Nothing Special   »   [go: up one dir, main page]

login
A003430 revision #69

A003430
Number of unlabeled series-parallel posets (i.e., generated by unions and sums) with n nodes.
(Formerly M1476)
32
1, 2, 5, 15, 48, 167, 602, 2256, 8660, 33958, 135292, 546422, 2231462, 9199869, 38237213, 160047496, 674034147, 2854137769, 12144094756, 51895919734, 222634125803, 958474338539, 4139623680861, 17931324678301, 77880642231286
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39 (which deals with the labeled case of the same sequence).
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..100
B. I. Bayoumi, M. H. El-Zahar and S. M. Khamis, Asymptotic enumeration of N-free partial orders, Order 6 (1989), 219-232.
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
Uli Fahrenberg, Christian Johansen, Georg Struth, Ratan Bahadur Thapa, Generating Posets Beyond N, arXiv:1910.06162 [cs.FL], 2019.
Frédéric Fauvet, L. Foissy, D. Manchon, Operads of finite posets, arXiv preprint arXiv:1604.08149 [math.CO], 2016.
S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 72.
Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299. Math. Rev. 50 #4416.
FORMULA
G.f. A(x) = 1 + x + 2*x^2 + 5*x^3 + ... satisfies A(x) = exp(Sum_{k>=1} (1/k)*(A(x^k) + 1/A(x^k) - 2 + x^k)).
From: Andrew Howroyd, Nov 26 2020: (Start)
a(n) = A007453(n) + A007454(n) for n > 1.
Euler transform of A007453.
G.f.: P(x)/(1 - P(x)) where P(x) is the g.f. of A007454.
(End)
EXAMPLE
From Andrew Howroyd, Nov 26 2020: (Start)
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 5: (ooo), (o(o|o)), ((o|o)o), (o|o|o), (o|oo).
a(4) = 15: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)oo), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), ((o|oo)o), ((o|o|o)o), (o|o|o|o), (o|o|oo), (oo|oo), (o|(ooo)), (o|(o(o|o))), (o|((o|o)o)).
(End)
MATHEMATICA
terms = 25; A[_] = 1; Do[A[x_] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jun 29 2011, updated Jan 12 2018 *)
CROSSREFS
Cf. A000669, A003431, A048172 (labeled N-free posets), A007453, A007454.
Sequence in context: A035350 A006570 A149928 * * A149929 A337262
KEYWORD
easy,nonn,nice
EXTENSIONS
Name corrected by Salah Uddin Mohammad, Jun 07 2020
STATUS
editing