 12144094756, 51895919734, 222634125803, 958474338539, 4139623680861, 17931324678301, 77880642231286, 339093495674090, 1479789701661116
1,2
0,3
a(0)=1 prepended (using the g.f.) by Alois P. Heinz, Dec 01 2020
Number of number of oriented series-parallel networks with n elements. A series configuration is a unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is a unit element or a multiset of two or more series configurations. a(n) is the number of series or parallel configurations with n elements. The sequences A007453 and A007454 enumerate respectively series and parallel configurations. - Andrew Howroyd, Dec 01 2020
Number of number of oriented series-parallel networks with n elements. A series configuration is a unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is a unit element or a multiset of two or more series configurations. a(n) is the number of series or parallel configurations with n elements. The sequences A007453 and A007454 enumerate respectively series and parallel configurations. - Andrew Howroyd, Dec 01 2020
a(4) = 15: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)oo), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), ((o|oo)o), ((o|o|o)o), (o|o|o|o), (o|o|oo), (oo|oo), (o|(ooo)), , (o|(o(o|o))), , (o|((o|o)o)).
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x, 1-n)))); Vec(p)} \\ Andrew Howroyd, Nov 27 2020
From: Andrew Howroyd, Nov 26 2020: (Start)
a(n) = A007453(n) + A007454(n) for n > 1.
Euler transform of A007453.
G.f.: P(x)/(1 - P(x)) where P(x) is the g.f. of A007454.
(End)
From Andrew Howroyd, Nov 26 2020: (Start)
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 5: (ooo), (o(o|o)), ((o|o)o), (o|o|o), (o|oo).
a(4) = 15: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)oo), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), ((o|oo)o), ((o|o|o)o), (o|o|o|o), (o|o|oo), (oo|oo), (o|(ooo)), (o|(o(o|o))), (o|((o|o)o)).
(End)
approved
editing