Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for zeta(3).
31

%I #34 Jul 10 2024 15:03:45

%S 1,4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,1,1,1,3,1,6,1,30,1,4,1,1,

%T 4,1,3,1,2,7,1,3,1,2,2,1,16,1,1,3,3,1,2,2,1,6,1,1,1,6,1,1,4,428,5,1,1,

%U 3,1,1,11,2,4,4,5,4,1,5,14,1,3,1,2,19,1,2,5,1,7,1,1,1,1,1,57,3,2,14,2

%N Continued fraction for zeta(3).

%H Harry J. Smith, <a href="/A013631/b013631.txt">Table of n, a(n) for n = 0..19999</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AperysConstant.html">Apery's Constant</a>.

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.

%H <a href="/index/Z#zeta_function">Index entries for zeta function</a>.

%e zeta(3) = 1.2020569031595942... = 1 + 1/(4 + 1/(1 + 1/(18 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 20 2009

%t ContinuedFraction[ Zeta[3], 100]

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(zeta(3)); for (n=1, 20000, write("b013631.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 20 2009

%Y Cf. A002117 (decimal expansion), A078984, A078985 (convergents).

%Y Cf. continued fractions for zeta(2)-zeta(20): A013679, A013680-A013696.

%K nonn,cofr,nice

%O 0,2

%A _N. J. A. Sloane_, John Morrison (John.Morrison(AT)armltd.co.uk)

%E Offset changed by _Andrew Howroyd_, Jul 10 2024