Nothing Special   »   [go: up one dir, main page]

InformeACVvasos ANIQ 14-05-20

Descargar como pdf o txt
Descargar como pdf o txt
Está en la página 1de 204

Anlisis de Ciclo de Vida de vasos

desechables en Mxico.
Poliestireno Expandido (EPS) y papel plastificado

Septiembre 2013

Elaborado por
Centro de Anlisis de Ciclo de Vida y Diseo Sustentable S.A. de C.V. (CADIS)
Calzada de los Jinetes 22-B, Colonia Las Arboledas, C.P. 54020 Tlalnepantla, Estado de Mxico
Tel/Fax: +52 55 26 02 96 94
www.centroacv.mx
Estudio concluido en diciembre de 2012
La revisin crtica del estudio concluy en junio de 2013
y se realiz con base a la versin en ingls.
La versin en espaol es la traduccin del estudio.
Autores
Juan Pablo Chargoy Amador
Elisa Garca Fiol
Amalia Sojo Bentez
Nydia Suppen Reynaga
Estatus de publicacin
Privado
Palabras clave
Vasos desechables, EPS, papel plastificado, ACV
Solicitado por
Asociacin Nacional de la Industria Qumica (ANIQ)
ngel Urraza 505, Col. Del Valle, C.P. 03100, Mxico, D.F.
52 30 51 00
http://www.aniq.org.mx/
Directora General CADIS y revisora interna:
Nydia Suppen Reynaga
Coordinador del panel de revisin crtica:
Mike Levy
Revisores crticos:
Claudia Pea
Luiz Kulay

Contenido
ndice de Figuras

vi

ndice de Tablas

viii

Acrnimos

1. Antecedentes e Introduccin

1.1 Antecedentes

1.1.1 Descripcin y situacin actual de los vasos desechables en Mxico

1.1.2 Leyes y regulaciones Iniciativas relacionadas con empaques de EPS

1.2 La metodologa de Anlisis de Ciclo de Vida (ACV)

1.3 Estudios de ACV de vasos desechables

1.4 Introduccin al estudio de ACV de vasos desechables en Mxico

2. Objetivo del estudio

10

2.1 Objetivo del estudio

11

2.2 Aplicacin, audiencia y razones para llevar a cabo el estudio

11

3. Alcance del estudio

12

3.1 Sesin con ANIQ y partes interesadas para la definicin del alcance del estudio

13

3.2 Sistema producto y lmites del sistema

15

3.3 Datos y reglas de corte

17

3.4 Funcin, unidad funcional y flujo de referencia

18

3.5 Evaluacin del impacto en el ciclo de vida y tipo de impactos

19

3.6 Consideraciones para la revisin crtica

19

4. Inventario de ciclo de vida (ICV)

21

4.1 Anlisis de inventario y recoleccin de datos

22

4.2 Descripcin cuantitativa y cualitativa de los procesos unitarios

23

4.2.1 Descripcin de los vasos de EPS

24

4.2.2 ICV de los vasos de EPS

27

4.2.3 Descripcin de los vasos de papel plastificado con PE

30

4.2.4 ICV de los vasos de papel plastificado con PE

32

ii
ACV de vasos desechables en Mxico. EPS y papel plastificado.

4.3 Fuentes de informacin

34

4.4 Procedimientos de clculo

35

4.4.1 Suposiciones

35

4.4.2 Limitaciones

35

4.5 Validacin de datos

36

4.5.1 Anlisis de calidad de datos

36

4.5.2 Tratamiento de datos faltantes

39

4.6 Asignacin

39

5. Evaluacin del Impacto del Ciclo de Vida (EICV)

40

5.1 Mtodo de evaluacin de impacto

41

5.2 Categoras de impacto analizadas

42

5.3 Discusin de resultados

44

5.3.1 EICV de los vasos de EPS

44

5.3.2 EICV de los vasos de papel plastificado con PE

51

5.3.3 EICV de los vasos de EPS y de papel plastificado con PE

57

6. Interpretacin

59

6.1 Resumen de resultados

60

6.2 Anlisis de sensibilidad

61

6.3 Anlisis de incertidumbre

70

6.4 Evaluacin

73

7. Conclusiones, limitaciones y recomendacions

75

8. Revisin crtica

79

9. Anexos

81

Figure index

iv

Table index

Acronyms

vi

1. Background and Introduction

1.1 Background

1.1.1 Description and current status of disposable cups market in Mexico

iii

1.1.2 Laws and regulations EPS packaging initiatives

1.2 The Life Cycle Assessment (LCA) methodology

1.3 LCA studies of disposable cups

1.4 Introduction to the LCA study of disposable cups in Mexico

2. Goal of the study

10

2.1 Goal of the LCA study

11

2.2 Intended application, audience and reasons for carrying out the study

11

3. Scope of the study

12

3.1 Session with ANIQ and stakeholders for the definition of the scope of the LCA study

13

3.2 Product system and system boundaries

15

3.3 Data and cut-off criteria

17

3.4 Functions, functional unit and reference flow

18

3.5 Life cycle impact assessment and types of impacts

19

3.6 Critical review considerations

19

4. Life Cycle Inventory Analysis (LCI)

21

4.1 Inventory analysis data collection

22

4.2 Qualitative and quantitative description of unit processes

23

4.2.1 EPS cups description

23

4.2.2 EPS cups LCI

27

4.2.3 Coated paper cups description

30

4.2.4 Coated paper cups LCI

32

4.3 Sources of the data

34

4.4 Data calculation

35

4.4.1 Assumptions

35

4.4.2 Limitations

35

4.5 Validation of data

35

4.5.1 Data quality analysis

36

4.5.2 Treatment of missing data

39

4.6 Allocation

39
iv
ACV de vasos desechables en Mxico. EPS y papel plastificado.

5. Life Cycle Impact Assesment (LCIA)

40

5.1 Impact assessmnet method

41

5.2 Impact categories analyzed

42

5.3 Discussion of Results

44

5.3.1 EPS cups LCIA

44

5.3.2 Coated paper cups LCIA

51

5.3.3 EPS cups and coated paper cups LCIA

57

6. Interpretation

59

6.1 Summary of results

60

6.2 Sensitivity analysis

60

6.3 Uncertainty analysis

69

6.4 Evaluation

72

7. Conclusions, limitations and recommendations

74

8. Critical review

77

9. Annexes

94

Annex A. Analytic Hierarchy Process

95

Bibliografa

97

ndice de Figuras
Figura 1. Esquema del ciclo de vida de un producto. ..................................................................................... 5
Figura 2. Fases de un Anlisis de Ciclo de Vida (IMNC, 2008). ........................................................................ 5
Figura 3. Seleccin de las consideraciones importantes en el estudio resultados del anlisis AHP. ............ 15
Figura 4. Sistema-producto: vaso EPS.......................................................................................................... 16
Figura 5. Sistema-producto: vasos papel plastificado................................................................................... 17
Figura 6. Etapas del ciclo de vida de vasos EPS. ........................................................................................... 24
Figura 7. Diagrama de flujo del proceso de produccin de perlas EPS. ......................................................... 25
Figura 8. Diagrama de flujo del proceso de produccin de vasos EPS. .......................................................... 26
Figura 9. Etapas del ciclo de vida de vasos de papel plastificado. ................................................................. 30
Figura 10. Diagrama de flujo de la produccin de vasos de papel plastificados. ........................................... 31
Figura 11. EICV de vasos EPS. ...................................................................................................................... 45
Figura 12. Evaluacin de la etapa de materias primas de vasos EPS. ............................................................ 47
Figura 13. Evaluacin de la etapa de produccin de vasos EPS..................................................................... 48
Figura 14. Evaluacin de la etapa de distribucin de vasos EPS. ................................................................... 49
Figura 15. Evaluacin de la etapa de fin de vida para vasos EPS. .................................................................. 50
Figura 16. EICV de vasos de papel plastificado. ............................................................................................ 51
Figura 17. Evaluacin de la etapa de obtencin de materias primas para vasos de papel laminado. ............ 53
Figura 18. Evaluacin de la etapa de produccin para vasos de papel plastificado. ...................................... 54
Figura 19. Evaluacin de la etapa de distribucin de vasos de papel plastificado. ........................................ 55
Figura 20. Evaluacin de la etapa de fin de vida de vasos de papel plastificado. ........................................... 56
Figura 21. EICV para vasos EPS y papel plastificado. .................................................................................... 57
Figura 22. Resumen de resultados de la EICV. ............................................................................................. 60
Figura 23. Anlisis de sensibilidad del peso del vaso de EPS (1,600,000,000 piezas). .................................... 64
Figura 24. Anlisis de sensibilidad del consumo de gas natural en la produccin del vaso de EPS
(1,600,000,000 piezas). ...................................................................................................................... 65
Figura 25. Anlisis de sensibilidad del peso del vaso de papel plastificado (1,600,000,000 pieces). .............. 66
Figura 26. Anlisis de sensibilidad del consumo elctrico en el proceso de laminado del SBB ....................... 67
Figura 27. Anlisis de sensibilidad del consumo elctrico en el proceso de manufactura del vaso de papel
(1,600,000,000 piezas). ...................................................................................................................... 68
Figura 28. Anlisis de sensibilidad del porcentaje de vasos de EPS y de papel que se disponen en relleno
sanitario (1,600,000,000 piezas). ........................................................................................................ 69
Figura 29. Anlisis de incertidumbre de los vasos de EPS. ............................................................................ 70
Figura 30. Anlisis de incertidumbre de los vasos de papel plastificado. ...................................................... 71

vi
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Figura 31. Anlisis de incertidumbre de los vasos de EPS y de papel plastificado.......................................... 73


Figure 1. Diagram of a product life cycle. ...................................................................................................... 5
Figure 2. Phases of a Life Cycle Assessment (IMNC, 2008). ............................................................................ 5
Figure 3. Selection of important considerations for study results of AHP analysis...................................... 15
Figure 4. Product system: EPS cup............................................................................................................... 16
Figure 5. Product system: coated paper cup................................................................................................ 17
Figure 6. Life cycle stages of EPS cups. ........................................................................................................ 24
Figure 7. Flow diagram of the EPS beads production process....................................................................... 25
Figure 8. Process flow diagram of EPS production cups. .............................................................................. 26
Figure 9. Life cycle stages of coated paper cup. ........................................................................................... 30
Figure 10. Flow diagram of the production of coated paper cups. ............................................................... 31
Figure 11. EPS cups LCIA. ............................................................................................................................ 45
Figure 12. Evaluation of raw materials stage of EPS cup .............................................................................. 47
Figure 13. Evaluation of production stage of EPS cups. ................................................................................ 48
Figure 14. Evaluation of distribution stage of EPS cups. ............................................................................... 49
Figure 15. Evaluation of end of life stage of EPS cups .................................................................................. 50
Figure 16. Coated paper cups LCIA. ............................................................................................................. 51
Figure 17. Evaluation of the raw material stage of the coated paper cups................................................... 53
Figure 18. Evaluation of the production stage of the coated paper cups. ..................................................... 54
Figure 19. Evaluation of the distribution stage of the coated paper cups. .................................................... 55
Figure 20. Evaluation of the end of life stage of the coated paper cups. ...................................................... 56
Figure 21. EPS cups and coated paper cups LCIA. ........................................................................................ 57
Figure 22. Summary of LCIA results. ............................................................................................................ 60
Figure 23. Sensitivity analysis for EPS cup weight (1,600,000,000 pieces). ................................................... 63
Figure 24. Sensitivity analysis for natural gas consumption in EPS cups production (1,600,000,000 pieces). . 64
Figure 25. Sensitivity analysis for paper cup weight (1,600,000,000 pieces). ................................................ 65
Figure 26. Sensitivity analysis for electricity consumption in SBB coating (1,600,000,000 pieces). ................ 66
Figure 27. Sensitivity analysis for electricity consumption in coated paper cups production (1,600,000,000
pieces). .............................................................................................................................................. 67
Figure 28. Sensitivity analysis of EPS and paper cups percentage disposed in landfill (1,600,000,000 pieces).
.......................................................................................................................................................... 68
Figure 29. EPS cups uncertainty analysis. .................................................................................................... 69
Figure 30. Coated paper cups uncertainty analysis. ..................................................................................... 70
Figure 31. Uncertainty analysis of both EPS and coated paper cups. ............................................................ 72

vii

ndice de Tablas
Tabla 1. Variedades de vasos desechables en Mxico. ................................................................................... 3
Tabla 2. Estudios de ACV e ICV de vasos desechables. ................................................................................... 7
Tabla 3. Consideraciones importantes de datos para el estudio de ACV (modelo de decisin)...................... 14
Tabla 4. ICV promedio de la produccin de vasos EPS. ................................................................................ 28
Tabla 5. ICV promedio de la distribucin de vasos de EPS. ........................................................................... 29
Tabla 6. ICV promedio de la etapa de fin de vida de los vasos de EPS........................................................... 29
Tabla 7. ICV promedio del transporte requerido en la etapa de fin de vida de los vasos de EPS.................... 29
Tabla 8. ICV para la produccin de vasos de papel plastificado. ................................................................... 32
Tabla 9. ICV promedio para la distribucin de vasos de papel plastificados. ................................................. 33
Tabla 10. ICV para la etapa de fin de vida de los vasos de papel plastificado. .............................................. 33
Tabla 11. ICV para el transporte de vasos de papel plastificado en su fin de vidas. ....................................... 33
Tabla 12. Resumen de la calidad de datos analizados. ................................................................................. 38
Tabla 13. Categoras de impacto analizadas en el estudio (Goedkoop, Oele, Schryver, & Vieira, 2008). ........ 43
Tabla 14. EICV de vasos EPS (1,600,000,000 piezas)..................................................................................... 46
Tabla 15. EICV de vasos de papel plastificado (1,600,000,000 pizas). ........................................................... 52
Tabla 16. EICV para vasos EPS y papel plastificado (1,600,000,000 piezas). .................................................. 58
Tabla 17. Principales hallazgos de los resultados de la EICV. ........................................................................ 60
Tabla 18. Anlisis de incertidumbre de los vasos de EPS (1,600,000,000 piezas). ......................................... 71
Tabla 19. Anlisis de incertidumbre de los vasos de papel plastificado (1,600,000,000 piezas). .................... 72
Tabla 20. Resumen de las limitaciones asociadas a la interpretacin ........................................................... 78
Table 1. Variety of disposable cups in Mexico. .............................................................................................. 3
Table 2. LCA and LCI studies of disposable cups............................................................................................. 7
Table 3. Important considerations of data for the LCA study (decision model). ............................................ 14
Table 4. Average LCI for the production of EPS cups. ................................................................................... 28
Table 5. Average LCI for the distribution of EPS cups. .................................................................................. 29
Table 6. Average LCI for end of life stage of EPS cups. ................................................................................. 29
Table 7. Average LCI for transportation required for end of life stage of EPS cups........................................ 29
Table 8. LCI for the production of coated paper cups. ................................................................................. 32
Table 9. Average LCI for the distribution of coated paper cups. ................................................................... 33
Table 10. LCI for the end of life of coated paper cups. ................................................................................. 33
Table 11. LCI for end of life transportation of coated paper cups. ................................................................ 33

viii
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Table 12. Data quality analysis summary. .................................................................................................... 38


Table 13. Impact categories analyzed in the study (Goedkoop, Oele, Schryver, & Vieira, 2008). ................... 43
Table 14. EPS cups LCIA (1,600,000,000 pieces)........................................................................................... 46
Table 15. Coated paper cups LCIA (1,600,000,000 pieces). .......................................................................... 52
Table 16. EPS cups and coated paper cups LCIA (1,600,000,000 pieces). ...................................................... 58
Table 17. Key findings of LCIA results. ......................................................................................................... 60
Table 18. Uncertainty analysis results of EPS cups (1,600,000,000 pieces). .................................................. 70
Table 19. Uncertainty analysis results of coated paper cups (1,600,000,000 pieces). ................................... 71
Table 20. Summary of limitations associated with interpretation. ............................................................... 76

ix

Acrnimos
ACC - American Chemistry Council (Consejo Americano de Qumica por sus siglas en ingls)
ACV Anlisis de Ciclo de Vida
AHP - Analytic Hierarchy Process (Mtodo Analtico Jerrquico por sus siglas en ingls)
ANIQ Asociacin Nacional de la Industria Qumica
CADIS Centro de Anlisis de Ciclo de Vida y Diseo Sustentable
CML - Centrum voor Milieuwetenschappen Leiden (Instituto de Ciencias Ambientales de Leiden por sus siglas en holands)
EICV Evaluacin del Impacto del Ciclo de Vida
EPS Expanded Polystyrene (Poliestireno Expandido por sus siglas en ingls)
GPPS General Purpouse Polystyrene (Poliestireno de Propsito General por sus siglas en ingls)
HIPS High Impact Polystyrene (Poliestireno de Alto Impacto por sus siglas en ingls)
ICV Inventario de Ciclo de Vida
IMNC Instituto Mexicano de Normalizacin y Certificacin
INEGI - Instituto Nacional de Estadstica, Geografa e Informtica
PA - Potencial de Acidificacin
PC Policarbonato
PEcA - Potencial de Ecotoxicidad en Agua dulce
PCG - Potencial de Calentamiento Global
PDCO - Potencial de Destruccin de la capa de ozono
PE - Polietileno
PEBD Polietileno de Baja Densidad
PEcT - Potencial de Ecotoxicidad terrestre
PET - Poli(tereftalato de etileno) del ingls Poly(ethylene terephthalate)
PEu - Potencial de Eutrofizacin
PFOF - Potencial de Formacin de Oxidantes Fotoqumicos
PLA - Poli(cido lctico) del ingls Poly(lactic acid)
PP Polipropileno
PS Poliestireno
PTH - Potencial de Toxicidad Humana
SAM Sesin de Anlisis Multicriterio
SEMARNAT - Secretara de Medio Ambiente y Recursos Naturales
SBB - Solid Bleach Board (Cartn Slido Blanqueado por sus siglas en ingls)
ZMG Zona Metropolitana de Guadalajara
ZMVM Zona Metropolitana del Valle de Mxico

x
ACV de vasos desechables en Mxico. EPS y papel plastificado.

