Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Classical gravity with higher derivatives

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Inclusion of the four-derivative terms ∫R μν R μν(−g)1/2 and ∫R 2(−g)1/2 into the gravitational action gives a class of effectively multimass models of gravity. In addition to the usual massless excitations of the field, there are now, for general amounts of the two new terms, massive spin-two and massive scalar excitations, with a total of eight degrees of freedom. The massive spin-two part of the field has negative energy. Specific ratios of the two new terms give models with either the massive tensor or the massive scalar missing, with correspondingly fewer degrees of freedom. The static, linearized solutions of the field equations are combinations of Newtonian and Yukawa potentials. Owing to the Yukawa form of the corrections, observational evidence sets only very weak restrictions on the new masses. The acceptable static metric solutions in the full nonlinear theory are regular at the origin. The dynamical content of the linearized field is analyzed by reducing the fourth-order field equations to separated second-order equations, related by coupling to external sources in a fixed ratio. This analysis is carried out into the various helicity components using the transverse-traceless decomposition of the metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H., (1921).Raum-Zeit-Materie, 4th ed. (Springer-Verlag, Berlin) [English translalation (1952)Space-Time-Matter (Dover, New York], Chap. IV; Eddington, A. (1924).The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press, London), Chap. IV. Later suggestions were

    Google Scholar 

  2. Lanczos, (1938).Ann Math.,39, 842; Buchdahl, H. A. (1948).Proc. Edinburgh Math. Soc.,8, 89.

    Google Scholar 

  3. Pais, A., and Uhlenbeck, G. E. (1950).Phys. Rev.,79, 145.

    Google Scholar 

  4. Utiyama, R., and De Witt, B. (1962).J. Math. Phys.,3, 608; DeWitt, B. S. (1965).Dynamical Theory of Groups and Fields (Gordon and Breach, New York), Chap. 24; Sakharov, A. D. (1967).Dokl. Akad. Nauk SSSR,177, 70 [(1968).Sov. Phys. Dokl.,12, 1040.]

    Google Scholar 

  5. De Witt, B. S. (1975).Phys. Rep.,19C, 295.

    Google Scholar 

  6. 't Hooft, G., and Veltman, M. (1974).Ann. Inst. Henri Poincaré 20, 69; Deser, S., and van Nieuwenhuizen, P. (1974).Phys. Rev. D,10, 401, 411; Deser, S., van Nieuwenhuizen, P., and Tsao, H. S. (1974).Phys. Rev. D 10, 3337.

    Google Scholar 

  7. Stelle, K. S. (1977)Phys. Rev. D. 16, 953.

    Google Scholar 

  8. Pechlaner, E., and Sexl, R. (1966).Commun. Math. Phys.,2, 165; 3rd paper in [6]; Havas, P., (1977). Temple University preprint.

    Google Scholar 

  9. Long, D. R. (1976).Nature,260, 417.

    Google Scholar 

  10. Mikkelsen, D. R., and Newman, M. J. California Institute of Technology preprint No. OAP-475.

  11. Rivers, R. J. (1964).Nuovo Cimento 34, 387.

    Google Scholar 

  12. van Nieuwenhuizen, P. (1973).Nucl. Phys.,B60, 478.

    Google Scholar 

  13. Ostrogradski, M. (1850).“Mémoires sur les équations differentielles relatives au problème des isopérimètres,” Mem. Acad. St. Petersbourg,VI4, 385; see also Whittaker, E. T. (1937).Analytical Dynamics of Particles and Rigid Bodies, 4th ed. (Cambridge University Press, London); and also [3].

    Google Scholar 

  14. Deser, S. (1970).Gen. Rel. Grav.,1, 9.

    Google Scholar 

  15. Arnowitt, R., Deser, S., and Misner, C. W. (1962), inGravitation, an introduction to current research, ed. Witten, L. (Wiley, New York).

    Google Scholar 

  16. Matthews, P. T. (1949).Proc. Cambridge Phil. Soc.,45, 441.

    Google Scholar 

  17. Coleman, S. (1970). “Acausality” inSubnuclear Phenomena, ed. Zichichi, A. (Academic Press, New York).

    Google Scholar 

  18. Lee, T. D., and Wick, G. C. (1969).Nucl. Phys.,B9, 209; (1969).B10, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by the National Science Foundation under grant No. PHY-76-07299.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelle, K.S. Classical gravity with higher derivatives. Gen Relat Gravit 9, 353–371 (1978). https://doi.org/10.1007/BF00760427

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00760427

Keywords

Navigation