Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201201
Coefficient triangle for the monic associated Laguerre-Sonin(e) polynomials of order one for parameter alpha=1.
3
1, -4, 1, 18, -10, 1, -96, 86, -18, 1, 600, -756, 246, -28, 1, -4320, 7092, -3168, 552, -40, 1, 35280, -71856, 41112, -9720, 1070, -54, 1, -322560, 787824, -552240, 165720, -24600, 1878, -70, 1, 3265920, -9329760, 7768080, -2835360, 531480, -54516, 3066, -88
OFFSET
0,2
COMMENTS
See A199577 for general comments on associated Laguerre-Sonin(e) polynomials of order m, and the Ismail reference.
The monic row polynomials are La_n(1;1,x) = sum(a(n,k)*x^k,k=0..n), with the three term recurrence
La_n(1;1,x) = (x-2*(n+1))*La_{n-1}{1;1,x) - n*(n+1)*La_{n-2}{1;1,x), La_{-1}{1;1,x)=0, La_0(1;1,x)=1.
In the Ismail reference the non-monic associated Laguerre polynomials of order 1 appear on p. 160 in Theorem 5.6.1, eq. 5.6.11. The connection is: La_n(1;1,x)= L_n^{(alpha=1)}(x;1)*(n+1)!*(-1)^n.
The e.g.f. gLa(1;1,z,x) for La_n(1;1,x) can be obtained from the o.g.f. G(1;1,z,x) for the non-monic version L_n^{alpha=1}(x;1) by gLa(1;1,z,x)= (d/dz) (z*G(1;1,-z,x)).
G(1;1,z,x) satisfies an ordinary first order inhomogeneous differential equation:
(d/dz) G(1;1,z,x) = (3/(1-z)+(1-x)/(1-z)^2-1/(z*(1-z)^2 z)^2))* G(1;1,z,x) + 1/(z*(1-z)^2), with G(1;1,z=0,x)=1. The standard solution is:
G(1;1,z,x) = (exp(-x*z/(1-z))-1+z-x*exp(-x/(1-z))* (Ei(1,-x/(1-z))-Ei(1,-x)))/(z*(1-z)^2), with the exponential integral Ei(1,y)=int(exp(-t)/t,t=y..infty).
REFERENCES
M. E. H. Ismail (two chapters by W. Van Assche), Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005.
FORMULA
a(n,k)=[x^k] La_n(1;1,x), n>=0, k=0,...,n.
a(n,k)= (-1)^(n-k)*((n+1)*(n+1)!/((k+1)*(k+1)!))*
binomial(n,k)*hypergeom(-(n-k),k,1; -(n+1),k+2; 1), 0<=k<=n. [Ismail, p. 161, eq. (5.6.18)].
The e.g.f. gLa(1;1,z,x) for La_n(1;1,x) is exp(-x/(1+z))*x*(x-2*(1+z))*(Ei(1,-x/(1+z)) - Ei(1,-x))/(1+z)^4 + exp(x*z/(1+z))*(-x+2*(1+z))/(1+z)^4 +(1+z+x)/(1+z)^3 -2/(1+z)^2, with the exponential integral Ei.
The e.g.f. gLa(1;1,z,x) for the Euler-derivative
x*(d/dx) La_n(1;1,x) is x*exp(-x/(1+z))*(2*(1+z)-x)*
(Ei(1,-x/(1+z)) - Ei(1,-x))/(1+z)^4 + (1+z-x)*(1-exp(x*z/(1+z)))/(1+z)^3.
From this follows La_n(1;1,x) = (n+1)*La_n(1,x) -
x*(d/dx)La_n(1;0,x). For La_n(1;0,x) see A199577 where it is called La_n(1;x).
EXAMPLE
The triangle begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: -4 1
2: 18 -10 1
3: -96 86 -18 1
4: 600 -756 246 -28 1
5: -4320 7092 -3168 552 -40 1
6: 35280 -71856 41112 -9720 1070 -54 1
7:-322560 787824 -552240 165720 -24600 1878 -70 1
...
MAPLE
La := proc(n, x)
option remember;
if n= -1 then
0;
elif n = 0 then
1;
else
(x-2*n-2)*procname(n-1, x)-n*(n+1)*procname(n-2, x) ;
end if;
end proc:
A201201 := proc(n, k)
coeftayl( La(n, x), x=0, k) ;
end proc:
seq(seq(A201201(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Dec 07 2011
MATHEMATICA
a[n_, k_] := (-1)^(n-k)*((n+1)*(n+1)!/((k+1)*(k+1)!))*Binomial[n, k]*HypergeometricPFQ[{-(n-k), k, 1}, {-(n+1), k+2}, 1]; Table[a[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
CROSSREFS
Cf. A199577 (alpha=0 case), A201202 (row sums), A201203 (alternating row sums).
Sequence in context: A013631 A331651 A113355 * A077102 A258152 A259051
KEYWORD
sign,easy,tabl
AUTHOR
Wolfdieter Lang, Dec 06 2011
STATUS
approved