1. Antecedentes e Introduccin

En este captulo se presenta un antecedente general de la industria de plsticos en el


contexto de los productos desechables, as como las iniciativas de ley relacionadas.
Tambin se presenta una introduccin al estudio de ACV y un resumen de los estudios
ms recientes en ACV de envases de alimentos, incluyendo vasos desechables.

1.1 Antecedentes
La industria del plstico creci 6% en Mxico durante el ao 2011, tomando en cuenta el
incremento del consumo local, el cual fue de 5.3 millones de toneladas, cantidad equivalente al 2%
del consumo mundial. En Mxico, la industria del plstico tiene como objetivo el desarrollo de
productos innovadores que ofrezcan ventajas sobre los materiales tradicionales (Conde, 2012); en
contraste, los plsticos han sido tema de diferentes regulaciones que tienen como objetivo la
minimizacin de los impactos ambientales, desde condicionantes en su manufactura hasta su
prohibicin o sustitucin por alternativas biodegradables. Sin embargo, es importante conocer los
diferentes impactos ambientales durante el ciclo de vida de los productos y materiales, antes de
implementar alguna regulacin en la materia. Es as, que la Asociacin Nacional de la Industria
Qumica (ANIQ) solicit al Centro de Anlisis de Ciclo de Vida y Diseo Sustentable (CADIS) un
estudio de ACV sobre vasos desechables de Poliestireno Expandido (EPS) y de papel plastificado.
Esta seccin describe el mercado actual y las condiciones legales de los vasos desechables en
Mxico como un importante antecedente para el estudio de ACV.

1.1.1 Descripcin y situacin actual de los vasos desechables en Mxico


Durante el ao 2011 se registr que el 9% del consumo de plstico en Mxico

se

debe

productos de corta vida til, como los vasos desechables (Conde, 2012). Estos productos son
usados generalmente una vez para contener y transportar bebidas en eventos pblicos o
reuniones privadas. En el mercado existen un gran nmero de vasos, los cuales se clasifican de
acuerdo al material con el que fueron elaborados (Tabla 1).

2
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Tabla 1. Variedades de vasos desechables en Mxico.

Imagen

Material

Caractersticas

Tipos de bebida

Poliestireno (PS)

Resistente, traslcido o de
colores

Bebidas fras (refresco,


jugo, agua de sabor)

Polietileno (PE)

Generalmente de color

Bebidas fras (refresco,


jugo, agua de sabor)

Ligero, resistente, blanco o


de colores

Para
bebidas
fras
principalmente (refresco,
jugo, agua de sabor,
bebidas alcohlicas)

Polipropileno
(PP)

Principalmente
para
bebidas calientes (atole,
caf),
tambin
es
utilizado para bebidas
fras (refresco, jugo, agua
de sabor)
Bebidas fras (refresco,
jugo, agua de sabor,
bebidas alcohlicas), se
ofrece
como
una
alternativa a los vasos de
vidrio.

Poliestireno
expandido
(EPS), tambin
conocido como
unicel

Trmico

Poli(tereftalato
de etileno),
(PET)

Transparentes, no guarda
olores, resistente.

Papel
plastificado

Vasos de papel con una


pelcula interior de
polietileno.

Bebidas
calientes
(generalmente caf) y
fras (refresco, jugo)

Poli(cido
lctico), (PLA)

Se degradan en composta
industrial

Bebidas fras (refresco,


jugo, agua de sabor)

Elaboracin por CADIS.

Para este estudio, ANIQ solicit que se evaluaran nicamente los vasos de EPS y papel plastificado.
En Mxico, las mayores ventas se registran en el mercado de vasos que se utilizan para contener y
transportar bebidas calientes y fras desde puestos en la calle, expendios de jugo, cafeteras y
heladeras. No existen estadsticas oficiales disponibles sobre el mercado de vasos de papel
plastificado. Para los vasos de EPS se observa en las ventas nacionales de los aos 2005 al 2010,
una importante disminucin de 8,310,382 miles de piezas a casi la mitad (INEGI, 2010).

1.1.2 Leyes y regulaciones Iniciativas relacionadas con empaques de EPS


Como se mencion anteriormente, han surgido varias regulaciones en torno a los plsticos, con el
fin de minimizar su impacto ambiental. Esta seccin describe brevemente las iniciativas de ley o
reformas a leyes existentes, as como los puntos de acuerdo legal sobre los productos de EPS que
se han presentado entre los aos 2009 y 2012 (Muoz, G. & Albarrn, F., 2012) y que son una
referencia importante para el estudio de ACV.
Asamblea Legislativa para el D istrito Federal
Reformas a la Ley de Establecimientos Mercantiles y la Ley de Residuos Slidos del Distrito Federal
para prohibir la utilizacin de productos elaborados con EPS para envase y transporte de
alimentos. Iniciativa desechada en junio del 2010
Congreso de la Unin. Cmara de Senadores
Solicitud a la Secretara de Medio Ambiente y Recursos Naturales (SEMARNAT) de elaborar un
informe sobre la generacin, uso, procesamiento, desecho e impacto del EPS en Mxico; y que con
dicho informe se valore la pertinencia de la construccin de una planta para el reciclaje de EPS.
Punto de acuerdo aprobado en abril del 2012
Congreso de la Unin. Cmara de Diputados
Se exhorta a la SEMARNAT a que elabore los programas que garanticen el manejo y reciclaje del
unicel y plsticos de uso comercial e industrial. Punto de acuerdo aprobado en marzo de 2011.
Iniciativas en los estados de la Repblica Mexicana
Prohibicin de la utilizacin de artculos de unicel a todas las dependencias de los tres rdenes de
gobierno en el estado de Morelos. Iniciativa desechada en abril de 2011.

1.2 La metodologa de Anlisis de Ciclo de Vida (ACV)


En la Figura 1 el rea verde representa la naturaleza, dentro de ella se encuentra inmerso el ciclo
de vida del producto (se considera producto a cualquier bien o servicio). En cada una de las etapas

4
ACV de vasos desechables en Mxico. EPS y papel plastificado.

de ciclo de vida se suele extraer materia y energa de la naturaleza (representada mediante las
flechas verde claro) y generar emisiones hacia la naturaleza (ilustradas con las flechas verde
oscuro). Al final de su vida til, los materiales de los productos pueden ingresar de nuevo a la
etapa de produccin cuando estos se disponen adecuadamente.

Figura 1. Esquema del ciclo de vida de un producto.

Un Anlisis de Ciclo de Vida (ACV) identifica y cuantifica los materiales y energa utilizados as
como las emisiones y residuos generados en cada etapa del ciclo de vida del producto. Un ACV
cuantifica sistemticamente los posibles impactos ambientales, por ejemplo, calentamiento global
o acidificacin (Goedkoop, Oele, Schryver, & Vieira, 2008). De acuerdo a la NMX-SAA-14040IMNC-2008 (ISO 14040:2006), un ACV tiene cuatro fases (Figura 2): definicin de objetivos y
alcance, anlisis de inventario, evaluacin de impactos e interpretacin, siendo ste un proceso
iterativo (IMNC, 2008).

Figura 2. Fases de un Anlisis de Ciclo de Vida (IMNC, 2008).

El alcance (incluyendo los lmites del sistema y el nivel de detalle) de un ACV, depende del tema a
ser cubierto y el uso previsto del estudio. La profundidad y amplitud de un ACV puede diferir
considerablemente dependiendo del objetivo del estudio en particular. (IMNC, 2008).
El anlisis del inventario, es la segunda fase de un ACV. Es un inventario de las entradas y salidas
con respecto al sistema producto que est siendo estudiado. Involucra la recoleccin de los datos
necesarios para lograr el objetivo y alcance definido por el estudio. (IMNC, 2008) Posteriormente,
la evaluacin de impacto es la tercera fase, y es un anlisis de los posibles impactos ambientales
asociados con el inventario (IMNC, 2008). La cuarta fase de un ACV es la interpretacin, en la cual
los resultados del anlisis del inventario y evaluacin de impactos en relacin con el objetivo y
alcance del estudio, se resumen y discuten como base para las conclusiones, recomendaciones y
toma de decisiones (IMNC, 2008).

1.3 Estudios de ACV de vasos desechables


Como una importante referencia para el estudio, se presenta a continuacin una sntesis de nueve
estudios de ACV sobre productos desechables (Tabla 2). Para cada estudio se incluye una
descripcin con: autores, ao de publicacin, unidad funcional, lmites del sistema, categoras de
impacto analizadas y los resultados ms importantes.
Los estudios de ACV presentados en la Tabla 2 analizan los posibles impactos ambientales de
varios tipos de envases de alimentos elaborados con diferentes materiales. Algunos de ellos se
centran en la comparacin de envases reutilizables y desechables; otros analizaron productos
elaborados con resinas y su comparacin con las alternativas degradables. Por otro lado, algunos
estudios se centran en analizar situaciones especficas como actividades de negocios en eventos
de pequea y gran escala o incluso en ciertos tipos de bebidas, como refresco o cerveza. En cuanto
a las categoras de impacto analizadas, algunos estudios solo proporcionaron la informacin de los
datos de inventario, tales como el consumo de energa y la generacin de residuos, aunque la
mayora de ellos evala el potencial de Calentamiento Global, aquellos que incluyeron ms
categoras de impacto utilizaron el mtodo de CML.

6
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Tabla 2. Estudios de ACV e ICV de vasos desechables.


Ttulo

Reusable vs.
disposable cups

Comparative
LCA of 4 types of
drinking
cups used at
events

Life Cycle
Inventory of
Polystyrene
Foam, Bleached
Paperboard, and
Corrugated
Paperboard
Foodservice
Products

Environmental
evaluation of
single-use and
reusable cups

Autor y ao de
referencia

(Institute for Life Cycle


Energy Analysis (ILEA)
and University of
Victoria, 1994)

(Flemish Institute for


Technological Research
(VITO), 2006)

(Franklin Associates
LTD, 2006)

(Garrido & Alvarez del


Castillo, 2007)

Lugar

Unidad funcional

Categoras de impacto
analizadas

Canad

Un vaso de cermica, plstico,


vidrio, papel y EPS. No es una
unidad funcional, es la unidad de
medida.

Blgica

Los recipientes necesarios para


servir 100 litros de cerveza o
bebidas refrescantes en eventos
de pequea escala (2,000-5,000
visitantes) y de gran escala
(>30,000 visitantes).

EUA

1) 10,000 bebidas fras en vasos de


16 onzas de HIPS, PET y PP
2) 10,000 platos de 16 onzas de
PLA y PET
3) 1,000,000 pulgadas cuadradas
Cambio climtico
de pelcula de PLA y GPPS
4) 10,000 bandejas para carne de
PLA y GPPS
5) 10,000 botellas de agua de 12
onzas de PLA y PET.

Barcelona,
Espaa

Servir 1000 litros de bebidas.

Energa consumida con


enfoque en ciclo de vida,
ninguna otra categora de
impacto

Resultados
Si se considera que los vasos se usan
slo una vez, los de EPS y papel
consumen menor energa que el
resto. Conforme aumenta la
cantidad de veces que se resa el
vaso, se reduce la cantidad de
energa utilizada en las opciones de
cermica, vidrio y plstico.
Se analizaron:
1) Vaso reusable de PC (20 y 45
usos)
2) Vaso de un solo uso de PP
3) Vaso de un slo uso de papel
plastificado con PE
4) Vaso de un solo uso de PLA

Consumo de Combustibles
fsiles, reduccin de
recursos minerales,
acidificacin/eutrofizacin,
ecotoxicidad, disminucin
de la capa de ozono, cambio
climtico, efectos
Para ambos tipos de eventos,
respiratorios inorgnicos y
ninguno de los sistemas sobresale en
carcinognesis.
todas las categoras de impacto
consideradas en el estudio.

Se obtuvo el ICV de los productos


estudiados.
Se analizan los resultados de
requerimientos de energa,
generacin de residuos slidos y las
emisiones de gases de efecto
invernadero de los cinco sistemas.

Se compararon:
1) tazas de un solo uso
Combustibles
fsiles,
2) tazas reusables
minerales, acidificacin
Ambas de PP, pero con distintas
/eutrofizacin,
caractersticas fsicas, como masa,
ecotoxicidad, capa de
forma y capacidad.
ozono, cambio climtico,
Se deben re-usar las tazas un
respiratorios inorgnicos y
mnimo de 10 veces para que tengan
cancergenos.
un impacto menor que las tazas de
un solo uso.
Concluyen el amplio papel que tiene
el fin de vida en los resultados.

Greenhouse Gas
Assessment of
Expanded
Polystyrene Food (Horvath & Chester,
Containers and
2009)
Alternative
products use in
Los Angeles
County (DRAFT)

Los ngeles, EUA

Cuatro tipos de contenedores de


comida (plato, bandeja, tazn y
vaso) de EPS y tres alternativas
para cada caso (bagazo, almidones
de maz, cermica, papel, PP y
PLA).

Cambio climtico

1) Si el contenedor va a ser
reciclado, se prefiere el de papel.
2) Si van a ser llevados a relleno
sanitario, EPS es la mejor opcin.
3) Si van a ser llevados a composta,
el papel es la mejor opcin.
En general, si el contenedor de
cermica se reutiliza 68 veces es la
mejor opcin.

Ttulo

Single use cup or


reusable(coffee)
drinking systems:
an
environmental
comparison

Autor y ao de
referencia

(Netherlands
Organisation for
Applied Scientific
Research (TNO), 2007)

Environmental
impacts of
disposable cups
with special
(Hkkinen & Vares,
focus on the
2010)
effect of material
choices and end
of life

Life cycle
assessment and
eco-efficiency
analysis of
drinking cups
used at public
events

LCI of foam
polystyrene,
paper based and
PLA foodservice
products

(Vercalsteren,
Spirinckx, & Geerken,
2010)

Lugar

Pases bajos

Finlandia

Blgica

Unidad funcional

Categoras de impacto
analizadas

Resultados

Despachar 1,000 unidades de


bebidas
calientes
(te/caf/chocolate)
de
una
mquina expendedora en un
ambiente de oficina o industria.

Reduccin de recursos
minerales, cambio
climtico, disminucin de la
capa de ozono, toxicidad
humana, ecotoxicidad en
agua dulce, ecotoxicidad
marina, ecotoxicidad
terrestre, formacin de
ozono fotoqumico,
eutrofizacin y
acidificacin.

Las opciones desechables son


mejores que las reusables.
La mejor opcin es la de vasos de
papel en las 10 categoras evaluadas.
El mayor impacto asociado a los
reusables se debe a la limpieza.
El mayor impacto asociado a los
desechables se debe a la fabricacin
de la materia prima.

10,000 vasos que tienen la misma


capacidad y funcionalidad en
trminos de calidad impermeable,
Cambio climtico
rigidez y durabilidad para un solo
uso.

Consumo de combustibles
fsiles, reduccin de
Los recipientes necesarios para recursos minerales,
servir 100 litros de cerveza o acidificacin/eutrofizacin,
refrescos en eventos pequeos y ecotoxicidad, disminucin
grandes respectivamente.
de la capa de ozono, cambio
climtico, efectos
respiratorios inorgnicos y
carcinognesis.

10,000 platos de 9 pulgadas.


(Franklin Associates
LTD, 2011)

Kansas, USA

10,000 vasos de 16 y 32 onzas


para bebidas fras y calientes.

Cambio climtico

8
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Los resultados varan de acuerdo al


esquema de fin de vida de los vasos.

Se analizaron cuatro alternativas de


vasos (reusable de PC, PP, papel
laminado con PE y PLA)
El estudio concluye que ningn
sistema de vasos presenta ventajas
ambientales totales sobre los otros.
En el anlisis de ecoeficiencia, el
vaso reusable de policarbonato es
significativamente mejor que los
otros vasos en eventos pequeos.

Los platos y vasos de EPS utilizan


mucho menos energa y agua
cuando se comparan con sus
versiones de papel y PLA. En cuanto
a las emisiones de gases de efecto
invernadero el resultado no es
concluyente, debido a que las
condiciones de degradacin del
papel son inciertas.

