Business">
Nothing Special   »   [go: up one dir, main page]

Administracion de Operaciones (Richard Chase)

Descargar como pdf o txt
Descargar como pdf o txt
Está en la página 1de 6

Administración de operaciones.

Producción y Cadena de Suministros.


Richard Chase

Chase, R. (2009) Administración de operaciones. Producción


y Cadena de Suministros. Capítulo 6: Análisis de Procesos. 12ª
Edición. Págs. 168 a 172.
168 sección 2 PROCESOS

se calcula el tiempo del ciclo que se requiere para un proceso. Por ejemplo, si un fabricante de automó-
viles tiene que producir 1 000 automóviles en un turno durante el cual la línea de montaje opera 420
minutos, el tiempo del ciclo es de 25.2 segundos (420 minutos/1 000 automóviles × 60 segundos/minuto
= 25.2 segundos/automóvil).

MEDICIÓN DEL DESEMPEÑO DE LOS PROCESOS


Las formas en que se calculan las medidas del desempeño en la práctica son muy variables. Esta sección
define las medidas de forma congruente con la que se usa más comúnmente en la práctica. Sin embargo,
antes de tomar decisiones, es vital entender con precisión cómo se calcula una medida que proviene de
una compañía o industria particulares. Sería mucho más fácil si las medidas se calcularan de forma más
consistente, pero no es el caso. Por lo tanto, si un gerente dice que su utilización es de 90% o su eficien-
cia es de 115%, la siguiente pregunta normal es: “¿Cómo calculó eso?”. Las medidas muchas veces se
calculan en el contexto de un proceso particular. Las medidas utilizadas en los casos que usted está es-
tudiando tal vez se definan de manera ligeramente diferente de las que se presentan aquí. Es importante
comprender cómo se está utilizando un término dentro del contexto en cuestión.
La comparación de las medidas de una compañía con las de otra, muchas veces llamado benchmar-
king, es una actividad importante. Las medidas indican a la empresa si se está avanzando hacia una mejo-
ría. Así como las medidas financieras tienen valor para los contadores, las medidas del desempeño de los
procesos brindan al gerente de operaciones una ponderación de qué tan productivamente está operando
un proceso en la actualidad y de cómo la productividad va cambiando con el transcurso del tiempo. Con
frecuencia, los gerentes de operaciones deben mejorar el desempeño de un proceso o proyectar las reper-
cusiones de un cambio propuesto. Las medidas descritas en esta sección son importantes para responder
estas preguntas. A efecto de ayudar a comprender estos cálculos, la ilustración 6.3 muestra cómo estas
medidas se relacionan unas con otras.
La medida más común de los procesos posiblemente es la utilización. Como se dijo antes en este
mismo capítulo, la utilización es la proporción de tiempo que un recurso es usado de hecho en relación
con el tiempo que está disponible para su uso. La utilización siempre se mide en relación con algún re-
curso; por ejemplo, la utilización del trabajo directo o la utilización de una máquina como recurso. La
Productividad diferencia entre productividad y utilización es importante. Productividad se refiere a la proporción de

ilustración 6.3 Medidas del desempeño de los procesos

Tamaño Tiempo/ Tiempo de Tiempo Tiempo de operación = Tiempo de preparación +


de la serie unidad preparación en la fila Tiempo corrida
Tiempo de procesamiento = Tiempo promedio que
una unidad tarda en
pasar por el sistema
Tiempo de Tiempo de Tiempo de
la corrida operación procesamiento Tiempo de procesamiento
Velocidad =
Tiempo de valor agregado
Tiempo del ciclo = Tiempo promedio entre
Tiempo la terminación de unidades
Normas Velocidad
del ciclo 1
Índice de procesamiento =
Tiempo del ciclo
Producción real
Índice de Eficiencia =
Eficiencia Productividad Insumos Producción estándar
procesamiento
Productos
Productividad =
Insumos
Tiempo activo
Tiempo Tiempo Utilización =
Utilización Tiempo disponible
disponible activo
ANÁLISIS DE PROCESOS capítulo 6 169

