Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367865
a(n) = Sum_{d|n} d * phi(d) * mu(d)^2.
1
1, 3, 7, 3, 21, 21, 43, 3, 7, 63, 111, 21, 157, 129, 147, 3, 273, 21, 343, 63, 301, 333, 507, 21, 21, 471, 7, 129, 813, 441, 931, 3, 777, 819, 903, 21, 1333, 1029, 1099, 63, 1641, 903, 1807, 333, 147, 1521, 2163, 21, 43, 63, 1911, 471, 2757, 21, 2331, 129, 2401, 2439
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n * phi(n) * mu(n)^2.
LINKS
FORMULA
Multiplicative with a(p^e) = p^2 - p + 1. - Amiram Eldar, Dec 04 2023
Sum_{k=1..n} a(k) ~ c * n^3/3, where c = Product_{p prime} (1 - 2/(1+p+p^2)) = 0.51478027457383523467921514707014858470711969900467102074735896602342984... - Vaclav Kotesovec, Dec 05 2023
MATHEMATICA
Table[Sum[d*EulerPhi[d]*MoebiusMu[d]^2, {d, Divisors[n]}], {n, 100}]
PROG
(PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d*eulerphi(d))); \\ Michel Marcus, Dec 04 2023
(Python)
from math import prod
from sympy import primefactors
def A367865(n): return prod(p*(p-1)+1 for p in primefactors(n)) # Chai Wah Wu, Dec 05 2023
CROSSREFS
Cf. A000010 (phi), A007947 (rad), A008966 (mu^2), A202535.
Sequence in context: A282160 A338266 A019158 * A086153 A366141 A049479
KEYWORD
nonn,easy,mult
AUTHOR
Wesley Ivan Hurt, Dec 03 2023
STATUS
approved