1.4 Introduccin al estudio de ACV de vasos desechables en Mxico


Este estudio fue realizado de acuerdo al marco de referencia y los requerimientos de las normas
ISO para anlisis de ciclo de vida, 14040 y 14044 (NMX-SAA-14040-IMNC-2008 y NMX-SAA-14044IMNC-2008). El estudio se empez el 3 de Junio del 2011 y se concluy el 12 de Diciembre del
2012.
El motivo para llevar a cabo el estudio es proveer a ANIQ con informacin completa sobre los
posibles impactos ambientales en el ciclo de vida de los vasos desechables de EPS y papel
plastificado en Mxico. La audiencia prevista para este estudio es: socios ANIQ, productores y
consumidores de desechables EPS (incluido el gobierno). ANIQ pretende usar este estudio para
apoyar la toma de decisiones internas y como un apoyo en la formulacin de polticas en relacin
a desechables.
Adems, ANIQ busca socializar los principales resultados del estudio hacia el consumidor. El
presente informe fue sometido a revisin crtica por un panel de revisores independiente de
acuerdo con las normas ISO 14040 e ISO 14044 (NMX-SAA-14040-IMNC-2008 y NMX-SAA-14044IMNC-2008).

2. Objetivo del estudio

Este captulo establece el objetivo del estudio, describe la aplicacin prevista, las razones para
llevarlo a cabo; la audiencia prevista y establece que los resultados van a apoyar aseveraciones
comparativas.

10
ACV de vasos desechables en Mxico. EPS y papel plastificado.

2.1 Objetivo del estudio


El objetivo del estudio es

determinar los impactos ambientales potenciales en el

ciclo de vida de vasos EPS y papel plastificado.


El estudio apoyar las aseveraciones comparativas de dos tipos de vasos, y ser comunicado a las
partes interesadas de ANIQ en Mxico (socios y consumidores).

2.2 Aplicacin, audiencia y razones para llevar a cabo el estudio


El primer uso previsto para los resultados del estudio es proveer a ANIQ con informacin slida
sobre los mltiples impactos potenciales ambientales relevantes relacionados a vasos EPS y papel
plastificado, de acuerdo al mercado mexicano, patrones de consumo y sistemas de gestin de
residuos. Los resultados de los diferentes estudios de ACV de envases de alimentos y desechables
alrededor del mundo presentados en la seccin 1.3 (Tabla 2), varan de acuerdo al escenario de fin
de vida y los patrones de uso analizados; por lo tanto est claro que un ACV para este tipo de
productos requiere ser local, con consideraciones especficas de estos aspectos.
En Mxico, los desechables de EPS han sido tema de varias regulaciones e iniciativas que
promueven su remplazo, es por eso que es importante para ANIQ tener informacin slida sobre
el ciclo de vida de estos productos y los impactos ambientales potenciales en el contexto
mexicano, con el fin de tener una base cientfica slida para apoyar el dilogo con las distintas
partes interesadas, incluyendo representantes del gobierno.
El segundo uso previsto es el lanzamiento pblico del estudio hacia los interesados seleccionados
por ANIQ. Despus de la finalizacin y recepcin del presente estudio de ACV, ANIQ desarrollar
una estrategia para la publicacin y comunicacin de los resultados del estudio.
La audiencia prevista para el estudio son los asociados de ANIQ y consumidores (incluyendo el
gobierno).
ANIQ utilizar los resultados con el objetivo de:

Promover soluciones e innovaciones ambientales en la cadena de valor de vasos


desechables entre sus asociados.

Promover entre las partes interesadas y consumidores una cultura para minimizar los
impactos ambientales por los desechables en Mxico, mediante la mejora de la gestin del
fin de vida.

Dialogar y participar en el desarrollo de futuros reglamentos de los desechables en el pas.

11

3. Alcance del estudio

Este captulo describe las etapas del ciclo de vida a ser consideradas dentro de los lmites del
sistema analizado. Tambin explica el proceso realizado para definir los elementos importantes
del alcance del estudio, tales como unidad funcional, lmites del sistema, categoras de impacto
potenciales a ser analizadas y los datos solicitados, entre otros. El estudio ha sido realizado de
acuerdo a los requerimientos y marco de las normas ISO 140140 y 14044 (NMX-SAA-14040-IMNC2008 y NMX-SAA-14044-IMNC-2008).

12
ACV de vasos desechables en Mxico. EPS y papel plastificado.

3.1 Sesin con ANIQ y partes interesadas para la definicin del alcance del estudio
Con el fin de lograr un acuerdo en la definicin del alcance del estudio de ACV, se llev a cabo una
sesin de toma de decisiones el 3 de Junio del 2011. La sesin cont con la presencia de
representantes de la industria e investigadores acadmicos con experiencia en desechables y
gestin de residuos. Este proceso, que es comnmente llevado a cabo por CADIS cuando se realiza
un estudio de ACV, asegura que los elementos importantes a considerar en el estudio sean
claramente entendidos, tales como el sistema producto, las funciones del producto, la unidad
funcional y los lmites del sistema. Estos elementos se definen con el apoyo de los conocimientos
de los expertos invitados, quienes tambin comparten informacin importante como
especificaciones tcnicas, procesos de fabricacin, y patrones de consumo en el mercado, lo cual
permite establecer los requisitos de datos importantes y la unidad funcional. El proceso de toma
de decisiones es respaldado por el uso del mtodo analtico jerrquico (AHP por sus siglas en
ingls); y ya que es una Sesin de Anlisis Multicriteria se le denomina SAM.
La SAM comenz con una breve explicacin a los participantes de la metodologa de un ACV y la
presentacin de algunos estudios de ACV relacionados a productos desechables (descritos
anteriormente en la Tabla 2). Siguiendo una lluvia de ideas y la opinin de expertos en:
1. Consideraciones en los datos de mercado y geografa, lo que permiti definir los lmites
del sistema y los requisitos de datos importantes.
2. Identificacin de las funciones principales de los vasos con el fin de establecer la unidad
funcional.
3. Identificacin de los problemas ambientales relevantes con el fin de definir el mtodo de
evaluacin de impactos a utilizar.
Para las consideraciones en los datos de mercado y geografa, el grupo de expertos acord que los
tipos de bebida y los patrones de produccin y consumo son aspectos importantes para el estudio
(Tabla 3). Con respecto al tipo de bebidas, el grupo de expertos discuti la relevancia de analizar
bebidas fras, calientes o ambas. Se consult al grupo de expertos sobre el mercado, disponibilidad
de datos y el rea geogrfica en Mxico a ser considerada en el estudio. El grupo discuti analizar
tres alternativas de mercado: mayoreo, retail y cuentas especiales. Considerando la disponibilidad
y calidad de datos, el grupo sugiri la recoleccin de datos del ao 2009 2010. Finalmente, el
grupo discuti sobre la alternativa de tres zonas geogrficas: local (una ciudad), nacional o en base
al volumen de ventas.

13

Tabla 3. Consideraciones importantes de datos para el estudio de ACV (modelo de decisin).

Asunto

Alternativas
Fras
Calientes

Tipos de bebida

Calientes y fras
Sector mayoreo (Central de abastos)
Retail (Autoservicio, supermercado)
Cuentas especiales (Cafeteras, mini super)
2009
2010
Local
Nacional

Tipo de mercado
Consideraciones de
mercado y datos

Periodo de tiempo
Representatividad
geogrfica

Por zona en base a volumen de ventas

Con el fin de evaluar la pertinencia de las consideraciones mencionadas anteriormente, CADIS


utiliz el software Expert Choice basado en el mtodo AHP. El AHP es un mtodo de anlisis
multicriteria utilizado para tomar decisiones complejas; mide el acuerdo entre los tomadores
de decisiones en una serie de alternativas, dndoles un peso de acuerdo al criterio de cada
participante (juicio del experto). Los detalles del mtodo son presentados en el Anexo A. El
software rene las opiniones y muestra el resultado. En la Figura 3 se muestran las decisiones
del grupo de expertos sobre los temas de geografa, mercado, periodo de tiempo y tipo de
bebidas (Figura 3).

14
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Figura 3. Seleccin de las consideraciones importantes en el estudio resultados del anlisis AHP.

Dado que los resultados en la geografa fueron muy similares, el grupo de expertos eligi dos reas
en el pas: el valle de Mxico y el estado de Jalisco (por su importancia en el mercado). De acuerdo
con los resultados presentados en la Figura 3, se puede observar que el estudio usara datos del
ao 2010, se centra en el sector mayoreo y considera los vasos utilizados para contener bebidas
calientes y fras.
El grupo de expertos tambin discuti algunas caractersticas importantes de los vasos a ser
analizados en el estudio, tales como la impresin y tamao. Se decidi la presentacin de vasos de
10 onzas y sin impresin (la de mayor venta en Mxico).

3.2 Sistema producto y lmites del sistema


Un sistema-producto es un conjunto de procesos unitarios con flujos elementales y flujos de
producto, que desempea una o ms funciones definidas y que sirve de modelo para el ciclo de
vida del producto (IMNC, 2008).
La Figura 4 muestra el sistema producto para los vasos EPS considerado para este estudio. Los
lmites del sistema incluyen lo siguiente:

15

Obtencin de material prima: Produccin de las perlas de EPS y el material de empaque


(bolsas de PE y cajas de cartn corrugado), as como su transporte a la planta productiva.
Produccin de vasos EPS: Generacin y consumo de energa elctrica y gas natural,
emisiones y residuos correspondientes a la fabricacin del vaso.
Distribucin: Transporte de los vasos desde las plantas productivas hacia los sitios de
venta y hacia el sitio donde el consumidor lo usa (promedio).
Uso: En la etapa de uso no se consideran entradas de materia y energa o emisiones
asociadas, el vaso se utiliza una vez.
Fin de vida: Se considera que los vasos, despus de un nico uso, se llevan al relleno
sanitario o a reciclaje.

Figura 4. Sistema-producto: vaso EPS.

La Figura 5 muestra el sistema producto de los vasos de papel plastificado considerados en este
estudio. Los lmites del sistema incluyen lo siguiente:

Obtencin de material prima: Produccin del cartn laminado con PE y material de


empaque (bolsas de PE y cajas de cartn corrugado), as como su transporte a la planta
productiva.
Produccin de vasos de papel plastificado: Generacin y consumo de energa elctrica,
emisiones y residuos correspondientes a la fabricacin de vasos.
Distribucin: Transporte de los vasos desde la planta productiva hacia los sitios de venta y
hacia el sitio donde el consumidor lo usa (promedio).
Uso: En la etapa de uso no se consideran entradas de materia y energa, el vaso se utiliza
una vez.
Fin de vida: Se considera que todos los vasos, despus de un nico uso, se llevan al relleno
sanitario.

16
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Figura 5. Sistema-producto: vasos papel plastificado.

3.3 Datos y reglas de corte


De acuerdo con la norma ISO 1440 (NMX-SAA-14040-IMNC-2008) , los datos seleccionados para un
ACV deben ser recolectados desde los sitios de produccin asociados con los procesos unitarios
dentro de los lmites del sistema, o deben ser obtenidos y calculados mediante otras fuentes.
Como fue descrito anteriormente, ANIQ junto con el grupo de expertos, tomaron importantes
consideraciones relacionadas a los datos durante la SAM, tales como el uso de datos del ao 2010
y las ventas al mayoreo en el mercado en Mxico.
La norma ISO 14040 (NMX-SAA-14040-IMNC-2008), tambin establece que una regla de corte es la
especificacin de la cantidad de material, flujo de energa o el nivel de relevancia ambiental
asociada con el proceso unitario o sistema producto a ser excluido en un estudio.
Gran parte de la informacin fue recolectada de fuentes mexicanas. Los datos de produccin de
los vasos EPS fueron obtenidos de compaas mexicanas. El proceso de fabricacin para vasos de
papel plastificado fue ajustado con datos mexicanos, aunque siguiendo el modelo de un proceso
internacional (esto se discute con ms detalle en la seccin 4.1).
Los datos de energa fueron obtenidos de MEXICANIUH, la base de datos nacional de ciclo de vida
desarrollada por CADIS; la cual contiene bases de datos de la generacin de energa elctrica,
sustancias petroqumicas, materiales de construccin, tratamiento de residuos y otros productos
clave y procesos importantes que son representativos de Mxico. Para la mayora de las materias
primas, los datos de inventario fueron obtenidos directamente de las compaas proveedoras,
principalmente de EUA y Mxico.
Con el fin de asegurar que todos los datos satisfagan el objetivo y alcance, no se aplicaron reglas
de corte a la informacin obtenida de las empresas. Todos los flujos reportados por las empresas
fueron considerados en el inventario. Las empresas reportaron datos en el consumo y transporte
de las materias primas, consumo de electricidad, combustible y agua, descargas de agua, embalaje
para los vasos, as como datos relacionados a su distribucin.
17

Con respecto a las etapas de distribucin y fin de vida, stas fueron modeladas con informacin
mexicana. Las distancias de la planta de produccin de vasos a los sitios mayoristas fueron
calculadas con informacin de las compaas, tambin distancias promedio de los mayoristas al
consumidor, y del consumidor a la etapa de fin de vida fueron calculados de acuerdo a la situacin
mexicana. El fin de vida de los vasos EPS y papel plastificado fue modelado con datos de rellenos
sanitarios en Mxico.

3.4 Funcin, unidad funcional y flujo de referencia


Un concepto fundamental en el ACV es la unidad funcional. sta es la base de clculo para los
inventarios de ciclo de vida y los impactos ambientales; permite la comparacin entre diferentes
sistemas con la misma funcin. La norma ISO 14040 (NMX-SAA-14040-IMNC-2008) establece que
la unidad funcional es el desempeo cuantificado de un sistema para su utilizacin como unidad
de referencia.
Con el fin de definir la unidad funcional, se realiz una lluvia de ideas en el grupo de expertos
durante la SAM, de las principales funciones de los vasos, identificando las siguientes:
contener bebidas
mantener la temperatura
apilar
comunicar

El grupo de expertos lleg al consenso de que contener bebidas y mantener

la

temperatura son las funciones principales de los vasos desechables.


Una vez que lo anterior fue discutido, la unidad funcional del estudio fue definida con el grupo de
expertos como:

Contener y mantener la temperatura de bebidas calientes y fras en vasos


desechables de 10 onzas en el valle de Mxico y Jalisco durante el ao del
2010
La norma ISO 14040 (NMX-SAA-14040-IMNC-2008) establece que el flujo de referencia es la
cantidad de materia y/o energa requerida para las diferentes operaciones unitarias que
componen un sistema-producto y que a su vez satisfacen la unidad funcional. Para obtener el flujo
18
ACV de vasos desechables en Mxico. EPS y papel plastificado.

de referencia que satisface la unidad funcional mencionada anteriormente, es necesario conocer


la cantidad de vasos de 10 oz que se venden a los sitios mayoristas en el Valle de Mxico y en
Jalisco utilizados para contener bebidas calientes y fras, y mantener su temperatura; ya que no
todos los tipos de materiales utilizados para la fabricacin de vasos desechables satisfacen esta
funcin.
Por lo tanto, se consult la cantidad de vasos de EPS vendidos en Mxico durante el ao 2010 que
reporta el Instituto Nacional de Estadstica, Geografa e Informtica (INEGI) en su Banco de
Informacin Econmica (INEGI, 2010), adems se obtuvo informacin de mercado de los vasos de
EPS de 10 onzas en la Zona Metropolitana del Valle de Mxico (ZMVM) y en la Zona Metropolitana
de Guadalajara, Jalisco (ZMG), la cual fue proporcionada por productores de vasos asociados a la
ANIQ. De este modo la cantidad de vasos de EPS comercializados en el 2010 por mayoristas en
ambas zonas es aproximadamente 1,600,000,000

vasos. Esta cifra es utilizada como flujo de

referencia con el fin de comparar los impactos ambientales potenciales por el uso de vasos EPS o
papel plastificado.

3.5 Evaluacin del impacto en el ciclo de vida y tipo de impactos


Durante la SAM, se consult con el grupo de expertos sobre los principales problemas ambientales
vistos desde los distintos grupos de inters en vasos desechables en Mxico. Con base en la
discusin y en las categoras de impacto consideradas en estudios de ACV similares, se lleg al
consenso de seleccionar el mtodo de evaluacin de impacto CML en puntos intermedios.

