Nothing Special   »   [go: up one dir, main page]

login
Revision History for A001725 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = n!/5!.
(history; published version)
#59 by Michel Marcus at Sun Jan 15 02:43:25 EST 2023
STATUS

reviewed

approved

#58 by Joerg Arndt at Sun Jan 15 02:13:14 EST 2023
STATUS

proposed

reviewed

#57 by Amiram Eldar at Sun Jan 15 01:36:16 EST 2023
STATUS

editing

proposed

#56 by Amiram Eldar at Sun Jan 15 01:10:45 EST 2023
LINKS

INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=265">Encyclopedia of Combinatorial Structures 265</a>.

Wolfdieter Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #Article 00.2.4.

<a href="/index/DiFa#divseqfactorial">Index to divisibility entries for sequences related to factorial numbers</a>.

<a href="/index/FaDi#factorialdivseq">Index entries for to divisibility sequences related to factorial numbers</a>.

FORMULA

From Amiram Eldar, Jan 15 2023: (Start)

Sum_{n>=5} 1/a(n) = 120*e - 325.

Sum_{n>=5} (-1)^(n+1)/a(n) = 45 - 120/e. (End)

STATUS

approved

editing

#55 by Charles R Greathouse IV at Thu Sep 08 08:44:29 EDT 2022
PROG

(MAGMAMagma) [Factorial(n)/120: n in [5..25]]; // Vincenzo Librandi, Jul 20 2011

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#54 by Susanna Cuyler at Sat Jul 10 03:04:19 EDT 2021
STATUS

proposed

approved

#53 by Michel Marcus at Fri Jul 09 14:58:27 EDT 2021
STATUS

editing

proposed

#52 by Michel Marcus at Fri Jul 09 14:58:23 EDT 2021
COMMENTS

a(n) = A173333(n,5). - Reinhard Zumkeller, Feb 19 2010

a(n) = A245334(n,n-5) / 6. - Reinhard Zumkeller, Aug 31 2014

LINKS

W. Wolfdieter Lang, <a href="httphttps://www.cs.uwaterloo.ca/journals/JIS/indexVOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

FORMULA

a(n) = A173333(n,5). - Reinhard Zumkeller, Feb 19 2010

a(n) = A245334(n,n-5) / 6. - Reinhard Zumkeller, Aug 31 2014

#51 by Michel Marcus at Fri Jul 09 14:56:49 EDT 2021
NAME

a(n) = n!/5!.

REFERENCES

Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. II. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 107-108 1963 1-77.

LINKS

D. S. Mitrinovic and R. S. Mitrinovic, <a href="http://pefmath2.etf.rs/files/54/107.pdf">Tableaux d'une classe de nombres reliƩs aux nombres de Stirling. II</a>, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 107-108 1963 1-77.

STATUS

proposed

editing

#50 by Ilya Gutkovskiy at Fri Jul 09 14:17:55 EDT 2021
STATUS

editing

proposed