Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367863
Number of n-vertex labeled simple graphs with n edges and no isolated vertices.
52
1, 0, 0, 1, 15, 222, 3760, 73755, 1657845, 42143500, 1197163134, 37613828070, 1295741321875, 48577055308320, 1969293264235635, 85852853154670693, 4005625283891276535, 199166987259400191480, 10513996906985414443720, 587316057411626070658200, 34612299496604684775762261
OFFSET
0,5
LINKS
FORMULA
Binomial transform is A367862.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n). - Andrew Howroyd, Dec 29 2023
EXAMPLE
Non-isomorphic representatives of the a(4) = 15 graphs:
{{1,2},{1,3},{1,4},{2,3}}
{{1,2},{1,3},{2,4},{3,4}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[#]==n&]], {n, 0, 5}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n, k) * binomial(binomial(k, 2), n)) \\ Andrew Howroyd, Dec 29 2023
CROSSREFS
The connected case is A057500, unlabeled A001429.
The unlabeled version is A006649.
The non-covering version is A116508.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.
Sequence in context: A057500 A137916 A218696 * A297669 A171320 A078364
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 07 2023
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023
STATUS
approved