3.6 Consideraciones para la revisin crtica


La revisin crtica es el proceso que asegura la coherencia entre un ACV y los principios y requisitos
de los estndares sobre ACV. Este estudio incluye aseveraciones comparativas, y sigue los
requerimientos a considerar de la norma ISO 14040 para las mismas, tales como, la obligacin de
llevar acabo una revisin crtica, la cual se realiz mediante el siguiente panel de expertos:
Mike Levy (Coordinador del panel)
Director del Plastics Foodservice Packaging Group g dentro del American Chemistry Council (ACC),
representando a los productores de empaques plsticos para alimentos. Es tambin director de la
divisin de asuntos sobre ciclo de vida de plsticos de la ACC. Es vicepresidente de Franklin
Asociados (Investigacin en la industria), gerente de asuntos regulatorios y legislativos de
19

ExxonMobil Chemical Company y responsable de las divisiones de Mobil Chemical Company:


Petroqumica (PE, PS), pelculas plsticas (PE, bolsas, productos de PS para alimentos, stretch film),
productos de consumo y pinturas y recubrimientos.
Es especialista en ACV, cuenta con 13 aos de experiencia en el desarrollo y la aplicacin de dicha
herramienta en una amplia gama de empresas y organizaciones.
Luiz Alexandre Kulay
Doctor en Ingeniera Qumica de la Escola Politcnica da Universidade de So Paulo. Trabaj como
Ingeniero de Control Ambiental en la empresa Suzano de Papel e Celulose. Su rea de especialidad
por casi dos dcadas es en control y prevencin de la contaminacin, principalmente en el tema
de ACV. Actualmente, realiza el proyecto de base de datos de ACV para Brasil en el sector
petroqumico, polmeros y biopolmeros. Ha tenido una importante contribucin en los sectores
de energa elctrica, de fertilizantes y de biocombustibles.
Claudia Pea
Vice presidenta de la Red Ibero Americana de ACV. Fue directora de sustentabilidad industrial del
Centro de Investigacin de Minera y Metalrgica de Chile por 11 aos, en donde desarroll
proyectos de ACV, gestin de ciclo de vida, declaraciones ambientales de producto, ecoeficiencia y
ecologa industrial. Fue investigadora del Departamento de Ingeniera Qumica de la Universidad
de Leuven en Blgica durante cuatro aos.

La revisin crtica se realiz basada en la versin en ingls de este documento. Los comentarios del
panel y la rplica se encuentran en el Captulo 8 de dicha versin. La traduccin del dictamen final
de la revisin crtica se encuentra en el Captulo 8 de la versin en espaol.

20
ACV de vasos desechables en Mxico. EPS y papel plastificado.

4. Inventario de
ciclo de vida (ICV)

Este captulo describe el proceso de recoleccin de inventario y explica el proceso de produccin


de vasos EPS y papel plastificado. Tambin describe las fuentes de informacin, los
procedimientos de clculo y la validacin de datos.

21

4.1 Anlisis de inventario y recoleccin de datos


Un Inventario de Ciclo de Vida (ICV) cuantifica todas las entradas y salidas del ciclo de vida de un
producto (IMNC, 2008). El anlisis de inventario es un proceso iterativo que consiste en la
definicin del objetivo y alcance, preparacin de la recoleccin de datos, recoleccin de datos,
validacin de los datos, relacin de los datos a los procesos unitarios y a la unidad funcional,
agregacin de los datos y refinacin de los lmites del sistema (IMNC, 2008).
La definicin del objetivo y alcance de un estudio provee el plan inicial para conducir el ICV. El
Captulo 2 y Captulo 3 describen la definicin del objetivo y alcance respectivamente. A
continuacin se detallan las actividades para preparar la recoleccin de datos:
Investigacin de los procesos de manufactura y escenarios de fin de vida, mercado y
consumo en Mxico, y estudios de ACV existentes relacionados
Elaboracin de diagramas de flujo de los procesos de produccin
Identificar las entradas de materia y energa, y salidas dentro de los lmites del sistema
producto
Diseo de formatos de recoleccin del inventario del ciclo de vida basado en lo anterior
La recoleccin de los datos es el paso ms demandante de tiempo en el ICV porque es importante
encontrar fuentes confiables de informacin que estn dispuestas a proveer datos. La recoleccin
de los datos consiste en:
Bsqueda e identificacin de empresas productoras de vasos EPS y papel plastificado en
Mxico
Invitacin a participar a empresas productoras y proveedores de materia prima, al igual
que mayoristas
Visitas a las empresas para explicar la metodologa de un ACV y el objetivo y alcance del
estudio
Acuerdos con las empresas en el uso de datos
Visitas a las plantas de produccin que aceptaron proveer datos con el fin de recolectar
informacin
Monitoreo de la recoleccin de datos mediante correos electrnicos y telfono
Vista a las empresas para revisin de los datos recolectados
Reuniones con las empresas con el fin de validar la agregacin de la informacin del ICV y
confirmar que los acuerdos de confidencialidad sean respetados

22
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Los datos de materia prima requerida para producir las perlas de EPS y los vasos EPS se obtuvieron
de productores. Tambin proporcionaron datos sobre el transporte de estos materiales hacia la
planta de produccin. Consumo de energa y combustible, al igual que las descargas de agua
fueron reportadas por las compaas. Con respecto a los datos de vasos de papel plastificado,
empresas representativas de Mxico y Estados Unidos proporcionaron informacin general sobre
los procesos de produccin y algunos datos de ACV. Tambin, estudios de ACV realizados por
productores internacionales de vasos de papel plastificado fueron consultados para obtener
informacin sobre el consumo de energa.
En ambos casos, vasos EPS y de papel plastificado, los datos de energa fueron obtenidos mediante
la base de datos de ciclo de vida MEXICANIUH. Los datos de distribucin y disposicin fueron
obtenidos mediante fuentes mexicanas para ambos tipos de vasos. Para materiales de empaque
(bolsas PE y cajas de cartn corrugado) modelos internacionales genricos fueron ajustados
utilizando la base de datos de electricidad de MEXICANIUH.
Las perlas EPS utilizadas para la produccin del vaso son importadas desde EUA, con el fin de
adaptar los datos obtenidos con fuentes mexicanas, CADIS solicit a productores de EUA la
validacin del modelo de inventario. El Solid Bleach Board (SBB) es utilizado en la produccin del
papel plastificado y tambin importado de EUA, en este caso y siguiendo las recomendaciones de
productores estadounidenses, se utiliz Ecoinvent para modelarlo. Adems, los datos de
electricidad EUA se utilizaron para modelar la produccin de perlas EPS y SBB.
La validacin de los datos fue realizada con balances de materia y energa, las anomalas fueron
consultadas con las fuentes. La validacin de los datos es discutida en la seccin 4.5.
La agregacin de los datos fue mediante relaciones matemticas que expresan promedios en los
flujos de entrada y salida de acuerdo a lo establecido en la unidad funcional. Se requiri volver a
definir los lmites del sistema ya que la informacin relacionada al empaque de materia prima no
estaba disponible.

4.2 Descripcin cuantitativa y cualitativa de los procesos unitarios


Esta seccin contiene una descripcin general de las etapas del ciclo de vida para cada producto
analizado, el diagrama de flujo del proceso de produccin para la obtencin de vasos, y los
inventarios de ciclo de vida recolectados.

23

4.2.1 Descripcin de los vasos de EPS


La Figura 6 muestra un esquema de las etapas del ciclo de vida de vasos EPS, la cual se identifican
las principales salidas y entradas.

Figura 6. Etapas del ciclo de vida de vasos EPS.

24
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Produccin de perlas de EPS


Esta materia prima se presenta en forma de pequeas perlas esfricas que contienen en su
interior un agente expandante, el cual permite su expansin durante la fabricacin de vasos
desechables usados para contener bebidas. El agente expandante es un hidrocarburo de bajo
punto de ebullicin. En la fabricacin del EPS no se utilizan gases expandantes de la familia de los
clorofluorocarbonos o los hidrofluorocarbonos.
El proceso de fabricacin se lleva a cabo mediante una reaccin qumica de polimerizacin, en la
cual se obtienen macromolculas formadas por largas cadenas de un monmero, en este caso el
estireno. Esto se realiza mediante la suspensin en agua del estireno en reactores equipados con
mecanismos agitadores, a la suspensin se agregan catalizadores para iniciar la reaccin, aditivos
para estabilizacin de la mezcla y regulacin del dimetro de las perlas. La reaccin de
polimerizacin es exotrmica por lo que los reactores cuentan con un sistema de regulacin de
temperatura. Al finalizar esta etapa se obtiene una mezcla acuosa de PS, la cual es enviada a unos
tanques de homogenizacin. Posteriormente, el agente de expansin se introduce al reactor a
presin. Finalmente, la etapa de secado se realiza por medio de filtracin, centrifugacin y
cribado. En la Figura 7 se muestra un esquema general del proceso de produccin de las perlas de
EPS.

Figura 7. Diagrama de flujo del proceso de produccin de perlas EPS.

25

Produccin de vasos EPS


Los vasos de EPS estn fabricados a partir de las perlas descritas anteriormente. La transformacin
de las mismas se realiza generalmente en tres etapas (MIRKEM, 2009):

Etapa 1. Pre-expansin. Las perlas son calentadas con vapor en mquinas pre-expansoras
a temperaturas entre 80 y 100 oC. Durante el proceso de pre-expansin se forman
pequeas celdas con aire en el interior de las perlas.

Etapa 2. Maduracin intermedia y estabilizacin. El enfriamiento del material preexpandido se lleva a cabo durante el proceso de maduracin intermedia en silos aireados.
Las perlas son secadas al mismo tiempo, de esta manera adquieren una mayor elasticidad
y mejora su capacidad de expansin, lo cual es muy importante para su posterior
transformacin.

Etapa 3. Expansin y moldeo. Durante esta etapa del proceso, las perlas pre-expandidas ya
estabilizadas, son trasportadas a los moldes en donde son sometidas nuevamente al vapor
para su unin. Mediante un enfriado rpido se obtiene la densidad final y la forma de los
vasos.

Los vasos desechables de EPS fabricados por las empresas participantes en el estudio cumplen
con los requisitos solicitados por la Food and Drug Administration (FDA) para este tipo de
productos. En la Figura 8 se muestra un esquema general del proceso de produccin de vasos
desechables de EPS.

Figura 8. Diagrama de flujo del proceso de produccin de vasos EPS.

26
ACV de vasos desechables en Mxico. EPS y papel plastificado.

4.2.2 ICV de los vasos de EPS


El inventario de la produccin de las perlas de EPS se gener a partir de los datos proporcionados
por las compaas productoras de resina en Mxico, los cuales se adaptaron al proceso
estadounidense, ya que las perlas que se utilizan en la manufactura de los vasos en Mxico son
importados principalmente de los Estados Unidos. Para los materiales de empaquetado se
utilizaron modelos genricos para bolsas de PE y cajas de cartn corrugado. La Tabla 4 presenta un
promedio del ICV para la produccin de vasos EPS. Esta Tabla incluye la materia prima y su
transporte a la planta productora de vasos, energa elctrica, consumo de agua y combustible de
la produccin de vasos, emisiones de agua generada, y la cantidad de residuos generados y
transportados para reciclaje. Es importante mencionar que el modelo utilizado para gas natural,
toma en cuenta la produccin y emisiones al aire generados por la quema del mismo. Las
emisiones de agua son obtenidas de los anlisis de descarga de agua realizada por los productores
de vasos EPS.

27

Tabla 4. ICV promedio de la produccin de vasos EPS.

Materias primas
Entrada

Cantidad

Unidad Nombre del flujo

Base de datos

Perlas de EPS

4,277

ton

Expandable polystyrene/ MX-US U

Cajas cartn corrugado

1,716

ton

Corrugated board, recycling fiber, double wall, at plant/RER U

Ecoinvent Adaptado

383

ton

LDPE bags, at plant/ RER U

Ecoinvent Adaptado

Bolsas de Polietileno (PE)

CADIS

Transporte de materias primas


Entrada

Cantidad (ton)

Distancia (km)

Nombre del flujo

Base de datos

2,674 11,433,383 Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

Transporte de EPS

4,277

Transporte de las cajas

1,701

200

383

200

Transporte de las bolsas PE

tkm

343,170 Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

76,587 Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

Produccin
Entrada
Energa Elctrica
Gas natural
Agua

Cantidad
5,783

Unidad
MWh

Nombre del flujo

Base de datos

Electricity, medium voltage, production MX, at grid/ MX U

MEXICANIUH

283

TJ

Natural gas, burned in boiler modulating >100kW/RER U

Ecoinvent

65,931

ton

Tap water, at user/RER U

Ecoinvent

Emisiones
Salida
Agua residual

Cantidad

Unidad

298

ton

Waste wter

SST

26

kg

Total suspended solids

DBO

41

kg

BOD5, Biological Oxygen Demand

N total

5.4

kg

Nitrogen

Grasas y aceites

5.6

kg

Oil and grease

1.3

kg

Phosphorus

As

0.001

kg

Arsenic

Cd

0.001

kg

Cadmium

CN

0.01

kg

Cyanide

Cu

0.02

kg

Copper

Cr

0.01

kg

Chromium

Hg

0.0003

kg

Mercury

Ni

0.02

kg

Nickel

Pb

0.02

kg

Lead

Zn

0.05

kg

Zinc

Residuos
Salida
Residuos EPS a reciclaje

Cantidad
125

Unidad
ton

Nombre del flujo

Base de datos

Recycling mixed plastics/RER U

Ecoinvent

Transporte de residuos
Entrada
Transporte residuo EPS a reciclaje

Cantidad (ton)

Distancia (km)

125

20

tkm

Nombre del flujo

2,491 Transport, lorry 3.5-7.5t, EURO5/RER U

28
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Base de datos
Ecoinvent

El inventario de la etapa de distribucin fue realizado de acuerdo a la logstica del transporte del
producto proporcionado por empresas productoras, hacia los centros de distribucin de la ZMVM
y ZMG, considerando que el 70% del flujo de referencia va hacia el Valle de Mxico y el resto a
Guadalajara. El transporte de los centros de distribucin al consumidor fueron calculados de
acuerdo al promedio de las distancias hacia varios municipios en las reas metropolitanas. En la
Tabla 5 se muestra el ICV para esta etapa en el ciclo.
Tabla 5. ICV promedio de la distribucin de vasos de EPS.

Distribucin
Entrada
Transporte de las plantas a los centros de
distribucin

Cantidad (ton)

Transporte de los centros al consumidor

Distancia (km)

tkm

6,251

319

1,994,206

6,251

21

133,294

Nombre del flujo

Base de datos

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

En la etapa de uso no se consideran entradas y salidas de materia y energa. De acuerdo a la


informacin validada por las empresas participantes en el estudio, el 0.5% de los vasos son
transportados a una planta recicladora, mientras que el 99.5% de los vasos terminan en un relleno
sanitario. Para esta etapa del ciclo de vida los inventarios de rellenos sanitarios fueron realizados
de acuerdo a datos del Distrito Federal y las caractersticas de los rellenos sanitarios en Mxico,
donde no existe incineracin o captura de gas biogs. La Tabla 6 muestra el ICV correspondiente a
la etapa de fin de vida y la Tabla 7 describe el transporte requerido.
Tabla 6. ICV promedio de la etapa de fin de vida de los vasos de EPS.

Fin de vida
Salida

Cantidad

Vasos EPS a relleno sanitario


Vasos EPS a reciclaje
Bolsas PE a relleno sanitario
Cajas cartn a reciclaje

Base de
datos

Unidad Nombre del flujo

4,131

ton

Disposal, plastics mixture, 32% water, to sanitary landfill/ MX U

21

ton

Recycling mixed plastics/RER U

383

ton

Disposal, plastics mixture, 32% water, to sanitary landfill/ MX U

1,716

ton

Recycling cardboard/RER U

MEXICANIUH
Ecoinvent
MEXICANIUH
Ecoinvent

Tabla 7. ICV promedio del transporte requerido en la etapa de fin de vida de los vasos de EPS.

Transporte al fin de vida


Entrada
Transporte vasos EPS a relleno
Transporte vasos EPS a reciclaje
Transporte bolsas PE a relleno
Transporte cajas cartn a reciclaje

Distancia (km)

4,131

18

72,710

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

21

20

415

Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

383

18

6,740

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

1,701

20

34,317

Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

29

tkm

Nombre del flujo

Base de
datos

Cantidad (ton)

4.2.3 Descripcin de los vasos de papel plastificado con PE


La Figura 9 muestra un esquema de las etapas del ciclo de vida para vasos de papel plastificado, el
cual identifica las principales entradas y salidas.

Figura 9. Etapas del ciclo de vida de vasos de papel plastificado.

30
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Proceso de produccin de vasos de papel plastificado


La principal materia prima de este vaso es un tipo de papel denominado Solid Bleach Board (SSB)
el cual est hecho a partir de pulpa clorada virgen. Este material se lamina con una pelcula de
Polietileno de Baja Densidad (PEBD) en la cara interior del rollo, cuya funcin es evitar la absorcin
de los lquidos por el papel y escurrimientos; as como mantener las bebidas calientes.
El SBB laminado se coloca en un rodillo que lo lleva a una cuchilla giratoria, la cual lo corta de
acuerdo a un tamao y forma prestablecido; mientras tanto otra cuchilla corta las bases circulares
de los vasos. En estos pasos se generan residuos de papel que se llevan a reciclaje. Los trozos
cortados inicialmente se trasladan en una banda transportadora hacia un dispositivo giratorio con
mordazas mecnicas que enrollan cada trozo en forma de cono, enseguida una pistola de aire
caliente sella la unin. A continuacin, para formar el vaso se colocan las bases dentro de los
conos y se unen con calor y presin, a este proceso se le llama moleteado. Posteriormente, se
aade un borde a los vasos para evitar que se derramen los lquidos, esto se realiza con una
herramienta caliente que enrolla la orilla de cada uno, a lo que se le conoce como rizado. Despus,
los vasos se transportan al rea de empaque, en donde son apilados e introducidos en bolsas de
plstico y stas en cajas de cartn (Rajshree, 2011). La Figura 10 esquematiza este proceso.

