Abstract
In this paper we study the spectrum of all conformal, \( \mathcal{N} \)-extended supergravities (\( \mathcal{N} \) = 1, 2, 3, 4) in four space-time dimensions. When these theories are obtained as massless limit of Einstein plus Weyl2 supergravity, the appropriate counting of the enhanced gauge symmetries allow us to derive the massless spectrum which consist of a dipole ghost graviton multiplet, a \( \mathcal{N} \)-fold tripole ghost gravitino, the third state belonging to a spin 3/2 multiplet and a residual vector multiplet present for non-maximal \( \mathcal{N} \) < 4 theories. These theories are not expected to have a standard gravity holographic dual in five dimensions.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].
K.S. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].
D.G. Boulware, G.T. Horowitz and A. Strominger, Zero Energy Theorem for Scale Invariant Gravity, Phys. Rev. Lett. 50 (1983) 1726 [INSPIRE].
F. David and A. Strominger, On the Calculability of Newton’s Constant and the Renormalizability of Scale Invariant Quantum Gravity, Phys. Lett. 143B (1984) 125 [INSPIRE].
G.T. Horowitz, Quantum Cosmology With a Positive Definite Action, Phys. Rev. D 31 (1985) 1169 [INSPIRE].
S. Deser and B. Tekin, Shortcuts to high symmetry solutions in gravitational theories, Class. Quant. Grav. 20 (2003) 4877 [gr-qc/0306114] [INSPIRE].
S. Deser and B. Tekin, New energy definition for higher curvature gravities, Phys. Rev. D 75 (2007) 084032 [gr-qc/0701140] [INSPIRE].
G. ’t Hooft, A class of elementary particle models without any adjustable real parameters, Found. Phys. 41 (2011) 1829 [arXiv:1104.4543] [INSPIRE].
J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
H. Lü, C.N. Pope, E. Sezgin and L. Wulff, Critical and Non-Critical Einstein-Weyl Supergravity, JHEP 10 (2011) 131 [arXiv:1107.2480] [INSPIRE].
L. Álvarez-Gaumé, A. Kehagias, C. Kounnas, D. Lüst and A. Riotto, Aspects of Quadratic Gravity, Fortsch. Phys. 64 (2016) 176 [arXiv:1505.07657] [INSPIRE].
S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1., Phys. Lett. B 190 (1987) 86 [INSPIRE].
S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, New minimal higher derivative supergravity coupled to matter, Nucl. Phys. B 306 (1988) 160 [INSPIRE].
R. Kallosh and A. Linde, Superconformal generalizations of the Starobinsky model, JCAP 06 (2013) 028 [arXiv:1306.3214] [INSPIRE].
J. Ellis, D.V. Nanopoulos and K.A. Olive, No-Scale Supergravity Realization of the Starobinsky Model of Inflation, Phys. Rev. Lett. 111 (2013) 111301 [Erratum ibid. 111 (2013) 129902] [arXiv:1305.1247] [INSPIRE].
J. Ellis, D.V. Nanopoulos and K.A. Olive, Starobinsky-like Inflationary Models as Avatars of No-Scale Supergravity, JCAP 10 (2013) 009 [arXiv:1307.3537] [INSPIRE].
F. Farakos, A. Kehagias and A. Riotto, On the Starobinsky Model of Inflation from Supergravity, Nucl. Phys. B 876 (2013) 187 [arXiv:1307.1137] [INSPIRE].
S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal Supergravity Models of Inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].
R. Kallosh, A. Linde and D. Roest, Superconformal Inflationary α-Attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].
J. Alexandre, N. Houston and N.E. Mavromatos, Starobinsky-type Inflation in Dynamical Supergravity Breaking Scenarios, Phys. Rev. D 89 (2014) 027703 [arXiv:1312.5197] [INSPIRE].
S. Ferrara and M. Porrati, Minimal R + R 2 Supergravity Models of Inflation Coupled to Matter, Phys. Lett. B 737 (2014) 135 [arXiv:1407.6164] [INSPIRE].
A. Ceresole, G. Dall’Agata, S. Ferrara, M. Trigiante and A. Van Proeyen, A search for an \( \mathcal{N} \) = 2 inflaton potential, Fortsch. Phys. 62 (2014) 584 [arXiv:1404.1745] [INSPIRE].
C. Kounnas, D. Lüst and N. Toumbas, R 2 inflation from scale invariant supergravity and anomaly free superstrings with fluxes, Fortsch. Phys. 63 (2015) 12 [arXiv:1409.7076] [INSPIRE].
I. Dalianis, F. Farakos, A. Kehagias, A. Riotto and R. von Unge, Supersymmetry Breaking and Inflation from Higher Curvature Supergravity, JHEP 01 (2015) 043 [arXiv:1409.8299] [INSPIRE].
T. Terada, Y. Watanabe, Y. Yamada and J. Yokoyama, Reheating processes after Starobinsky inflation in old-minimal supergravity, JHEP 02 (2015) 105 [arXiv:1411.6746] [INSPIRE].
S. Ferrara and A. Kehagias, Higher Curvature Supergravity, Supersymmetry Breaking and Inflation, Subnucl. Ser. 52 (2017) 119 [arXiv:1407.5187] [INSPIRE].
S. Ferrara, A. Kehagias and A. Sagnotti, Cosmology and Supergravity, Int. J. Mod. Phys. A 31 (2016) 1630044 [arXiv:1605.04791] [INSPIRE].
