Abstract
We find all those unitary irreducible representations of the ∞-sheeted covering group\(\tilde G\) of the conformal group SU(2,2)/ℤ4 which have positive energyP 0≧0. They are all finite component field representations and are labelled by dimensiond and a finite dimensional irreducible representation (j 1,j 2) of the Lorentz group SL(2ℂ). They all decompose into a finite number of unitary irreducible representations of the Poincaré subgroup with dilations.
Similar content being viewed by others
References
Mack, G., Abdus Salam: Ann. Phys. (N.Y.)53, 174 (1969)
Segal, I.: MIT preprint
Lüscher, M., Mack, G.: Commun. math. Phys.41, 203 (1975)
Graev, M. L.: Dokl. Acad. Nauk SSR98, 517 (1954)
Castell, L.: Nucl. Phys.B4, 343 (1967)
Yao, T.: J. Math. Phys.8, 1931 (1967);9, 1615 (1968);
Sternheimer, D.: J. Math. Pure Appl.47, 289 (1969) and references cited in 1
Rühl, W.: Commun. math. Phys.30, 287 (1973);34, 149 (1973); The canonical dimension of fields as the limit of noncanonical dimensions, preprint Kaiserslautern (March 1973)
Mack, G., Todorov, I.T.: J. Math. Phys.10, 2078 (1969)
Mack, G.: Osterwalder-Schrader positivity in conformal invariant quantum field theory. In: Lecture notes in physics, Vol. 37, (ed. H. Rollnik, K. Dietz), p. 66. Berlin-Heidelberg-New York: Springer 1975
Mack, G.: Commun. math. Phys.53, 155 (1977); Nucl. Phys.B 118, 445 (1977)
Dieudonné, I.: Treatise on analysis, Vol. III. New York: Academic Press 1972
Hermann, R.: Lie groups for physicists, Chap. 6, 7. New York: W. A. Benjamin 1966
Wigner, E.: Ann math.40, 149 (1939)
Joos, H.: Forschr. Physik10, 65 (1965);
Weinberg, S.: Phys. Rev.133, B 1318 (1964),134, B 882 (1964)
Kihlberg, A., Müller, V.F., Halbwachs, F.: Commun. math. Phys.3, 194 (1966)
Warner, G.: Harmonic analysis on semi-simple Lie groups, Vols. I, II. Berlin-Heidelberg-New York: Springer 1972
Wallach, N. R.: Harmonic analysis on homogeneous spaces. New York: Marcel Dekker 1973
Rose, M. E.: Elementary theory of angular momentum, Appendix I. New York: John Wiley 1957
Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. I. New York: Academic Press
Koller, K.: Commun. math. Phys.40, 15 (1975)
Dobrev, V. K., Mack, G., Petkova, V. B., Petrova, S. G., Todorov, I. T.: Elementary representations and intertwining operators for the generalized Lorentz group. Lecture notes in physics, Vol. 63. Berlin-Heidelberg-New York: Springer 1977
Kunze, R., Stein, E.: Amer. J. Math.82, 1 (1960);83, 723 (1961);89, 385 (1967)
Knapp, A., Stein, E.: Ann. Math.93, 489 (1971);
Schiffmann, G.: Bull. Soc. Math. France99, 3 (1971)
Neumark, M. A.: Lineare Darstellungen der Lorentzgruppe, §8, Satz 2, p. 110. Berlin: VEB dt. Verlag der Wissenschaften 1963
Nelson, E.: Analytic vectors, Ann. Math.70, 572 (1959)
Lüscher, M.: Analytic representations of simple Lie groups and their continuation to contractive representations of holomorphic Lie semi-groups, DESY 75/71 (1975)
Ferrara, S., Gatto, R., Grillo, A.: Phys. Rev.D9, 3564 (1975);
Zaikov, R. P.: Bulg. J. Phys.2, 2 (1975)
Author information
Authors and Affiliations
Additional information
Communicated by H. Araki
Rights and permissions
About this article
Cite this article
Mack, G. All unitary ray representations of the conformal group SU(2,2) with positive energy. Commun.Math. Phys. 55, 1–28 (1977). https://doi.org/10.1007/BF01613145
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01613145