Figura 10. Diagrama de flujo de la produccin de vasos de papel plastificados.

31

4.2.4 ICV de los vasos de papel plastificado con PE


El SBB para la fabricacin de vasos de papel plastificado se importa previamente laminado de los
Estados Unidos. La Tabla 8 muestra un promedio del ICV de la produccin de vasos de papel
plastificados. Esta Tabla incluye la materia prima, el transporte requerido por esta, consumo de
energa de la etapa de produccin y empaque de los vasos, as como la cantidad de residuos y su
transporte.
El proceso de produccin de vasos de papel plastificado es automatizado y requiere energa
elctrica para operar. Este proceso no requiere otro tipo de combustible o agua. En consecuencia,
emisiones directas al aire y descargas de agua no son generadas durante la produccin de vasos.
Sin embargo, se producen residuos de papel durante el proceso de corte los cuales son enviados a
reciclaje.
Tabla 8. ICV para la produccin de vasos de papel plastificado.

Materia Prima
Entrada
SBB
PEBD
Energa elctrica laminado
Bolsa de Polietileno (PE)
Cajas cartn corrugado

Cantidad

Unidad

Nombre del flujo

Base de datos

15,230

ton

Solid bleached board, SBB, at plant/RER U

Ecoinvent Adaptado

802

ton

Packaging film, LDPE, at plant/RER U

Ecoinvent Adaptado

3,215

MWh

Electricity, medium voltage, production USA, at grid/US U

Ecoinvent

202

ton

Packaging film, LDPE, at plant/RER U

Ecoinvent Adaptado

1,342

ton

Packaging, corrugated board, mixed fibre, single wall, at plant/RER U

Ecoinvent Adaptado

Transporte de materia prima


Entrada

Cantidad (ton)

Transporte de SBB laminado

Distancia (km)

16,032

Transporte de las bolsas PE


Trasnporte de las cajas cartn

tkm

Base de
datos

Nombre del flujo

1,904 30,518,195 Transport, lorry >16t, fleet average/RER U

Ecoinvent

202

50

10,080

Transport, lorry 3.5-7.5t, EURO3/RER U

Ecoinvent

1,342

50

67,120

Transport, lorry 3.5-7.5t, EURO3/RER U

Ecoinvent

Produccin
Entrada
Energa elctrica manufactura

Cantidad

Unidad Nombre del flujo

Base de datos

15,985

MWh

Electricity, medium voltage, production MX, at grid/ MX U

MEXICANIUH

86

MWh

Electricity, medium voltage, production MX, at grid/ MX U

MEXICANIUH

Energa elctrica empaque

Residuos slidos
Salida
Residuos SBB a reciclaje

Cantidad

Unidad Nombre del flujo

1,248 ton

Base de datos

Recycling paper/RER U

Ecoinvent

Transporte de residuos slidos


Entrada
Transporte SBB a reciclaje

Cantidad (ton)

Distancia (km)

1,248

20

tkm

Nombre del flujo

24,960

Transport, van <3.5t/RER U

32
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Base de datos
Ecoinvent

El inventario de la etapa de distribucin toma en cuenta la distancia desde la planta de produccin


hacia los centros de distribucin de la ZMVM y ZMG, considerando que el 70% del flujo de
referencia proviene del Valle de Mxico y el resto de Guadalajara. El transporte hacia el
consumidor fue calculado de acuerdo al promedio de las distancias de los diferentes municipios en
la zona metropolitana. La Tabla 9 muestra el ICV para esta etapa del ciclo de vida.
Tabla 9. ICV promedio para la distribucin de vasos de papel plastificados.

Distribucin
Entrada
Transporte de la planta al centro de
distribucin

Cantidad (ton)

Distancia (km)

Nombre del flujo


Transport, lorry 16-32t, EURO5/RER
187 3,045,172 U
Transport, lorry 3.5-7.5t, EURO5/RER
21
349,419 U

16,328

Transporte del centro al consumidor

Base de
datos

16,328

tkm

Ecoinvent
Ecoinvent

En la etapa de uso las entradas y salidas de materia y energa no son consideradas, ya que el vaso
es vendido con una bebida fra o caliente, para finalizar su funcin es depositado en un
contenedor para su transporte a los rellenos sanitarios.
Para la etapa de fin de vida los inventarios de ciclo de vida fueron realizados para papel en
rellenos sanitarios de acuerdo a datos del Distrito Federal y las caractersticas de los rellenos
sanitarios en Mxico, donde no existe incineracin o captura de biogs. Tablas 10 y 11 describen
los ICV para esta etapa.
Tabla 10. ICV para la etapa de fin de vida de los vasos de papel plastificado.

Fin de Vida
Salida

Cantidad

SBB del vaso en relleno sanitario


PEBD del vaso en relleno
sanitario
Bolsas PE a relleno sanitario
Cajas cartn a reciclaje

Base de
datos

Unidad Nombre del flujo

13,982

ton

Disposal, paper, 32% water, to sanitary landfill / MX U

MEXICANIUH

802

ton

Disposal, plastics mixture, 32% water, to sanitary landfill/ MX U

MEXICANIUH

202

ton

Disposal, plastics mixture, 32% water, to sanitary landfill/ MX U

MEXICANIUH

1,342

ton

Recycling paper/RER U

Ecoinvent

Tabla 11. ICV para el transporte de vasos de papel plastificado en su fin de vidas.

Transport to end of life


Entrada
Transporte vaso papel plastificado a relleno
Transporte de bolsas PE a relleno
Transporte cajas de cartn a reciclaje

Cantidad (ton)
14,784

Distancia (km)

tkm

Nombre del flujo

Base de
datos

18

260,198

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

202

18

3,548

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

1,342

20

26,848

Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

33

4.3 Fuentes de informacin


Las Fuentes de informacin utilizadas en este estudio se describen a continuacin:
Vasos EPS
El consumo de materias primas, el transporte de materiales, la energa y combustibles utilizados
en la produccin de vasos, las descargas de agua generadas por la fabricacin, la distribucin a los
mayoristas, y el porcentaje de vasos reciclados en la etapa de fin de vida fueron obtenidas por las
siguientes fuentes primarias: empresas productoras de perlas EPS en Mxico y Estados Unidos,
fabricantes de vasos EPS y centros de distribucin. La base de datos Ecoinvent fue utilizada para
modelar la electricidad requerida en la manufactura de las perlas de EPS y la base de datos
MEXICANIUH para la electricidad en el inventario de produccin del vaso.
Los datos relacionados a la generacin de residuos en la etapa de produccin fueron calculados
por balance de materia. Las distancias promedios de los mayoristas a los consumidores fueron
calculadas de acuerdo a los principales sitios de venta en el Valle de Mxico y Jalisco. De la misma
manera, la distancia promedio del consumidor al relleno sanitario fue calculada de acuerdo a la
distancia de diferentes municipios al relleno sanitario principal en esa zona. La base de datos de
los plsticos en el relleno sanitario proveniente de MEXICANIUH. Esta base de datos incluye la
disposicin final de los plsticos, uso de suelo, consumo de energa y combustible, y emisiones.
CADIS desarroll este inventario en colaboracin con la Universidad Autnoma Metropolitana, la
cual recolect y caracteriz los flujos de residuos generados y gener datos de los residuos slidos
municipales en Mxico, considerando que no hay captura de biogs, incineracin y tratamiento de
lixiviados (Espinoza, et al., 2011).
Vasos de papel plastificado
La descripcin del proceso de produccin de vasos de papel plastificado fue obtenida mediante
empresas en Mxico. Adems, empresas internacionales tambin proporcionaron una descripcin
general del proceso de fabricacin. Los procesos son semejantes y no representan alguna
diferencia significativa. La informacin proporcionada fue validada y comparada con estudios de
bases de datos internacionales. El papel SBB es la principal materia prima. Este es producido y
laminado con PE en EUA, en consecuencia un modelo de energa estadounidense fue utilizado
para la produccin de SBB y el proceso de laminado.
Una vez que el papel SBB llega a la planta de produccin en Mxico, ste ingresa a un proceso
automatizado que realiza diferentes pasos para ensamblar los vasos. Este proceso requiere

34
ACV de vasos desechables en Mxico. EPS y papel plastificado.

exclusivamente de energa elctrica, la cual fue modelada con la base de datos MEXICANIUH. La
distancia de los proveedores de la materia prima a los productores de vasos fue calculada de
acuerdo a la ubicacin de los principales productores de vasos de papel en Mxico. Los datos
relacionados a la generacin de residuos slidos en la etapa de produccin fueron calculados por
balances de materia.
La distancia promedio del mayorista al consumidor fue calculada de acuerdo a los sitios de mayor
venta en el Valle de Mxico y Jalisco. De la misma forma, el promedio de la distancia del
consumidor al relleno sanitario fue calculado de acuerdo a la distancia de diferentes municipios al
relleno sanitario de la zona correspondiente. La base de datos MEXICANIUH para el papel en
rellenos sanitarios fue utilizada para modelar la etapa de fin de vida.

4.4 Procedimientos de clculo


Los procedimientos de clculo incluyen la validacin de los datos recolectados, la relacin de los
datos a los procesos unitarios y la relacin de los datos al flujo de referencia establecido por la
unidad funcional.

4.4.1 Suposiciones
Todos los vasos tienen un solo uso
Las cajas de cartn corrugado son enviadas a reciclaje
No se reciclan los vasos de papel plastificado
4.4.2 Limitaciones
El mercado objetivo para vasos de papel no es el mismo que para vasos EPS, pero para
propsitos de este estudio se tomaron en cuenta las mismas condiciones de venta y
distribucin
Se calcularon las ventas estimadas para el Valle de Mxico y Guadalajara con porcentajes
aproximados de acuerdo a la informacin proporcionada por los productores.
Se realiz un modelo a partir de datos de produccin de vasos de papel de empresas en
Estados Unidos y Europa, adaptando las condiciones para distribucin, transportes y fin de
vida de acuerdo a las condiciones en Mxico.
El alcance de este estudio solo incluye dos tipos de materiales (EPS y papel plastificado) y
dos aplicaciones vasos desechables para fro o caliente. Por lo tanto este estudio de ACV

35

es especficamente para este tipo de vasos y no cubre todos los tipos de productos
desechables de EPS y papel plastificado.

4.5 Validacin de datos


De acuerdo a la norma ISO 14040 (NMX-SAA-14044-2008), se debe realizar la validacin de los
datos obtenidos durante el proceso de recoleccin para confirmar y proporcionar evidencia de
que los requerimientos en la calidad para la aplicacin prevista se han cumplido.
Una vez que los datos fueron recibidos por parte de las empresas productoras, se analizaron con la
finalidad de identificar cualquier anomala y revisar la consistencia de los flujos de entrada y salida
de masa y energa, as como con un anlisis comparativo con factores de emisin. En caso de
encontrar cualquier discrepancia, los resultados del balance fueron utilizados para adecuar la
igualdad en los datos. Los balances de masa y energa proporcionan un eficaz control en la
validacin del proceso de recoleccin. Finalmente, los datos calculados fueron presentados a los
proveedores para validar dicha informacin.
Los requisitos de la calidad de los datos son especificados en la siguiente seccin. Estos permiten
que el objetivo y alcance de un ACV se logren.

4.5.1 Anlisis de calidad de datos


Cobertura relacionada al tiempo
En el alcance del estudio se estableci que el ao de referencia sera el ao 2010. Para procesos
especficos se utilizaron datos del ao 2010, otros datos estn dentro del periodo 2007 y 2010.

Cobertura geogrfica
El estudio aplica para el Valle de Mxico y Guadalajara, Jalisco, las cuales son las zonas de mayores
ventas en el pas. Informacin de los procesos unitarios provenientes de EUA fueron ajustados
para cumplir con la cobertura geogrfica.

Cobertura tecnolgica
Los datos recolectados aplican a la situacin tecnolgica promedio de Mxico y los EUA.

36
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Precisin
Para la mayora de los procesos unitarios se calcul un promedio ponderado. En caso de obtener
los datos por medio de literatura, estos se utilizaron como un chequeo extra.

Integridad
Toda la informacin relevante y los datos necesarios para la interpretacin estn disponibles y
completos.

Representatividad
Los datos reflejan la situacin actual de los vasos de 10 onzas en Mxico. La recoleccin de datos
considera la situacin geogrfica y el contexto mexicano durante las etapas del ciclo de vida.

Coherencia
La metodologa de un ACV fue aplicada consistentemente en todas las etapas del estudio.

Reproducibilidad
Algunos datos en el ICV son confidenciales; los resultados reportados en el estudio pueden ser
reproducidos parcialmente.

Fuentes de informacin
Dependiendo del tipo de proceso se utilizaron diferentes fuentes; datos de un proceso en
especfico, promedios de un proceso especfico, promedios de todos los proveedores, o
informacin de ACV previos.

Incertidumbre
Las principales causas de incertidumbre son las suposiciones realizadas. Se realiz un anlisis de
incertidumbre; el coeficiente de variacin es menor que el 11% para todos los casos, indicando un
modelo apropiado para ambos tipos de vasos.

La Tabla 12 resume el anlisis de calidad de los datos a travs de las etapas de ciclo de vida de los
productos evaluados.

37

Cumplimiento
de las normas
en ACV

Acuerdos de
confidencialidad

Incertidumbre

Situacin
general
de Mxico

Fuentes de informacin

Todos los
flujos
importantes
incluidos

Reproducibilidad

Promedio
de datos de
los
proveedores

Coherencia

Promedio

Representatividad

Integridad

Cobertura geogrfica
De acuerdo al
lugar

Precisin

2005

2010

Tecnologa

Calidad de
datos
iniciales

Cobertura
al tiempo

Etapa del
Ciclo de
Vida

relacionada

Tabla 12. Resumen de la calidad de datos analizados.

Empresas y
datos
mexicanos

Coeficiente
de variacin
menor al
11%

DATOS DE VASOS EPS


Produccin
de materias
primas
Transporte
de materias
primas
Produccin

2010

EUA

Confidencial

2010

Mxico

2010

Mxico

Distribuci
na
mayoristas

2010

Transporte
al
consumidor

2010

Transporte
al fin de
vida

2010

Fin de vida

2005
2009

Valle de
Mxico y
Guadalajara
Valle de
Mxico y
Guadalajara
Valle de
Mxico y
Guadalajara
Valle de
Mxico y
Guadalajara

Base de datos
MEXICANIUH

DATOS DE VASOS DE PAPEL PLASTIFICADO


Produccin
2005
EUA

de materias
primas
Transporte
de materias
primas
Produccin

Distribuci
na
mayoristas

2010
2010

2005
2010
2010

Transporte
al
consumidor

2010

Transporte
al fin de
vida

2010

Fin de vida

2005
2009

Base de datos
para energa de
MEXICANIUH

Empresas y
ACV
previos

Mxico

Mxico

Valle de
Mxico y
Guadalajara
Valle de
Mxico y
Guadalajara
Valle de
Mxico y
Guadalajara
Valle de
Mxico y
Guadalajara

Base de datos
MEXICANIUH

38
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Base de datos
para energa de
MEXICANIUH

Empresas y
ACV
previos

4.5.2 Tratamiento de datos faltantes


Las anomalas en la informacin generan vacos en los datos, los cuales fueron tratados calculando
los balances de materia y energa. Otro vaco en la informacin fue las distancias en las etapas de
distribucin y fin de vida, en esos casos la distancia promedio fue calculada considerando los sitios
mayoristas y los principales municipios del Valle de Mxico y Jalisco.

4.6 Asignacin
Las normas ISO 14040 y 14044 (NMX-SAA-14044 y 14044-IMNC-2008) establecen que la
asignacin es la reparticin de los flujos de entrada y salida de un proceso entre el sistema bajo
estudio y otro o ms sistemas.
De acuerdo a los estndares de ACV, la asignacin debe ser evitada siempre que sea posible, y la
asignacin fsica es preferible a otras relaciones como el valor econmico:
1. Siempre que sea posible, la asignacin debe ser evitada mediante la divisin del proceso
a ser asignado en dos o mas sub-procesos y la recoleccin de las entradas y salidas
relacionadas a estos sub-procesos, o expandiendo el sistema producto para incluir las
funciones adicionales relacionadas a los productos.
2. Cuando la asignacin no puede ser evitada, las entradas y salidas del sistema deben ser
repartidas entre los diferentes productos o funciones de una manera que refleje las
relaciones fsicas latentes entre ellos
3. Cuando una relacin fsica por s sola no pueda establecerse o utilizarse como base para la
asignacin, las entradas deben asignarse entre los productos y sus funciones de manera
que refleja otras relaciones entre ellos. Por ejemplo, datos de entrada y salida deben ser
asignados entre los co-productos en proporcin al valor econmico de estos.
Por otra parte las empresas consideradas en el estudio, fabrican vasos de diferentes tamaos,
pero del mismo material. Por lo tanto, la masa utilizada para cada vaso es directamente
proporcional al tipo de producto, y la asignacin fsica es posible. As que, siguiendo las normas, se
eligi una asignacin de masa. Los datos proporcionados por las empresas correspondan a la
produccin total, por lo que se realizaron asignaciones de masa mediante el peso promedio de los
vasos.