productos en relación con los insumos. La productividad total de los factores se suele medir en unida-
des monetarias, por ejemplo dólares, tomando el valor de la producción en dólares (como los bienes y
los servicios vendidos) y dividiéndolo entre el costo de todos los insumos (es decir, materiales, trabajo
e inversión de capital). Por otra parte, la productividad parcial de los factores se mide con base en un
insumo individual, donde el trabajo es el más común. La productividad parcial de los factores responde a
la pregunta de cuántos productos se pueden obtener de un nivel dado de insumos; por ejemplo, ¿cuántas
computadoras son fabricadas por empleado que trabaja en una planta que produce computadoras? (Véase
el capítulo 2 para mayor información acerca de la productividad.) La utilización mide la activación real
del recurso. Por ejemplo, ¿cuál es el porcentaje de tiempo que una máquina costosa se encuentra efecti-
vamente en operación?
Eficiencia se refiere a la proporción de la producción real de un proceso en relación con algún pa- Eficiencia
rámetro. Por ejemplo, piense en una máquina diseñada para empacar cereal a un ritmo de 30 cajas por
minuto. Si los operadores de un turno de hecho producen a un ritmo de 36 cajas por minuto, entonces la
eficiencia de la máquina es de 120% (36/30). Otra forma de usar el término eficiencia es para medir la
ganancia o la pérdida de un proceso. Por ejemplo, si se invierten 1 000 unidades de energía en un proceso
diseñado para convertirlas a otra forma alternativa, y si el pro-
ceso sólo produce 800 unidades de energía de la nueva forma,
entonces el proceso tiene una eficiencia de 80 por ciento.
El tiempo de corrida es el tiempo que se requiere para pro-
ducir un lote de piezas. Se calcula multiplicando el tiempo re-
querido para producir cada unidad por el tamaño del lote. El
tiempo de preparación se refiere al tiempo que se requiere para
preparar la máquina a efecto de fabricar un artículo particular.
Las máquinas que requieren bastante tiempo para su prepara-
ción por lo general sacarán las piezas en lotes. El tiempo de
operación es la suma del tiempo de preparación y el tiempo de
la corrida para un lote de piezas que pasan por una máquina.
Piense en la máquina empacadora de cereales que está diseñada
para producir a un ritmo de 30 cajas por minuto. El tiempo de
corrida para cada caja es de 2 segundos. Para cambiar la má-
quina de cajas de 16 onzas a cajas de 12 onzas se requiere un
tiempo de preparación de 30 minutos. El tiempo de operación
para fabricar un lote de 10 000 cajas de 12 onzas es de 21 800 segundos (30 minutos de preparación × 60
segundos/minuto + 2 segundos/caja × 10 000 cajas) o 363.33 minutos.
En la práctica el tiempo de preparación muchas veces no se incluye en el proceso de utilización. En Tiempo de corrida
esencia, el tiempo de preparación se clasifica igual que el tiempo muerto provocado por una reparación o Tiempo de preparación
alguna otra interrupción del proceso. Este supuesto varía de una compañía a otra, por lo cual es impor- Tiempo de operación
tante que cuando se compara la utilización de una máquina u otro recurso se conozca con exactitud cómo
clasifica la compañía el tiempo de preparación.
El tiempo del ciclo (definido antes en este capítulo) es el tiempo que transcurre entre el inicio y el
fin de un trabajo.1 Otro término relacionado es tiempo de procesamiento, el cual incluye el tiempo que Tiempo de
transcurre mientras se trabaja en una unidad y el tiempo que transcurre mientras espera en una fila. procesamiento
Como ejemplo simple, piense en una línea de montaje por pasos que tiene seis estaciones y funciona con
un tiempo de ciclo de 30 segundos. Si las estaciones están situadas una después de la otra y si cada 30
segundos las piezas pasan de una estación a otra, entonces el tiempo de procesamiento es de tres minutos
(30 segundos × 6 estaciones/60 segundos por minuto). El índice de procesamiento se refiere al porcen- Índice de
taje de productos que se espera que el proceso haga dentro de un periodo. El índice de procesamiento de procesamiento
la línea de montaje es de 120 unidades por hora (60 minutos/hora × 60 segundos/minuto ÷ 30 segundos/
unidad). En este caso, el índice de procesamiento es lo contrario del tiempo del ciclo en términos ma-
temáticos.
Muchas veces no se trabaja en las unidades
100% del tiempo conforme van pasando por 2 2 2
1 unidades 1 unidades 1 unidades
un proceso. Como suele haber cierta variación
unidad unidad unidad
en el tiempo del ciclo de un proceso, se incor-
poran amortiguadores a efecto de que las ac-
tividades individuales puedan operar de forma
2 2
independiente, cuando menos en cierta medi- unidades unidades
1 1 1
da. En la línea de montaje de seis estaciones unidad unidad unidad
antes descrita, piense en las repercusiones de
tener 10 puestos amortiguadores adicionales a
170 sección 2 PROCESOS

