Abstract
We analyze the moduli spaces near \( \mathcal{N}=4 \) supersymmetric AdS4 vacua of string theory by combining and comparing various approaches: (a) the known exact solutions of Type IIB string theory with localized 5-brane sourcees; (b) the holographically dual 3d quiver gauge theories; (c) gauged supergravity; and (d) the representations of the superconformal algebra \( \mathfrak{o}\mathfrak{s}\mathfrak{p}\left(4\left|4\right|\right) \). Short multiplets containing the marginal \( \mathcal{N}=2 \) deformations transform in the (2; 0), (0; 2) or (1; 1) representations of the R-symmetry group SU(2)H × SU(2)C. The first two are classified by the chiral rings of the Higgs and Coulomb branches, while the latter contain mixed-branch operators. We identify the origin of these moduli in string theory, matching in particular the operators of the chiral rings with open strings on the magnetized 5-brane sources. Our results provide new evidence for the underlying holographic duality. The existence of a large number of bound-state moduli highlights the limitations of effective supergravity.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Change history
04 October 2018
The statement below equation 3.16 about possible multiple embeddings of the N=2 superconformal algebra in N=4 is wrong. The embedding (used later in the paper) is unique. The decomposition of the symmetric product representation is wrong. Below equation 4.8, one should read ? = 1 instead of 2, and ? = 2 instead of 4.
04 October 2018
The statement below equation 3.16 about possible multiple embeddings of the N=2 superconformal algebra in N=4 is wrong. The embedding (used later in the paper) is unique. The decomposition of the symmetric product representation is wrong. Below equation 4.8, one should read ? = 1 instead of 2, and ? = 2 instead of 4.
04 October 2018
The statement below equation 3.16 about possible multiple embeddings of the N=2 superconformal algebra in N=4 is wrong. The embedding (used later in the paper) is unique. The decomposition of the symmetric product representation is wrong. Below equation 4.8, one should read ? = 1 instead of 2, and ? = 2 instead of 4.
References
M. Graña, Flux compactifications in string theory: A comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].
M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].
R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].
B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic Duals of D = 3 N = 4 Superconformal Field Theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].
B. Assel, C. Bachas, J. Estes and J. Gomis, IIB Duals of D = 3 N = 4 Circular Quivers, JHEP 12 (2012) 044 [arXiv:1210.2590] [INSPIRE].
A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].
G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].
G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP 06 (2011) 030 [arXiv:1104.3587] [INSPIRE].
J. Louis and H. Triendl, Maximally supersymmetric AdS 4 vacua in N = 4 supergravity, JHEP 10 (2014) 007 [arXiv:1406.3363] [INSPIRE].
F.A. Dolan, On Superconformal Characters and Partition Functions in Three Dimensions, J. Math. Phys. 51 (2010) 022301 [arXiv:0811.2740] [INSPIRE].
C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE].
B. Assel, Ring Relations and Mirror Map from Branes, JHEP 03 (2017) 152 [arXiv:1701.08766] [INSPIRE].
C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP 11 (2016) 135 [arXiv:1602.01217] [INSPIRE].
D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal deformations from exceptional generalised geometry, JHEP 01 (2017) 124 [arXiv:1605.05730] [INSPIRE].
C. Kounnas, D. Lüst, P.M. Petropoulos and D. Tsimpis, AdS4 flux vacua in type-II superstrings and their domain-wall solutions, JHEP 09 (2007) 051 [arXiv:0707.4270] [INSPIRE].
D. Martelli and J. Sparks, Notes on toric Sasaki-Einstein seven-manifolds and AdS 4 /CFT 3, JHEP 11 (2008) 016 [arXiv:0808.0904] [INSPIRE].
D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [INSPIRE].
M. Petrini and A. Zaffaroni, N = 2 solutions of massive type IIA and their Chern-Simons duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [INSPIRE].
M. Haack, D. Lüst, L. Martucci and A. Tomasiello, Domain walls from ten dimensions, JHEP 10 (2009) 089 [arXiv:0905.1582] [INSPIRE].
D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [INSPIRE].
O. Aharony, D. Jafferis, A. Tomasiello and A. Zaffaroni, Massive type IIA string theory cannot be strongly coupled, JHEP 11 (2010) 047 [arXiv:1007.2451] [INSPIRE].
A. Passias, G. Solard and A. Tomasiello, \( \mathcal{N}=2 \) supersymmetric AdS 4 solutions of type IIB supergravity, JHEP 04 (2018) 005 [arXiv:1709.09669] [INSPIRE].
E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].
P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473 [INSPIRE].
C. Bachas, J. Hoppe and B. Pioline, Nahm equations, N = 1* domain walls and D strings in AdS 5 × S 5, JHEP 07 (2001) 041 [hep-th/0007067] [INSPIRE].
E. Brieskorn, Singular Elements of Semi-Simple Algebraic Groups, Actes, Congres Intern. Math. 2 (1970) 279.
P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lect. Notes Math. 815 (1980).