39

5. Evaluacin del Impacto


del Ciclo de Vida (EICV)

Este captulo presenta los resultados del anlisis de los impactos del ciclo de vida.

40
ACV de vasos desechables en Mxico. EPS y papel plastificado.

5.1 Mtodo de evaluacin de impacto


De acuerdo a las normas ISO14040 y 14044 (NMX-SAA-14040-IMNC-2008 y NMX-SAA-14044IMNC-2008), la Clasificacin y Caracterizacin son elementos obligatorios para cualquier EICV.
Adems, las normas brindan consideraciones especficas para un ACV que incluye aseveraciones
comparativas con la intencin de darse a conocer al pblico:

Debe emplear un conjunto suficientemente amplio de indicadores de categora. La


comparacin debe ser realizada por indicador de categora.

Una EICV no constituir la nica base de la aseveracin comparativa destinada a ser


publicada.

Los indicadores de categora que se usen en aseveraciones comparativas para comunicar


al pblico deben ser:
Vlidos cientficamente y tcnicamente
Relevantes ambientalmente
Aceptados internacionalmente
Sin aplicar ponderacin

Considerando lo anterior, el mtodo elegido fue CML. ste satisface los elementos obligatorios de
clasificacin y caracterizacin, no toma en cuenta la ponderacin u otros elementos opcionales y
los resultados pueden ser analizados por cada indicador de categora. Las categoras de impacto
evaluadas por CML son aceptadas internacionalmente, y los mtodos utilizados son
cientficamente y tcnicamente vlidos.

Todos los clculos fueron realizados utilizando el software de SimaPro 7.2., el cual realiza los
clculos de los posibles impactos ambientales alineados a los requerimientos de la norma ISO
14040 y 14044. Primero se realiza una clasificacin. Por ejemplo, una emisin de SO2 es clasificada
en la categora de impacto de acidificacin. El siguiente paso es la caracterizacin, esta involucra la
conversin de los resultados del ICV a unidades comunes y la agregacin de los resultados
obtenidos en categoras de impacto. Esta caracterizacin utiliza factores de conversin incluidos
en SimaPro 7.2. El resultado del clculo es un indicador numrico.

41

5.2 Categoras de impacto analizadas


Las categoras de impactos y los factores utilizados provienen del mtodo CML en SimaPro 7.2. La
Tabla 13 proporciona las categoras de impacto analizadas, al igual que la sustancias de referencia
para cada una.

42
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Tabla 13. Categoras de impacto analizadas en el estudio (Goedkoop, Oele, Schryver, & Vieira, 2008).
Categora de
impacto

Sustancia
de
referencia
Sb eq

Descripcin

Potencial de
Acidificacin (PA)

SO2 eq

Las sustancias acidificantes causan una amplia gama de impactos en el suelo, aguas superficiales, organismos, ecosistemas y
bienes materiales (edificios). El potencial de Acidificacin (PA) para emisiones al aire es calculado con el modelo adaptado de
RAINS 10 describiendo el destino y deposicin de las sustancias acidificantes. El PA es expresado en kg de SO 2 equivalentes / kg
de emisin. El lapso de tiempo es infinito y la escala geogrfica vara entre escalas locales y continentales. Los factores de
caracterizacin incluyen el destino cuando son utilizados y estn disponibles. Cuando no estn disponibles, los factores
excluyen el destino donde fueron utilizados. El mtodo incluye cido Ntrico en suelos, agua y aire, cido sulfrico en agua,
trixido de azufre en aire, cloruro de hidrgeno en agua, suelo; fluoruro de hidrgeno en agua, suelo; cido fosfrico en agua,
suelo, sulfuro de hidrgeno en suelo, todo sin incluir el destino.

Potencial de
Eutrofizacin
(PEu)

PO4 eq

La eutrofizacin (tambin conocida como nutrificacin) incluye todos los impactos debido a los niveles excesivos de los
macronutrientes en el ambiente causado por las emisiones de nutrientes al aire, agua y suelo. El potencial de Nutrificacin (PN)
est basado en un procedimiento estequiomtrico de Heijungs, y es expresado como kilogramos equivalentes de PO4 / kg
emisin. El destino y exposicin no estn incluidos, el lapso de tiempo es infinito, y la escala geogrfica vara entre escalas
locales y continentales.

Potencial de
Calentamiento
Global (PCG)

CO2 eq

El Cambio Climtico puede provocar efectos adversos sobre la salud del ecosistema, salud humana y bienestar material. El
cambio climtico esta relacionado a las emisiones de gases efecto invernadero al aire. El modelo de caracterizacin elaborado
por el Panel Intergubernamental en Cambio Climtico (IPCC por sus siglas en ingls) es seleccionado para el desarrollo de los
factores de caracterizacin. Los factores son expresados como Potencial de Calentamiento Global por el horizonte de tiempo
de 100 aos (PCG100), en kg dixido de carbono/ kg emisin. El alcance geogrfico para este indicador es a escala global.

Potencial de
Destruccin de la
capa de ozono
(PDCO)

CFC-11 eq

Debido a la destruccin del ozono estratosfrico, una larga fraccin de rayos UV-B alcanzan la superficie terrestre. Esto puede
tener efectos dainos sobre la salud humana, salud animal, ecosistemas acuticos y terrestres, ciclos bioqumicos y en bienes
materiales. Esta categora esta relacionada a una escala global. El modelo de caracterizacin es desarrollado por el World
Meteorological Organization (WMO) y define el potencial de destruccin de la capa de ozono de diferentes gases (kg CFC-11
equivalentes/ kg emisin). El lapso de tiempo es infinito.

Potencial de
Toxicidad Humana
(PTH)

1,4-DB eq

Esta categora se refiere a los efectos de sustancias txicas en el ambiente humano. Los riesgos a la salud por la exposicin en
el ambiente laboral no estn incluidos. Los factores de caracterizacin de los Potenciales de Toxicidad Humana (PTH), son
calculados con USES-LCA, describiendo el destino, exposicin y efectos de sustancias txicas por un horizonte de tiempo
infinito. Para cada sustancia txica los PTH son expresados en 1,4-diclorobenceno equivalente/kg emisin. El alcance
geogrfico para este indicador est determinado por el destino de la sustancia y puede variar entre una escala local o global.

Potencial de
Ecotoxicidad en
Agua dulce (PEcA)

1,4-DB eq

Esta categora se refiere al impacto a los ecosistemas de agua dulce como resultado de la emisin de sustancias txicas al aire,
agua y suelo. El Potencial de Eco-toxicidad (PEcA) es calculado con USES-LCA, describiendo el destino, exposicin y efectos
txicos de las sustancias. El horizonte de tiempo es infinito, los factores de caracterizacin son expresados como 1,4diclorobenceno equivalente kg emisin. El indicador se aplica a escalas global/continental/ regional y local.

Potencial de
Ecotoxicidad
Terrestre (PEcT)
Potencial de
Formacin de
Oxidantes
Fotoqumicos
(PFOF)

1,4-DB eq

Esta categora se refiere a los impactos de sustancias txicas en los ecosistemas terrestres (ver descripcin de toxicidad en
agua dulce).

C2H4 eq

Formacin de oxidantes fotoqumicos es la formacin de sustancias reactivas (principalmente ozono) perjudiciales a la salud
humana y ecosistemas, las cuales tambin pueden daar los cultivos. Este problema tambin es conocido como summer smog.
El smog de invierno esta fuera del alcance de esta categora. El Potencial de Formacin de Oxidantes Fotoqumicos (PFOF) para
la emisin al aire de sustancias es calculado con el modelo de UNECE Trajectory (incluye destino), y es expresado en kilogramos
de etileno equivalente/ kg emisin. El lapso de tiempo es de 5 das y la escala geogrfica varia entre local y continental.

Potencial de
Reduccin de
Recursos
Abiticos (PRRA)

Esta categora de impacto indica su relacin con la extraccin de minerales y combustibles fsiles debido a las entradas del
sistema. Potencial de Reduccin de Recursos Abiticos (PRRA) es determinado por cada extraccin de minerales y combustibles
fsiles (kg de Antimonio equivalente/kg extrados) basados en la concentracin de las reservas y su grado de acumulacin. El
alcance geogrfico de este indicador es a escala global.

43

5.3 Discusin de resultados


El resultado de un ICV es el punto de partida para la evaluacin del impacto del ciclo de vida. Los
resultados del ICV son asignados a las categoras de impacto seleccionadas (clasificacin) con el fin
del calcular los indicadores de categoras (caracterizacin). La siguiente seccin presenta los
resultados del ICV.
Las comparaciones de los resultados de los vasos de EPS y papel plastificado son cuantificadas por
la misma unidad funcional.

5.3.1 EICV de los vasos de EPS


La Figura 11 muestra la EICV de los vasos EPS. Se puede observar que la etapa de materia prima
contribuye en su mayora al Potencial de Reduccin de Recursos Abiticos (PRRA), Potencial de
Acidificacin (PA), Potencial de Eutrofizacin (PEu), Potencial de Ecotoxicidad en Agua dulce
(PEcA), Potencial de Ecotoxicidad Terrestre (PEcT) y Potencial de Formacin de Oxidantes
Fotoqumicos (PFOF). El impacto potencial en las seis categoras mencionadas se debe al proceso
de obtencin de estireno requerido para la produccin de las perlas de EPS. Mientras que la
combustin del gas natural en la etapa de produccin de los vasos, causa el mayor impacto en las
categoras de Potencial de Calentamiento Global (PCG) y potencial de Toxicidad Humana (PTH). La
mayora del Potencial de Destruccin de la Capa de Ozono (PDCO) es generado durante la
extraccin y transporte del gas natural utilizado en la produccin. Las etapas de distribucin y fin
de vida son las que menos contribuyen a los potenciales de impacto.

44
ACV de vasos desechables en Mxico. EPS y papel plastificado.

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 11. EICV de vasos EPS.

45

PEcA Potencial de Ecotoxicidad en Agua dulce


Potencial de Ecotoxicidad Terrestre

La Tabla 14 muestra el porcentaje de contribucin de cada etapa del ciclo de vida para cada
impacto potencial.

Impacto potencial

Tabla 14. EICV de vasos EPS (1,600,000,000 piezas).


Materias primas Produccin Distribucin Fin de vida

Total

PRRA
(kg Sb eq)

213,632

199,489

2,792

325

416,238

51.3%

47.9%

0.7%

0.1%

100%

PA
(kg SO2 eq)

59,374

58,823

1,162

186

119,546

49.7%

49.2%

1.0%

0.2%

100%

PEu
(kg PO4 eq)

6,269

2,275

207

38

8,789

71.3%

25.9%

2.4%

0.4%

100%

18,300,984

22,715,103

391,820

46,127

41,454,033

44.1%

54.8%

0.9%

0.1%

100%

PDCO
(kg CFC-11 eq)

0.5240

2.7145

0.0617

0.0069

3.3071

15.8%

82.1%

1.9%

0.2%

100%

PTH
(kg 1,4, DB eq)

2,662,648

3,011,620

71,328

7,676

5,753,272

46.3%

52.3%

1.2%

0.1%

100%

PEcA
(kg 1,4, DB eq)

672,072

89,190

15,812

1,420

778,493

86.3%

11.5%

2.0%

0.2%

100%

PEcT
(kg 1,4, DB eq)

17,352

8,407

835

80

26,675

65.0%

31.5%

3.1%

0.3%

100%

3,648

3,157

48

6,861

53.2%

46.0%

0.7%

0.1%

100%

PCG
(kg CO2 eq)

PFOF
(kg C2H4 eq)

46
ACV de vasos desechables en Mxico. EPS y papel plastificado.

La Figura 12 muestra la evaluacin de la etapa de materias primas. Se puede apreciar que la


produccin de perlas EPS contribuye en su mayora en siete de las nueve categoras analizadas. La
mayor contribucin para el Potencial de Reduccin de Recursos Abiticos (PRRA), el Potencial de
Acidificacin (PA), el Potencial de Eutrofizacin (PEu), el Potencial de Calentamiento Global (PCG),
el Potencial de Toxicidad Humana (PTH), el Potencial de Ecotoxicidad en Agua dulce (PEcA) y el
Potencial de Formacin de Oxidantes Fotoqumicos (PFOF) es causado por las emisiones y residuos
generados en la produccin del estireno, el cual es la materia prima principal para la fabricacin de
las perlas. Mientras que el mayor impacto en el Potencial de Destruccin de la Capa de Ozono
(PDCO) y el Potencial de Ecotoxicidad Terrestre (PEcT) es causado por la extraccin del petrleo
para los combustibles requeridos en el transporte del material de empaque. Adems, se observa
que el transporte de las perlas EPS generan el menor impacto potencial en la etapa de materias
primas para todas las categoras analizadas.

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono PEcT

PEcA

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

Potencial de Formacin de Oxidantes Fotoqumicos

PFOF

Potencial de Ecotoxicidad en Agua dulce

Figura 12. Evaluacin de la etapa de materias primas de vasos EPS.

47

La Figura 13 muestra la evaluacin de la etapa de produccin. Se puede apreciar que el uso de gas
natural genera el mayor impacto en siete de las nueve categoras analizadas. La mayor
contribucin en el Potencial de Reduccin de Recursos Abiticos (PRRA) es provocada por la
extraccin del gas. El mayor impacto en el Potencial de Eutrofizacin (PEu), el Potencial de
Calentamiento Global (PCG) y el Potencial de Toxicidad Humana (PTH) se genera por la quema del
combustible durante la produccin del vaso, lo cual tambin contribuye al Potencial de Formacin
de Oxidantes Fotoqumicos (PFOF). Adems, la extraccin y transporte del gas natural producen la
mayor contribucin al Potencial de Destruccin de la Capa de Ozono (PDCO). En cuanto al
Potencial de Ecotoxicidad en Agua dulce (PEcA) y al Potencial de Ecotoxicidad Terrestre (PEcT), la
disposicin de residuos generados durante la obtencin del combustible provocan el mayor
impacto. Mientras que la mayor contribucin al Potencial de Acidificacin (PA) y al Potencial de
Formacin de Oxidantes Fotoqumicos (PFOF) se debe a la generacin de energa elctrica
principalmente. En la Figura 13, otros, incluye los residuos slidos y emisiones al agua generados
durante la produccin del vaso. Este rubro como el de consumo de agua provocan el menor
impacto en la etapa de produccin para las categoras analizadas.

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono PEcT

PEcA

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

Potencial de Formacin de Oxidantes Fotoqumicos

PFOF

Potencial de Ecotoxicidad en Agua dulce

Figura 13. Evaluacin de la etapa de produccin de vasos EPS.

48
ACV de vasos desechables en Mxico. EPS y papel plastificado.

La Figura 14 muestra la evaluacin de la etapa de distribucin. sta muestra que el transporte


hacia la central de abasto genera el mayor impacto potencial en todas las categoras analizadas. El
Potencial de Reduccin de Recursos Abiticos (PRRA) y el Potencial de Destruccin de la Capa de
Ozono (PDCO) se deben principalmente a la extraccin de crudo para obtener combustibles. El
Potencial de Acidificacin (PA), el Potencial de Eutrofizacin (PEu), el Potencial de Calentamiento
Global (PCG) y el Potencial de Formacin de Oxidantes Fotoqumicos (PFOF) son provocados por la
quema de combustible durante la operacin de los vehculos. El Potencial de Toxicidad Humana
(PTH), el Potencial de Ecotoxicidad en Agua Dulce (PEcA) y el Potencial de Ecotoxicidad Terrestre
(PEcT) se deben a la manufactura de los vehculos empleados en la distribucin.

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Figura 14. Evaluacin de la etapa de distribucin de vasos EPS.

49

La Figura 15 muestra la evaluacin de la etapa de fin de vida. Se puede observar que el transporte
del material de empaque al fin de vida (bolsa a relleno sanitario y caja a reciclaje) genera el mayor
impacto en seis de las nueve categoras analizadas. La mayor contribucin en el Potencial de
Reduccin de Recursos Abiticos (PRRA) y el Potencial de Destruccin de la Capa de Ozono (PDCO)
se debe a la extraccin de crudo para el combustible requerido. El mayor impacto en el Potencial
de Calentamiento Global (PCG) se debe a la quema de combustible durante la operacin de los
vehculos. El mayor impacto en el Potencial de Toxicidad Humana (PTH), el Potencial de
Ecotoxicidad en Agua dulce (PEcA) y el Potencial de Ecotoxicidad Terrestre (PEcT) es causado por
las emisiones generadas en la obtencin del combustible. Mientras que la mayor contribucin en
el Potencial de Acidificacin (PA), el Potencial de Eutrofizacin (PEu) y el Potencial de Formacin
de Oxidantes Fotoqumicos (PFOF) se deben a la operacin de maquinaria para la disposicin del
vaso en el relleno sanitario.