Velocidad del proceso lo largo de la línea. Suponga que dos de estos puestos están entre la primera y la segunda estaciones de
(proporción del trabajo, dos están entre las estaciones 2 y 3, y así sucesivamente. Si estos puestos siempre están ocupados,
procesamiento) entonces el tiempo de procesamiento sería de ocho minutos (suponiendo un total de 16 puestos a lo largo
de la línea de montaje y un tiempo de ciclo promedio de 30 segundos).
Tiempo de valor La velocidad del proceso (también llamada proporción del procesamiento) es la proporción entre
agregado el tiempo total de procesamiento frente al tiempo de valor agregado. El tiempo de valor agregado es el
que transcurre mientras se trabaja de hecho en una unidad de forma útil. Suponiendo que todas las acti-
vidades que están incluidas en el proceso son actividades de valor agregado, el tiempo de valor agregado
debe ser la suma de los tiempos de las actividades operativas del proceso. La velocidad del proceso (o
proporción del procesamiento) de la línea de montaje con 10 puestos amortiguadores adicionales, supo-
niendo que los puestos se usan 100% del tiempo, es de 2.66 (8 minutos/3 minutos).
Ley de Little La ley de Little2 plantea una relación matemática entre el índice de procesamiento, el tiempo de pro-
cesamiento y la cantidad de inventario de trabajo en proceso. Esta ley calcula el tiempo que un artículo
pasará en el inventario de trabajo en proceso, lo cual resulta muy útil para calcular el tiempo total de eje-
cución de un proceso. Utilizando la terminología definida en esta sección, la ley de Little se define así:
Trabajo en proceso
Tiempo de procesamiento =
Índice de procesamiento

Note que esta ley es válida para el ejemplo de la línea de montaje sin el inventario de amortiguación. Si
la línea de montaje tiene seis estaciones con una unidad de trabajo en proceso en cada una de ellas, y si el
Administración
índice de procesamiento es de dos unidades por minuto (60 segundos/30 segundos por unidad), entonces
interactiva
el tiempo de procesamiento es de tres minutos (6 unidades/2 unidades por minuto). En general, esta
de operaciones
ecuación es muy útil cuando se conocen dos de tres cantidades. Por ejemplo, si se conoce el tiempo de
procesamiento y el índice de procesamiento, entonces se puede calcular el trabajo en proceso. Esta fór-
mula es válida para todo proceso que esté operando a ritmo constante.
Por ritmo constante se entiende que el trabajo entra y sale del sistema al mismo ritmo durante el pe-
riodo del análisis. La línea de montaje tiene 120 unidades que entran y 120 unidades que salen del proceso
cada hora. Por ejemplo, si 150 unidades entraran en el sistema cada hora y si sólo salieran 120 unidades,
entonces el sistema no estaría operando a ritmo constante toda vez que 30 unidades adicionales se acu-
mularían en el sistema cada hora. Estas 30 unidades se sumarían al trabajo en proceso y ello ocasionaría
que el tiempo de procesamiento aumentara cada hora. El incremento real del tiempo de procesamiento
sería de 15 minutos por hora (30 unidades/120 unidades por hora = 0.25 horas). En la siguiente sección
se presenta otro ejemplo de la aplicación de la ley de Little en lo que respecta a un diagnóstico del des-
empeño de un proceso.

EJEMPLOS DE ANÁLISIS DE PROCESOS


Esta sección utiliza tres ejemplos para ilustrar los conceptos descritos hasta este punto en el capítulo. Los
ejemplos son típicos de los tipos de análisis que se efectúan en los negocios fabriles, los servicios y la
logística. Recuerde que el análisis utilizado en cada ejemplo se puede aplicar en distintos contextos. Sea
creativo cuando aplique al problema en cuestión algo que ha visto en otro contexto. El primer ejemplo
analiza un proceso de producción de pan. A continuación, se evalúa la operación de un restaurante. Por
último se presenta una operación logística típica.

OPERACIÓN DE UNA PANIFICADORA3


EJEMPLO 6.1: Producción de pan
Para el gerente de una panificadora, la prioridad mayor es comprender los productos que se fabrican y los
pasos que requiere el proceso. La ilustración 6.4a es un diagrama simplificado del proceso para producir pan.
Se requieren dos pasos para preparar el pan. El primero es preparar la masa y hornear las hogazas, lo que aquí
se conoce como la producción de pan. El segundo es empacar las hogazas. Debido al tamaño de las batidoras
de la panadería, el pan es producido en lotes de 100 hogazas. El departamento de producción de pan termina
un lote de 100 hogazas cada hora, lo cual es el tiempo del ciclo de la actividad. El departamento de empacado
sólo necesita 0.75 de hora para colocar las 100 hogazas en sus bolsas.
A partir de lo anterior, se puede ver que el departamento de producción es el cuello de botella del proceso.
Un cuello de botella es la actividad de un proceso que limita la capacidad global del proceso. Por lo tanto, si se
ANÁLISIS DE PROCESOS capítulo 6 171

Procesos para la producción de pan ilustración 6.4

a) Producción de pan en una línea.