A. Kapustin, D-branes in a topologically nontrivial B field, Adv. Theor. Math. Phys. 4 (2000) 127 [hep-th/9909089] [INSPIRE].
P. Bouwknegt and V. Mathai, D-branes, B fields and twisted k-theory, JHEP 03 (2000) 007 [hep-th/0002023] [INSPIRE].
B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].
M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].
M.R. Douglas, Branes within branes, in Strings, branes and dualities. Proceedings, NATO Advanced Study Institute, Cargese, France, May 26 – June 14, 1997, pp. 267–275, hep-th/9512077 [INSPIRE].
E.J. Weinberg, Monopole vector spherical harmonics, Phys. Rev. D 49 (1994) 1086 [hep-th/9308054] [INSPIRE].
R. Jackiw and C. Rebbi, Solitons with Fermion Number 1/2, Phys. Rev. D 13 (1976) 3398 [INSPIRE].
P. Hasenfratz and G. ’t Hooft, A Fermion-Boson Puzzle in a Gauge Theory, Phys. Rev. Lett. 36 (1976) 1119 [INSPIRE].
O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].
E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [INSPIRE].
A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].
C. Bachas and J. Estes, Spin-2 spectrum of defect theories, JHEP 06 (2011) 005 [arXiv:1103.2800] [INSPIRE].
J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].
A. Agarwal, N. Beisert and T. McLoughlin, Scattering in Mass-Deformed N≥4 Chern-Simons Models, JHEP 06 (2009) 045 [arXiv:0812.3367] [INSPIRE].
H.-C. Kim and S. Kim, Supersymmetric vacua of mass-deformed M2-brane theory, Nucl. Phys. B 839 (2010) 96 [arXiv:1001.3153] [INSPIRE].
S. Cheon, H.-C. Kim and S. Kim, Holography of mass-deformed M2-branes, arXiv:1101.1101 [INSPIRE].
K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].
O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].
B. Kol, On conformal deformations, JHEP 09 (2002) 046 [hep-th/0205141] [INSPIRE].
S. Benvenuti and A. Hanany, Conformal manifolds for the conifold and other toric field theories, JHEP 08 (2005) 024 [hep-th/0502043] [INSPIRE].
D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].
R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].
O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of N = 4 SYM and type IIB supergravity on AdS 5 × S 5, JHEP 06 (2002) 039 [hep-th/0205090] [INSPIRE].
V. Asnin, On metric geometry of conformal moduli spaces of four-dimensional superconformal theories, JHEP 09 (2010) 012 [arXiv:0912.2529] [INSPIRE].
M. Bianchi, J.F. Morales and H. Samtleben, On stringy AdS 5 × S 5 and higher spin holography, JHEP 07 (2003) 062 [hep-th/0305052] [INSPIRE].
N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, On the spectrum of AdS/CFT beyond supergravity, JHEP 02 (2004) 001 [hep-th/0310292] [INSPIRE].
N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, Higher spin symmetry and N = 4 SYM, JHEP 07 (2004) 058 [hep-th/0405057] [INSPIRE].
M. Bianchi, P.J. Heslop and F. Riccioni, More on La Grande Bouffe, JHEP 08 (2005) 088 [hep-th/0504156] [INSPIRE].
M. Bianchi, F.A. Dolan, P.J. Heslop and H. Osborn, N = 4 superconformal characters and partition functions, Nucl. Phys. B 767 (2007) 163 [hep-th/0609179] [INSPIRE].
L. Andrianopoli and S. Ferrara, On short and long SU(2,2/4) multiplets in the AdS/CFT correspondence, Lett. Math. Phys. 48 (1999) 145 [hep-th/9812067] [INSPIRE].
M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM theory at order g 4, Nucl. Phys. B 584 (2000) 216 [hep-th/0003203] [INSPIRE].
M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Properties of the Konishi multiplet in N = 4 SYM theory, JHEP 05 (2001) 042 [hep-th/0104016] [INSPIRE].
M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, On the logarithmic behavior in N = 4 SYM theory, JHEP 08 (1999) 020 [hep-th/9906188] [INSPIRE].
S. de Alwis, J. Louis, L. McAllister, H. Triendl and A. Westphal, Moduli spaces in AdS 4 supergravity, JHEP 05 (2014) 102 [arXiv:1312.5659] [INSPIRE].
T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p,q)-fivebrane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].
B. Assel, The Space of Vacua of 3d \( \mathcal{N}=3 \) Abelian Theories, JHEP 08 (2017) 011 [arXiv:1706.00793] [INSPIRE].
V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].
S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition: classical case, JHEP 04 (2018) 127 [arXiv:1711.02378] [INSPIRE].
S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].
S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].
A. Hanany and R. Kalveks, Highest Weight Generating Functions for Hilbert Series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1711.06722
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bachas, C., Bianchi, M. & Hanany, A. \( \mathcal{N}=2 \) moduli of AdS4 vacua: a fine-print study. J. High Energ. Phys. 2018, 100 (2018). https://doi.org/10.1007/JHEP08(2018)100
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2018)100