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Figura 15. Evaluacin de la etapa de fin de vida para vasos EPS.

50
ACV de vasos desechables en Mxico. EPS y papel plastificado.

5.3.2 EICV de los vasos de papel plastificado con PE


La Figura 16 muestra el EICV de vasos de papel plastificado. Se observa que la etapa de obtencin
de materias primas genera mayor impacto potencial en todas las categoras analizadas, el cual se
debe la produccin del SBB laminado. Las etapas de produccin y distribucin son las que
contribuyen menos al impacto potencial de los vasos de papel plastificado. El impacto potencial de
la etapa de manufactura del vaso se debe al consumo de energa elctrica; mientras que el de la
etapa de distribucin corresponde al transporte del vaso desde la planta productiva a la central de
abasto. Se aprecia que la etapa de fin de vida tiene una contribucin importante en las categoras
de Potencial de Calentamiento Global (PCG) y de Potencial de Formacin de Oxidantes
Fotoqumicos (PFOF).

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Figura 16. EICV de vasos de papel plastificado.

51

En la Tabla 15 se muestra el porcentaje de contribucin.

Tabla 15. EICV de vasos de papel plastificado (1,600,000,000 pizas).


Impacto potencial Materias primas Produccin
Distribucin
Fin de vida

Total

PRRA
(kg Sb eq)

277,479

16,726

4,188

297

298,689

92.9%

5.6%

1.4%

0.1%

100%

PA
(kg SO2 eq)

179,974

25,552

2,040

335

207,901

86.6%

12.3%

1.0%

0.2%

100%

PEu
(kg PO4 eq)

34,030

378

388

211

35,007

97.2%

1.1%

1.1%

0.6%

100%

PCG
(kg CO2 eq)

58,906,533

1,582,748

585,930

34,734,688

95,809,900

61.5%

1.7%

0.6%

36.3%

100%

PDCO
(kg CFC-11 eq)

2.5521

0.1625

0.0927

0.0052

2.8126

90.7%

5.8%

3.3%

0.2%

100%

PTH
(kg 1,4, DB eq)

11,150,779

153,226

107,127

13,536

11,424,669

97.6%

1.3%

0.9%

0.1%

100%

PEcA
(kg 1,4, DB eq)

2,438,439

8,143

23,595

617

2,470,795

98.7%

0.3%

1.0%

0.0%

100%

PEcT
(kg 1,4, DB eq)

176,213

712

1,247

29

178,201

98.9%

0.4%

0.7%

0.0%

100%

8,791

1,042

80

8,259

18,172

48.4%

5.7%

0.4%

45.5%

100%

PFOF
(kg C2H4 eq)

52
ACV de vasos desechables en Mxico. EPS y papel plastificado.

La Figura 17 muestra la evaluacin de la etapa de materias primas. Se aprecia que la produccin


del SBB laminado genera el mayor impacto potencial en todas las categoras analizadas. La mayor
contribucin al Potencial de Reduccin de Recursos Abiticos (PRRA) se debe a la obtencin de
combustibles para la produccin del SBB. El mayor impacto en el Potencial de Acidificacin (PA), el
Potencial de Eutrofizacin (PEu), el Potencial de Toxicidad Humana (PTH) y el Potencial de
Ecotoxicidad en Agua dulce (PEcA) es causado por las emisiones al aire, descargas de agua
residual y la obtencin de la pulpa en la fabricacin del SBB. La mayor contribucin al Potencial de
Calentamiento Global (PCG) y al Potencial de Formacin de Oxidantes Fotoqumicos (PFOF) se
debe a las emisiones al aire y el consumo de electricidad para la fabricacin del SBB. El mayor
impacto en el Potencial de Destruccin de la Capa de Ozono (PDCO) corresponde a la extraccin
de crudo para los combustibles requeridos en la fabricacin del papel. En cuanto al Potencial de
Ecotoxicidad Terrestre (PEcT), el mayor impacto proviene de los residuos slidos generados en la
produccin del SBB. Se observa que el transporte del SBB ocupa el segundo lugar en cuanto a
contribucin al impacto potencial, seguido de la manufactura del material de empaque para los
vasos; finalmente, el transporte de ste ltimo representa el menor impacto de la etapa de
obtencin de materias primas en todas las categoras analizadas

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Figura 17. Evaluacin de la etapa de obtencin de materias primas para vasos de papel laminado.

53

La Figura 18 muestra la evaluacin de la etapa de produccin. Se aprecia que la generacin y


consumo de electricidad para la manufactura de vasos ocasiona el mayor impacto potencial en
todas las categoras analizadas. La mayor contribucin al Potencial de Reduccin de Recursos
Abiticos (PRRA) y al Potencial de Toxicidad Humana (PTH) se debe a la extraccin de crudo para
obtener los combustibles necesarios para generar electricidad. El mayor impacto en el Potencial
de Acidificacin (PA), el Potencial de Eutrofizacin (PEu), el Potencial de Calentamiento Global
(PCG), el Potencial de Ecotoxicidad en Agua dulce (PEcA), el Potencial de Ecotoxicidad Terrestre
(PEcT) y el Potencial de Formacin de Oxidantes Fotoqumicos (PFOF) se debe a la quema de
carbn y gas natural para la generacin de electricidad. El Potencial de Destruccin de la Capa de
Ozono (PDCO) se debe al transporte de gas natural a los sitios de generacin de energa. Se
observa tambin que la energa para el empaque y el transporte de residuos representan el menor
impacto de la etapa de produccin en todas las categoras analizadas.

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Figura 18. Evaluacin de la etapa de produccin para vasos de papel plastificado.

54
ACV de vasos desechables en Mxico. EPS y papel plastificado.

La Figura 19 muestra la evaluacin de la etapa de distribucin. Se muestra que el transporte hacia


la central de abasto genera el mayor impacto potencial de todas las categoras analizadas. El
Potencial de Reduccin de Recursos Abiticos (PRRA) y el Potencial de Destruccin de la Capa de
Ozono (PDCO) se deben principalmente a la extraccin de crudo para obtener combustibles. El
Potencial de Acidificacin (PA), el Potencial de Eutrofizacin (PEu), el Potencial de Calentamiento
Global (PCG) y el Potencial de Formacin de Oxidantes Fotoqumicos (PFOF) son causados por la
quema de combustible durante la operacin de los vehculos. El Potencial de Toxicidad Humana
(PTH), el Potencial de Ecotoxicidad en Agua dulce (PEcA) y el Potencial de Ecotoxicidad Terrestre
(PEcT) se deben a la manufactura de los vehculos empleados en la distribucin.

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Figura 19. Evaluacin de la etapa de distribucin de vasos de papel plastificado.

55

La Figura 20 muestra la evaluacin de la etapa de fin de vida. Se muestra que el SBB del vaso en el
relleno sanitario genera el mayor impacto potencial en seis de las nueve categoras analizadas. El
mayor impacto en el Potencial de Reduccin de Recursos Abiticos (PRRA) y el Potencial de
Destruccin de la Capa de Ozono (PDCO) se debe principalmente a la extraccin de crudo para
obtener los combustibles necesarios en la operacin del relleno sanitario. La mayor contribucin al
Potencial de Acidificacin (PA) es provocada por la quema de combustibles para operar
maquinaria en el relleno sanitario. El mayor impacto del Potencial de Eutrofizacin (PEu), el
Potencial de Calentamiento Global (PCG), el Potencial de Toxicidad Humana (PTH) y el Potencial
de Formacin de Oxidantes Fotoqumicos (PFOF) es generado por las emisiones del vaso en el
relleno sanitario. Mientras que la mayor contribucin del Potencial de Ecotoxicidad en Agua dulce
(PEcA) y el Potencial de Ecotoxicidad Terrestre (PEcT) se deben al transporte del vaso hacia el sitio
de disposicin. Tambin se observa que el fin de vida de la pelcula de PE del vaso, el material de
empaque, as como su transporte generan el menor impacto de esta etapa del ciclo de vida en
todas las categoras analizadas.

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Figura 20. Evaluacin de la etapa de fin de vida de vasos de papel plastificado.

56
ACV de vasos desechables en Mxico. EPS y papel plastificado.

5.3.3 EICV de los vasos de EPS y de papel plastificado con PE


La Figura 21 presenta la EICV de los vasos analizados en el estudio. Se observa que los vasos de
papel plastificado tienen mayor impacto potencial en siete de las nueve categoras analizadas, el
cual es generado por la fabricacin del SBB laminado. Los vasos de EPS generan mayor impacto en
el Potencial de Reduccin de Recursos Abiticos (PRRA), causado por la obtencin del estireno
para la produccin de perlas de EPS, y en el Potencial de Destruccin de la Capa de Ozono (PDCO),
debido a la extraccin y transporte del gas natural usado en la manufactura del vaso.

PRRA

Potencial de Reduccin de Recursos Abiticos PCG

Potencial de Calentamiento Global

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO

Potencial de Destruccin de la Capa de Ozono

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

Potencial de Toxicidad Humana

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Figura 21. EICV para vasos EPS y papel plastificado.

57

Tabla 16. EICV para vasos EPS y papel plastificado (1,600,000,000 piezas).
Impacto potencial

Vasos EPS

Vasos papel plastificado

PRRA (kg Sb eq)

416,238

298,689

PA (kg SO2 eq)

119,546

207,901

Peu (kg PO4 eq)

8,789

35,007

PCG (kg CO2 eq)

41,454,033

95,809,900

3.3071

2.8126

5,753,272

11,424,669

PEcA (kg 1,4, DB eq)

778,493

2,470,795

PEcT (kg 1,4, DB eq)

26,675

178,201

6,861

18,172

PDCO (kg CFC-11 eq)


PTH (kg 1,4, DB eq)

PFOF (kg C2H4 eq)

58
ACV de vasos desechables en Mxico. EPS y papel plastificado.

6. Interpretacin

En este captulo se analizan los resultados obtenidos en la EICV, para llegar a recomendaciones y
argumentos de decisin entendibles, completos y acordes con el objetivo y alcance del estudio. Se
muestra el anlisis de sensibilidad para el peso de ambos vasos, el consumo de gas natural y
energa elctrica; as como el porcentaje de vasos llevados a relleno sanitario. Finalmente, se
presentan los resultados del anlisis de incertidumbre.

59

6.1 Resumen de resultados


En la Figura 22 se muestran los principales resultados de la EICV. Se observa que los vasos de papel
plastificado presentan mayor impacto potencial en siete de las nueve categoras analizadas.

Impacto Potencial

Vasos de EPS

Vasos de papel plastificado

PRRA (kg Sb eq)

416,238

298,689

PA (kg SO2 eq)

119,546

207,901

Peu (kg PO4 eq)

8,789

35,007

PCG (kg CO2 eq)

41,454,033

95,809,900

3.3071

2.8126

5,753,272

11,424,669

PEcA (kg 1,4, DB eq)

778,493

2,470,795

PEcT (kg 1,4, DB eq)

26,675

178,201

6,861

18,172

PDCO (kg CFC-11 eq)


PTH (kg 1,4, DB eq)

POCP (kg C2H4 eq)


PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 22. Resumen de resultados de la EICV.

En la Tabla 17 se presenta el resumen de los principales hallazgos de la EICV para ambos tipos de
vasos.
Tabla 17. Principales hallazgos de los resultados de la EICV.

Etapa de ciclo Vasos de EPS


de vida
Pricipales hallazgos
Materias
En esta etapa se genera la mayor
primas
cantidad de impactos ambientales,
debido principalmente al proceso de
produccin del estireno.
Produccin
El uso de gas natural genera los
mayores impactos ambientales.
Distribucin
El transporte desde las plantas de
produccin a los mayoristas genera
el mayor impacto de la etapa de
distribucin,
debido
a
los
combustibles fsiles utilizados.
Fin de vida
Etapa que genera la menor cantidad
de impactos potenciales

Vasos de papel plastificado


Pricipales hallazgos
En esta etapa se genera la mayor
cantidad de impactos ambientales,
debido principalmente al proceso de
produccin de SBB.
El uso de electricidad genera los
mayores impactos ambientales.
El transporte desde las plantas de
produccin a los mayoristas genera el
mayor impacto de la etapa de
distribucin, debido a los combustibles
fsiles utilizados.
SBB en los rellenos sanitarios tiene
contribuciones
importantes
en
Potencial de Calentamiento global
(PCG) y Potencial de Formacin de
Oxidantes Fotoqumicos (PFOF)

60
ACV de vasos desechables en Mxico. EPS y papel plastificado.

6.2 Anlisis de sensibilidad


El anlisis de sensibilidad es importante para la interpretacin de resultados, ya que permite
observar de qu manera los resultados pueden variar, debido al cambio de las variables en
estudio.
Los resultados obtenidos en la EICV muestran que la obtencin de la perla de EPS y el consumo de
gas natural son los aspectos que contribuyen ms al impacto potencial de los vasos de dicho
material; en cuanto a los vasos de papel plastificado se observa que la produccin del SBB
laminado, el consumo de electricidad y la disposicin del papel en el relleno sanitario son los
aspectos con mayor impacto. De acuerdo a lo anterior, se realiz el anlisis de sensibilidad para el
peso de ambos tipos de vasos, el consumo de gas y electricidad; as como la cantidad de vasos que
se llevan al relleno sanitario.
En la Figura 23 se presenta el anlisis de sensibilidad variando el peso del vaso de EPS (entre 2.0 y
3.2 g), la lnea punteada indica el valor promedio considerado en el estudio (2.6 g) y la lnea color
naranja muestra el impacto del vaso de papel plastificado sin variacin en el peso (9.2 g). Los
lmites del intervalo se seleccionaron tomando como referencia la variacin en peso del vaso de
EPS (10 oz) en el mercado mexicano. Se aprecia que en caso de que el vaso pese menos de 2.0 g el
impacto en el Potencial de Reduccin de Recursos Abiticos (PRRA) sera menor al de los vasos de
papel, en cuanto al Potencial de Destruccin de la Capa de Ozono (PDCO) se observa que si el vaso
de EPS pesa menos de 2.2 el impacto es menor que el del otro tipo de vasos. Para el resto de las
categoras, el impacto potencial de los vasos de EPS permanece por debajo a lo largo de variacin
del parmetro.

En la Figura 24 se presenta el anlisis de sensibilidad variando el consumo de gas natural en la


produccin del vaso de EPS (entre 0.09 y 0.36 MJ/vaso), la lnea punteada indica el valor promedio
considerado en el estudio (0.18 MJ/vaso) y la lnea color naranja muestra el impacto del vaso de
papel plastificado sin variacin, como referencia. Los lmites del rango se seleccionaron de acuerdo
a la variacin del consumo de gas natural reportado en otras fuentes. Se aprecia que en caso de
que la produccin del vaso de EPS consuma menos de 0.09 MJ/vaso el impacto en el Potencial de
Reduccin de Recursos Abiticos (PRRA) sera menor al de los vasos de papel, en cuanto al
Potencial de Destruccin de la Capa de Ozono (PDCO) se observa que si se consumen menos de
61

0.13 MJ/vaso en la produccin de vasos de EPS, el impacto es menor que el del otro tipo de vasos.
Para el resto de las categoras, el impacto potencial de los vasos de EPS permanece por debajo del
de vasos de papel plastificado a lo largo de variacin del parmetro.

En la Figura 25 se presenta el anlisis de sensibilidad variando el peso del vaso de papel (entre 8.6
y 9.8 g), la lnea punteada indica el valor promedio considerado en el estudio (9.2 g) y la lnea color
azul muestra el impacto del vaso de EPS sin variacin en el peso (2.6 g). Los lmites del intervalo se
seleccionaron tomando como referencia la variacin en peso del vaso de EPS (10 oz) en el
mercado mexicano. Se aprecia que en todas las categoras, el impacto potencial de los vasos de
papel plastificado permanece por arriba a lo largo de variacin del parmetro.

En la Figura 26 se presenta el anlisis de sensibilidad variando el consumo de energa elctrica


para el laminado del SBB (entre 1.0 y 4.0 Wh/vaso), la lnea punteada indica el valor promedio
considerado en el estudio (2.0 Wh/vaso) y la lnea color azul muestra como referencia el impacto
del vaso de EPS sin variacin. Los lmites del intervalo se seleccionaron con el fin de verificar el
efecto en los resultados de la reduccin del 50% o el aumento del 100% del consumo elctrico. Se
aprecia que en todas las categoras, el impacto potencial de los vasos de papel plastificado
permanece por arriba a lo largo de variacin del parmetro.