Materias Bienes
Producción de pan WIP Empacar terminados
primas
Tiempo del ciclo: TEP Tiempo del ciclo:
3
1 hora/100 hogazas 4
hora/100 hogazas

b) Producción de pan en dos líneas paralelas


Producción de pan
Tiempo del ciclo:
Materias 1 hora/100 hogazas Bienes
WIP Empacar
primas terminados
TEP Tiempo del ciclo:
3
Producción de pan 4 hora/100 hogazas

Tiempo del ciclo:


1 hora/100 hogazas

supone que las actividades de producción de pan y las de empaque operan la misma cantidad de tiempo cada
día, entonces la panificadora tiene una capacidad de 100 hogazas por hora. Advierta que en el transcurso del
día la operación de empacado estará inactiva durante periodos de un cuarto de hora, mientras la siguiente serie
de panes se está produciendo, pero el departamento de empacado ha terminado de empacar la serie anterior.
Con este escenario, cabe esperar que la operación de empacado fuera utilizada sólo 75% del tiempo.
Suponga que en lugar de tener tan sólo una operación para producir pan, ahora hay dos, como muestra la
ilustración 6.4b. El tiempo del ciclo para cada operación individual productora de pan sigue siendo una hora
para 100 hogazas. El tiempo del ciclo para las dos líneas de producción de pan operando juntas es de media
hora. Dado que la operación de empacado toma 0.75 de horas para empacar 100 hogazas, la operación de
empacado ahora es el cuello de botella. Si la producción y el empacado fueran operados la misma cantidad de
horas cada día, sería preciso limitar la cantidad de pan que se fabricará, porque no se cuenta con capacidad
bastante para empacarlo. No obstante, si se llevara a cabo la operación de empacado durante tres turnos de ocho
horas y la producción de pan durante dos turnos cada día, en tal caso la capacidad diaria de cada operación sería
idéntica: 3 200 hogazas al día (se presupone que la operación de empacado inicia una hora después de la operación
de producción de pan). Hacer esto requiere crear inventario para un turno cada día en forma de trabajo en proceso.
Éste se empacaría durante el tercer turno. Así pues, ¿cuál es el tiempo de procesamiento de la panificadora?

SOLUCIÓN
El cálculo en la operación inicial, con un solo proceso para la producción de pan, es fácil porque no se crearía
inventario entre el proceso de producción de pan y el de empacado. En este caso, el tiempo de procesamiento
sería de 1.75 horas. Sin embargo, cuando se maneja la operación de empacado con tres turnos, es preciso
considerar la espera promedio en el inventario de trabajo en proceso. Si las dos operaciones para producir pan
empiezan al mismo tiempo, entonces al término de la primera hora las primeras 100 hogazas pasan inmedia-
tamente a empacado, mientras que las segundas 100 hogazas quedan en espera. El tiempo de espera para cada
lote de 100 hogazas incrementa hasta que termina el horneado al final del segundo turno.
Se trata de un caso donde la ley de Little sirve para estimar el tiempo que el pan está en espera en trabajo en
proceso. Para aplicar la ley de Little se necesita calcular el promedio del trabajo en proceso entre producción y
empacado. En los primeros dos turnos el inventario crece de 0 a 1 200 hogazas. Se calcula que el promedio del
trabajo en proceso para este periodo de 16 horas es de 600 hogazas (la mitad del máximo). Con el último turno
de ocho horas el inventario baja del máximo de 1 200 hogazas a 0. De nueva cuenta, el promedio del trabajo en
proceso es de 600 hogazas. Dado lo anterior, el promedio general del periodo de 24 horas es simplemente 600
hogazas de pan. El proceso de empacado limita el tiempo del ciclo del proceso a 0.75 de hora para 100 hogazas
(suponga que las hogazas son empacadas en un lote) y esto es equivalente a un índice de procesamiento de
133.3 hogazas/hora (100/0.75 = 133.3). La ley de Little calcula que el tiempo promedio que las hogazas están
en trabajo en proceso es de 4.5 horas (600 hogazas/133.3 hogazas/hora).
172 sección 2 PROCESOS

El tiempo total de procesamiento es el tiempo que las hogazas están en trabajo en proceso más el tiempo
de las operaciones para los procesos de producción de pan y de empacado. Luego entonces, el tiempo total de
procesamiento es de 6.25 horas (1 hora para producción del pan + 4.5 horas en inventario + 0.75 de hora para
empacado).

