Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013631
Continued fraction for zeta(3).
31
1, 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, 1, 1, 1, 3, 1, 6, 1, 30, 1, 4, 1, 1, 4, 1, 3, 1, 2, 7, 1, 3, 1, 2, 2, 1, 16, 1, 1, 3, 3, 1, 2, 2, 1, 6, 1, 1, 1, 6, 1, 1, 4, 428, 5, 1, 1, 3, 1, 1, 11, 2, 4, 4, 5, 4, 1, 5, 14, 1, 3, 1, 2, 19, 1, 2, 5, 1, 7, 1, 1, 1, 1, 1, 57, 3, 2, 14, 2
OFFSET
0,2
EXAMPLE
zeta(3) = 1.2020569031595942... = 1 + 1/(4 + 1/(1 + 1/(18 + 1/(1 + ...)))). - Harry J. Smith, Apr 20 2009
MATHEMATICA
ContinuedFraction[ Zeta[3], 100]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(zeta(3)); for (n=1, 20000, write("b013631.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009
CROSSREFS
Cf. A002117 (decimal expansion), A078984, A078985 (convergents).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013680-A013696.
Sequence in context: A052179 A171589 A126331 * A331651 A113355 A201201
KEYWORD
nonn,cofr,nice
AUTHOR
N. J. A. Sloane, John Morrison (John.Morrison(AT)armltd.co.uk)
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 10 2024
STATUS
approved