Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

All unitary ray representations of the conformal group SU(2,2) with positive energy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We find all those unitary irreducible representations of the ∞-sheeted covering group\(\tilde G\) of the conformal group SU(2,2)/ℤ4 which have positive energyP 0≧0. They are all finite component field representations and are labelled by dimensiond and a finite dimensional irreducible representation (j 1,j 2) of the Lorentz group SL(2ℂ). They all decompose into a finite number of unitary irreducible representations of the Poincaré subgroup with dilations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mack, G., Abdus Salam: Ann. Phys. (N.Y.)53, 174 (1969)

    Google Scholar 

  2. Segal, I.: MIT preprint

  3. Lüscher, M., Mack, G.: Commun. math. Phys.41, 203 (1975)

    Google Scholar 

  4. Graev, M. L.: Dokl. Acad. Nauk SSR98, 517 (1954)

    Google Scholar 

  5. Castell, L.: Nucl. Phys.B4, 343 (1967)

    Google Scholar 

  6. Yao, T.: J. Math. Phys.8, 1931 (1967);9, 1615 (1968);

    Google Scholar 

  7. Sternheimer, D.: J. Math. Pure Appl.47, 289 (1969) and references cited in 1

    Google Scholar 

  8. Rühl, W.: Commun. math. Phys.30, 287 (1973);34, 149 (1973); The canonical dimension of fields as the limit of noncanonical dimensions, preprint Kaiserslautern (March 1973)

    Google Scholar 

  9. Mack, G., Todorov, I.T.: J. Math. Phys.10, 2078 (1969)

    Google Scholar 

  10. Mack, G.: Osterwalder-Schrader positivity in conformal invariant quantum field theory. In: Lecture notes in physics, Vol. 37, (ed. H. Rollnik, K. Dietz), p. 66. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  11. Mack, G.: Commun. math. Phys.53, 155 (1977); Nucl. Phys.B 118, 445 (1977)

    Google Scholar 

  12. Dieudonné, I.: Treatise on analysis, Vol. III. New York: Academic Press 1972

    Google Scholar 

  13. Hermann, R.: Lie groups for physicists, Chap. 6, 7. New York: W. A. Benjamin 1966

    Google Scholar 

  14. Wigner, E.: Ann math.40, 149 (1939)

    Google Scholar 

  15. Joos, H.: Forschr. Physik10, 65 (1965);

    Google Scholar 

  16. Weinberg, S.: Phys. Rev.133, B 1318 (1964),134, B 882 (1964)

  17. Kihlberg, A., Müller, V.F., Halbwachs, F.: Commun. math. Phys.3, 194 (1966)

    Google Scholar 

  18. Warner, G.: Harmonic analysis on semi-simple Lie groups, Vols. I, II. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  19. Wallach, N. R.: Harmonic analysis on homogeneous spaces. New York: Marcel Dekker 1973

    Google Scholar 

  20. Rose, M. E.: Elementary theory of angular momentum, Appendix I. New York: John Wiley 1957

    Google Scholar 

  21. Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. I. New York: Academic Press

  22. Koller, K.: Commun. math. Phys.40, 15 (1975)

    Google Scholar 

  23. Dobrev, V. K., Mack, G., Petkova, V. B., Petrova, S. G., Todorov, I. T.: Elementary representations and intertwining operators for the generalized Lorentz group. Lecture notes in physics, Vol. 63. Berlin-Heidelberg-New York: Springer 1977

    Google Scholar 

  24. Kunze, R., Stein, E.: Amer. J. Math.82, 1 (1960);83, 723 (1961);89, 385 (1967)

    Google Scholar 

  25. Knapp, A., Stein, E.: Ann. Math.93, 489 (1971);

    Google Scholar 

  26. Schiffmann, G.: Bull. Soc. Math. France99, 3 (1971)

    Google Scholar 

  27. Neumark, M. A.: Lineare Darstellungen der Lorentzgruppe, §8, Satz 2, p. 110. Berlin: VEB dt. Verlag der Wissenschaften 1963

    Google Scholar 

  28. Nelson, E.: Analytic vectors, Ann. Math.70, 572 (1959)

    Google Scholar 

  29. Lüscher, M.: Analytic representations of simple Lie groups and their continuation to contractive representations of holomorphic Lie semi-groups, DESY 75/71 (1975)

  30. Ferrara, S., Gatto, R., Grillo, A.: Phys. Rev.D9, 3564 (1975);

    Google Scholar 

  31. Zaikov, R. P.: Bulg. J. Phys.2, 2 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mack, G. All unitary ray representations of the conformal group SU(2,2) with positive energy. Commun.Math. Phys. 55, 1–28 (1977). https://doi.org/10.1007/BF01613145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01613145

Keywords

Navigation