A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe (in Russian), JETP Lett. 33 (1981) 532 [INSPIRE].
S. Ferrara, M.T. Grisaru and P. van Nieuwenhuizen, Poincaré and Conformal Supergravity Models With Closed Algebras, Nucl. Phys. B 138 (1978) 430 [INSPIRE].
B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].
B. de Wit and S. Ferrara, On Higher Order Invariants in Extended Supergravity, Phys. Lett. B 81 (1979) 317.
S. Ferrara, M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauging the Graded Conformal Group with Unitary Internal Symmetries, Nucl. Phys. B 129 (1977) 125 [INSPIRE].
M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Superconformal Unified Field Theory, Phys. Rev. Lett. 39 (1977) 1109 [INSPIRE].
M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of Conformal Supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].
D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).
J.M. Cline, S. Jeon and G.D. Moore, The Phantom menaced: Constraints on low-energy effective ghosts, Phys. Rev. D 70 (2004) 043543 [hep-ph/0311312] [INSPIRE].
H. Johansson and J. Nohle, Conformal Gravity from Gauge Theory, arXiv:1707.02965 [INSPIRE].
H. Johansson, G. Mogull and F. Teng, Unraveling conformal gravity amplitudes, arXiv:1806.05124 [INSPIRE].
A. Salvio, Quadratic Gravity, Front. in Phys. 6 (2018) 77 [arXiv:1804.09944] [INSPIRE].
S. Ferrara and B. Zumino, Structure of Conformal Supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].
R.J. Riegert, The particle content of linearized conformal gravity, Phys. Lett. A 105 (1984) 110 [INSPIRE].
A. Balfagon and X. Jaen, Review of some classical gravitational superenergy tensors using computational techniques, Class. Quant. Grav. 17 (2000) 2491 [gr-qc/9912060] [INSPIRE].
L. Bel, Sur la radiation gravitationelle, CR Acad. Sci. Paris 247 (1958) 1094.
L. Bel, Introduction d’un tenseur du quatrieme order, CR Acad. Sci. Paris 248 (1959) 1297.
I. Robinson, unpublished Kings College Lectures, London U.K. (1958).
I. Robinson, On the Bel-Robinson tensor, Class. Quant. Grav. 14 (1997) 4331.
S. Ferrara, R. Gatto and A.F. Grillo, Positivity Restrictions on Anomalous Dimensions, Phys. Rev. D 9 (1974) 3564 [INSPIRE].
G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].
C. Bachas and I. Lavdas, Massive Anti-de Sitter Gravity from String Theory, arXiv:1807.00591 [INSPIRE].
N. Boulanger, A Weyl-covariant tensor calculus, J. Math. Phys. 46 (2005) 053508 [hep-th/0412314] [INSPIRE].
F. Farakos, S. Ferrara, A. Kehagias and D. Lüst, Non-linear Realizations and Higher Curvature Supergravity, Fortsch. Phys. 65 (2017) 1700073 [arXiv:1707.06991] [INSPIRE].
S. Ferrara, C.A. Savoy and B. Zumino, General Massive Multiplets in Extended Supersymmetry, Phys. Lett. 100B (1981) 393 [INSPIRE].
S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].
S. Ferrara and B. Zumino, Structure of Conformal Supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].
S.C. Lee and P. van Nieuwenhuizen, Counting of States in Higher Derivative Field Theories, Phys. Rev. D 26 (1982) 934 [INSPIRE].
J. van Muiden and A. Van Proeyen, The \( \mathcal{N} \) = 3 Weyl Multiplet in Four Dimensions, arXiv:1702.06442 [INSPIRE].
E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].
N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].
C. Bachas, M. Bianchi and A. Hanany, \( \mathcal{N} \) = 2 moduli of AdS 4 vacua: a fine-print study, JHEP 08 (2018) 100 [arXiv:1711.06722] [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, One Loop β-function in Conformal Supergravities, Nucl. Phys. B 203 (1982) 157 [INSPIRE].
D.M. Capper and M.J. Duff, Conformal Anomalies and the Renormalizability Problem in Quantum Gravity, Phys. Lett. A 53 (1975) 361 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Conformal Anomaly in Weyl Theory and Anomaly Free Superconformal Theories, Phys. Lett. 134B (1984) 187 [INSPIRE].
A.A. Tseytlin, On divergences in non-minimal N = 4 conformal supergravity, J. Phys. A 50 (2017) 48LT01 [arXiv:1708.08727] [INSPIRE].
H. Romer and P. van Nieuwenhuizen, Axial Anomalies in N = 4 Conformal Supergravity, Phys. Lett. 162B (1985) 290 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].
S. Ferrara, R. Kallosh and A. Van Proeyen, Conjecture on hidden superconformal symmetry of N = 4 Supergravity, Phys. Rev. D 87 (2013) 025004 [arXiv:1209.0418] [INSPIRE].
S. Ferrara and D. Lüst, Spin-four \( \mathcal{N} \) = 7 W-supergravity: S-fold and double copy construction, JHEP 07 (2018) 114 [arXiv:1805.10022] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1806.10016
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ferrara, S., Kehagias, A. & Lüst, D. Aspects of Weyl supergravity. J. High Energ. Phys. 2018, 197 (2018). https://doi.org/10.1007/JHEP08(2018)197
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2018)197