OPERACIÓN DE UN RESTAURANTE
EJEMPLO 6.2: Un restaurante
La panificadora opera en estado constante, como se llama a la operación que inicia y marcha a un ritmo cons-
tante durante todo el tiempo que está operando. La producción de este proceso en estado constante se ajusta
estableciendo la cantidad de tiempo que funcionará la operación. En el caso de la panificadora, se supuso que
la producción de pan trabajaba dos turnos y el empacado tres turnos.
Un restaurante no se puede manejar así. El restaurante debe responder a una demanda de clientes que varía
Servicio durante el día. A la hora pico, tal vez sea imposible servir a todos los comensales de inmediato y algunos tal
vez tengan que esperar para conseguir mesa. El restaurante, dada esta demanda variable, es un proceso que no
trabaja en estado constante. Recuerde que muchos de los platillos del menú del restaurante pueden estar ya
preparados. Los platillos preparados previamente, las ensaladas y los postres, por ejemplo, ayudan a acelerar
los procesos que se deben efectuar cuando se está sirviendo a los comensales en el restaurante.
Piense en el restaurante del casino mencionado antes. Como es importante atender a los clientes con
rapidez, los gerentes han montado un buffet, en el cual los clientes se sirven solos. El buffet es rellenado cons-
tantemente para que la comida esté fresca. Para acelerar más el servicio, se cobra un monto fijo por persona,
independientemente de lo que coma el cliente. Suponga que se ha diseñado el buffet de modo que el cliente
tarda en promedio 30 minutos en servirse y comer. Es más, suponga que por lo general los clientes comen en
grupos (o grupos de comensales) de dos o tres en una misma mesa. El restaurante tiene 40 mesas. Cada mesa
es para cuatro personas. ¿Cuál es la capacidad máxima de este restaurante?

SOLUCIÓN
No es difícil saber que el restaurante tiene lugar para 160 personas sentadas en las mesas a la vez. De hecho,
en esta situación, tal vez sería más aconsejable medir la capacidad en términos de grupos de comensales, por-
que así es como se utilizará la capacidad. Si el grupo promedio de comensales es 2.5 individuos, entonces la
utilización promedio de los asientos es de 62.5% (2.5 sillas/grupo ÷ 4 sillas/mesa) cuando el restaurante está
operando a su capacidad. El tiempo del ciclo para el restaurante, cuando funciona a su capacidad, es de 0.75
minutos (30 minutos/mesa ÷ 40 mesas). Así, una mesa estaría disponible cada 45 segundos. El restaurante
podría manejar 80 grupos de comensales por hora (60 minutos ÷ 0.75 de minuto/grupo).
El problema de este restaurante es que todo el mundo quiere comer a la misma hora. La gerencia ha reuni-
do datos y espera que los grupos de comensales que llegan a la hora del almuerzo, que es de 11:30 a.m. a 1:30
p.m., tengan el siguiente perfil. Los clientes sólo son admitidos hasta la 1:00 p.m.
Grupos que
Tiempo llegan
11:30-11:45 15
11:45-12:00 35
12:00-12:15 30
12:15-12:30 15
12:30-12:45 10
12:45-1:00 5
Grupos totales 110

Como el restaurante opera durante dos horas para el almuerzo y la capacidad es de 80 grupos de comensales
por hora, al parecer no tiene problema alguno. Sin embargo, en la realidad, existe un problema debido al flujo
asimétrico de los comensales que entran al restaurante. Una forma simple de analizar la situación consiste en
calcular cómo se espera que luzca el sistema en términos del número de comensales que se atiende y el número
que esperan en línea al término de cada intervalo de 15 minutos. Piense como si estuviera tomando una foto
instantánea del restaurante cada 15 minutos.
La clave para comprender el análisis radica en considerar los números acumulados. La diferencia entre las
llegadas acumuladas y las partidas acumuladas dará el número de grupos de comensales en el restaurante (los
sentados en las mesas y los que esperan). Como sólo hay 40 mesas, cuando la diferencia acumulada durante un

También podría gustarte