En la Figura 27 se presenta el anlisis de sensibilidad variando el consumo elctrico en la


produccin del vaso papel (entre 5.0 y 20.0 Wh/vaso), la lnea punteada indica el valor promedio
considerado en el estudio (10.0 Wh/vaso) y la lnea color azul muestra el impacto del vaso de EPS
sin variacin, como referencia. Los lmites del intervalo se seleccionaron con el fin de verificar el
efecto en los resultados de la reduccin del 50% o el aumento del 100% del consumo elctrico. Se
aprecia que en caso de que se consuman ms de 16.25 Wh/vaso el impacto en el Potencial de
Reduccin de Recursos Abiticos (PRRA) sera mayor al de los vasos de EPS, en cuanto al Potencial
de Destruccin de la Capa de Ozono (PDCO) se observa que si se consumen ms de 12.5 Wh/vaso
el impacto es mayor que el del otro tipo de vasos. Para el resto de las categoras, el impacto
potencial de los vasos de papel plastificado permanece por arriba a lo largo de variacin del
parmetro.

62
ACV de vasos desechables en Mxico. EPS y papel plastificado.

En la Figura 28 se presenta el anlisis de sensibilidad variando el porcentaje de vasos que se llevan


a relleno sanitario y considerando que la cantidad que no llega a dicho sitio de disposicin se enva
a reciclaje. En el estudio se consider que el 99.5% de los vasos de EPS se llevan al relleno
sanitario, mientras que en el caso de los vasos de papel plastificado, se llevan a este sitio de
disposicin el 100% Se observa que en todas las categoras, el impacto potencial de los vasos de
papel plastificado permanece por arriba a lo largo de variacin del parmetro; sin embargo existe
una reduccin considerable del impacto potencial al disminuir la cantidad de vasos dispuestos en
relleno sanitario y aumentando la cantidad de vasos enviados a reciclaje.

63

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 23. Anlisis de sensibilidad del peso del vaso de EPS (1,600,000,000 piezas).

64
ACV de vasos desechables en Mxico. EPS y papel plastificado.

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 24. Anlisis de sensibilidad del consumo de gas natural en la produccin del vaso de EPS
(1,600,000,000 piezas).

65

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 25. Anlisis de sensibilidad del peso del vaso de papel plastificado (1,600,000,000 pieces).

66
ACV de vasos desechables en Mxico. EPS y papel plastificado.

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 26. Anlisis de sensibilidad del consumo elctrico en el proceso de laminado del SBB
(1,600,000,000 piezas)

67

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 27. Anlisis de sensibilidad del consumo elctrico en el proceso de manufactura del vaso de papel
(1,600,000,000 piezas).

68
ACV de vasos desechables en Mxico. EPS y papel plastificado.

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 28. Anlisis de sensibilidad del porcentaje de vasos de EPS y de papel que se disponen en relleno
sanitario (1,600,000,000 piezas).

69

6.3 Anlisis de incertidumbre


El anlisis de incertidumbre es un procedimiento sistemtico para encontrar y cuantificar la
incertidumbre introducida en los resultados de un anlisis de inventario del ciclo de vida, debida a
efectos acumulativos de la imprecisin del modelo, de las entradas y de la variabilidad de los datos
(IMNC, 2008).
La incertidumbre en los datos puede ser expresada como una desviacin estndar. El mtodo
estadstico de Monte Carlo se utiliza para evaluar la incertidumbre de los resultados de un ACV,
estableciendo un rango para los valores del impacto potencial calculado. En la Figura 29 se
presenta de manera grfica el resultado del anlisis de incertidumbre para los vasos de EPS, en la
cual el 100% representa el resultado promedio del anlisis y las lneas azules la magnitud del rango
de variacin del impacto calculado.

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 29. Anlisis de incertidumbre de los vasos de EPS.

En la Tabla 18 se observan los resultados numricos del anlisis de incertidumbre, en donde se


aprecia que el resultado promedio obtenido con el mtodo Monte Carlo es similar al de la EICV;
adems, el coeficiente de variacin para todas las categoras de impacto es menor al 10%.
70
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Tambin se registra el valor mnimo (2.50%) y mximo (97.50%) del rango para el impacto
potencial de cada categora con un intervalo de confianza del 95%.
Tabla 18. Anlisis de incertidumbre de los vasos de EPS (1,600,000,000 piezas).
Categora de impacto

Resultado
de la EICV

Promedio

Desviacin
estndar

Coeficiente
variacin

2.50%

97.50%

PRRA (kg Sb eq)

416,766

432,000

31,200

7.23%

396,000

453,000

PA (kg SO2 eq)

119,658

118,386

4,725

3.99%

112,922

121,801

PEu (kg PO4 eq)

8,807

8,720

492

5.64%

8,350

9,280

PCG (kg CO2 eq)

41,487,930

41,300,000

2,130,000

5.17%

40,000,000

43,700,000

3.3104

3.3100

0.1567

4.73%

3.1286

3.4234

5,778,247

5,759,416

261,010

4.53%

5,468,209

5,985,909

PEcA (kg 1,4, DB eq)

779,856

776,719

51,125

6.58%

725,831

827,607

PEcT (kg 1,4, DB eq)

26,759

26,675

1,190

4.46%

25,463

27,888

6,873

6,791

481

7.08%

6,274

7,226

PDCO (kg CFC-11 eq)


PTH (kg 1,4, DB eq)

PFOF (kg C2H4 eq)

En la Figura 30 se presenta de manera grfica el resultado del anlisis de incertidumbre para los
vasos de papel plastificado, en la cual el 100% representa el resultado promedio del anlisis y las
lneas naranja la magnitud del rango de variacin del impacto calculado.

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 30. Anlisis de incertidumbre de los vasos de papel plastificado.

71

En la Tabla 19 se observan los resultados numricos del anlisis de incertidumbre de los vasos de
papel, en donde se aprecia que el resultado promedio obtenido con el mtodo Monte Carlo es
similar al de la EICV; adems, el coeficiente de variacin para todas las categoras de impacto es
menor al 11%. Tambin se registra el valor mnimo (2.50%) y mximo (97.50%) del rango para el
impacto potencial de cada categora con un intervalo de confianza del 95%.
Tabla 19. Anlisis de incertidumbre de los vasos de papel plastificado (1,600,000,000 piezas).
Resultado de la
EICV

Promedio

Categora de
impacto

2.50%

PRRA (kg Sb eq)

298,689

299,625

265,000

31,590

10,5%

263,814

319,919

PA (kg SO2 eq)

207,901

205,972

196,000

10,347

5,02%

194,047

212,476

PEu (kg PO4 eq)

35,007

34,619

33,000

1,909

5,51%

32,476

36,013

PCG (kg CO2 eq)

95,809,900

94,400,000

93,700,000

2,680,000

2,84%

92,200,000

97,400,000

2.8126

2.8536

2.9000

0.1996

6,99%

2.6490

3.0479

PTH (kg 1,4, DB eq)

11,424,669

11,307,048

11,000,000

762,092

6,74%

10,538,608

12,075,488

PEcA (kg 1,4, DB eq)

2,470,795

2,468,799

2,500,000

245,989

9,96%

2,197,096

2,676,768

PEcT (kg 1,4, DB eq)

178,201

181,772

185,000

14,641

8,05%

168,385

197,272

18,172

19,500

20,300

1,850

9,49%

17,300

20,700

Categora de impacto

PDCO (kg CFC-11 eq)

PFOF (kg C2H4 eq)

Desviacin
estndar

Coeficiente
variacin

97.50%

Finalmente, la Figura 30 muestra el anlisis de incertidumbre para ambos tipos de vasos. Se


observa que es ms probable que el impacto potencial de los vasos de EPS sea menor en ocho
categoras de impacto; mientras que para el Potencial de Reduccin de Recursos Abiticos (PRRA)
es ms probable que los vasos de papel tengan un impacto menor.

72
ACV de vasos desechables en Mxico. EPS y papel plastificado.

PRRA Potencial de Reduccin de Recursos Abiticos

PCG

PEcA

Potencial de Ecotoxicidad en Agua dulce

PA

Potencial de Acidificacin

PDCO Potencial de Destruccin de la Capa de Ozono

Potencial de Calentamiento Global

PEcT

Potencial de Ecotoxicidad Terrestre

PEu

Potencial de Eutrofizacin

PTH

PFOF Potencial de Formacin de Oxidantes Fotoqumicos

Potencial de Toxicidad Humana

Figura 31. Anlisis de incertidumbre de los vasos de EPS y de papel plastificado.

6.4 Evaluacin
El objetivo del elemento de la evaluacin en la Interpretacin del ciclo de vida es establecer y
fortalecer la confianza y la fiabilidad de los resultados del ACV. Las siguientes tcnicas se
consideraron en el estudio:
Integridad: Toda la informacin relevante y los datos necesarios para la interpretacin estn
disponibles y completos.
Sensibilidad: los datos que presentan incertidumbre, como el peso de los vasos, consumo de gas
natural, consumo de energa elctrica y porcentaje de reciclaje en la etapa de fin de vida, no
afectan los resultados generales de la EICV.

El anlisis de sensibilidad se realiz sobre los parmetros clave, como cantidad de materia prima
(peso de los vasos), de combustible y de energa, as como reciclaje al final de la vida til; se llev a
cabo un anlisis de incertidumbre en el cual el coeficiente de variacin fue de menos del 11% en
todos los casos, lo que indica que es un modelo adecuado para ambos tipos de vasos.

73

Consistencia: Las suposiciones, la metodologa y los datos son consistentes con el objetivo y
alcance del estudio. La calidad de los datos es consistente a lo largo del ciclo de vida del sistema
producto y entre los diferentes productos analizados.

74
ACV de vasos desechables en Mxico. EPS y papel plastificado.

7. Conclusiones, limitaciones
y recomendacions
En este captulo se enuncian las conclusiones del estudio, las limitaciones relacionadas con la
interpretacin de resultados y las recomendaciones derivadas del anlisis.

75

Conclusiones

Vasos de EPS
La obtencin de materias primas es la etapa del ciclo de vida de los vasos de EPS que genera
mayor impacto potencial, lo cual se debe al proceso de produccin del estireno.
Dentro de la etapa de produccin del vaso de EPS, el uso de gas natural es lo que representa el
mayor impacto potencial.
El transporte de los vasos de EPS desde las plantas productivas hacia la central de abastos es lo
que genera el mayor impacto de la etapa de distribucin, lo cual se debe a los combustibles fsiles
requeridos para trasladar el producto.
El fin de vida de los vasos de EPS es la etapa del ciclo que genera menor impacto potencial.

Vasos de papel plastificado


En cuanto a los vasos de papel plastificado, la obtencin de materias primas es la etapa del ciclo
de vida que genera mayor impacto potencial, lo cual se debe al proceso de produccin del SBB.
Dentro de la etapa de produccin del vaso de papel plastificado, el uso de electricidad es lo que
representa el mayor impacto potencial.
El transporte de los vasos de papel plastificado desde la planta productiva hacia la central de
abastos es lo que genera el mayor impacto de la etapa de distribucin, lo cual se debe a los
combustibles fsiles requeridos para trasladar el producto.
El SBB en el relleno sanitario tiene contribuciones significativas en Potencial de Calentamiento
Global (PCG) y Potencial de Formacin de Oxidantes Fotoqumicos (PFOF).

En general el vaso de papel plastificado provoca mayor impacto potencial en siete de las nueve
categoras evaluadas. El vaso de EPS genera mayor impacto en el Potencial de Reduccin de
Recursos Abiticos (PRRA), debido a la obtencin de la perla de EPS y el Potencial de Destruccin
de la Capa de Ozono (PDCO), causado por la extraccin y transporte de gas natural usado en la
produccin del vaso.

Se observa que las conclusiones de este estudio de ACV son similares a las de otros estudios:

76
ACV de vasos desechables en Mxico. EPS y papel plastificado.

a. La conclusin de que ningn sistema tiene todas las ventajas ambientales sobre el otro
(VITO,2006; Vercalsteren, Spirinckx, & Geerken, 2010). En este estudio, ni los vasos de EPS
ni los de papel plastificado sobresalen en todas las categoras evaluadas con el mtodo
CML. Sin embargo, los vasos de EPS tienen menos impacto potencial en siete de las nueve
categoras analizadas
b. El importante rol que tienen los escenarios de fin de vida en los resultados (Horvath &
Chester,2009; Hkkinen & Vares, 2010). Considerando nicamente la categora de
calentamiento global, los resultados de este estudio muestran que si se destina menos
papel plastificado al relleno sanitario, se disminye el impacto en potencial de
calentamiento global.
c. La relevancia del consumo de agua y energa. Franklin Associates LTD (2011) evaluaron
productos para servir alimentos de espuma de poliestireno, basados en papel y de PLA.
Los resultados generales muestran que los productos de EPS usan mucho menos agua y
energa que las versiones de papel y de PLA. Este estudio muestra que el consumo de
energa en la etapa de produccion es mayor para los vasos de EPS. Sin embargo,
considerando todas las etapas, los vasos de papel plastificado requieren ms energa que
los vasos de EPS. En cuanto al agua, no hay consumo de sta en la etapa de produccin de
vasos de papel plastificado; sin embargo, al igual que con la energa, los vasos de papel
plastificado consumen mas agua a lo largo de todo su ciclo de vida.
Las limitaciones asociadas a la interpret acin de los resultados
Los resultados del ACV estn basados en un enfoque relativo, que indican los efectos ambientales
potenciales, y no predicen los impactos reales en categoras de puntos finales, lmites superiores o
mrgenes de seguridad o riesgos.
Las principales limitaciones asociadas a la interpretacin de los resultados residen en las
incertidumbres que se generan en ICV. En la Tabla 20 se presentan las limitaciones asociadas a la
incertidumbre en los modelos.

77

Tabla 20. Resumen de las limitaciones asociadas a la interpretacin

Etapa de ciclo de
vida
Materias primas

Produccin

Distribucin

Vasos de EPS
Limitaciones
El ICV de las perlas de EPS se
adapt a las condiciones de
Estados Unidos.
Los datos obtenidos para modelar
esta etapa presentan variaciones
en el consumo de combustibles,
por lo que se realiz un anlisis
de sensibilidad.
Se calcularon distancias promedio
a los principales lugares en las
reas consideradas.

Vasos de papel plastificado


Limitaciones
Los datos relacionados con la produccin
del SBB se obtuvieron de bases de datos
internacionales
Los datos se obtuvieron a un detalle
menor que para vasos de EPS, y algunos
fueron adaptados de la literatura.

Se calcularon distancias promedio a los


principales lugares en las reas
consideradas.

Recomendaciones
Despus de los hallazgos del presente estudio se recomienda ampliamente promover el reciclaje
para ambos tipos de vasos, de EPS y de papel plastificado.

78
ACV de vasos desechables en Mxico. EPS y papel plastificado.

8. Revisin crtica

79

1 de Julio del 2013


Juan Pablo Chargoy Amador
Centro de Anlisis de Ciclo de Vida y Diseo Sustentable (CADIS)
Calzada de los Jinetes 22-B, Colonia Las Arboledas, C.P. 54020 Tlalnepantla, Estado de Mxico
RE:

Panel de Revisin Crtica Aprobacin Final: Anlisis de Ciclo de Vida de vasos


desechables en Mxico. Poliestireno expandido y papel plastificado (Reporte para ANIQ,
2012) reporte revisado con comentarios del Panel de Revisin Crtica incluidos (pginas
77-92 versin en ingls)

Estimado Juan Pablo,


En nombre de nuestro Panel de Revisin Crtica (Luiz Alexandre Kulay, PhD, Escola Politecnia da
Universidade de Sao Paulo/experto en ACV; Claudia Pena, Presidenta de la Red Ibero-Americana
de ACV; y Mike Levy, Director de Asuntos de Ciclo de Vida en el American Chemistry Council/ACC
Plastics Division), estamos complacidos en ofrecerle nuestra aprobacin final en la revisin y
recomendaciones con respecto a la revisin crtica ISO del reporte mencionado anteriormente.
El Panel de Revisin Crtica ha revisado el reporte revisado inicialmente en Abril del 2013 el cual
incluye y aborda todos nuestros comentarios y sugerencias (como se indic en nuestros
Comentarios del Panel de Revisin Crtica del 18 de Marzo, 2013), incluyendo la transparencia en
los datos y respecto a abordar informacin industrial comercial confidencial (CBI siglas en ingls),
te damos nuestra aprobacin de que este reporte fue realizado de acuerdo a los requerimientos
de las normas ISO aplicables (14040/14044). Todas las conclusiones del estudio son coherentes y
apropiadas a los resultados del anlisis.
Una vez ms, agradece a tu equipo por realizar este estudio exhaustivo en vasos desechables.
Esperamos que haya encontrado nuestros comentarios constructivos en naturaleza, y el Panel
aprecia los cambios hechos en el reporte final.

Saludos cordiales,

Mike Levy, Presidente del Panel de Revisin Crtica


Dr. Luiz Kulay y Claudia Pena, miembros del Panel de Revisin Crtica

80
ACV de vasos desechables en Mxico. EPS y papel plastificado.

9. Anexos

81

El AHP es una metodologa de decisin multicriterio discreta que se utiliza para la toma de
decisiones complejas, mediante un procedimiento de evaluacin por pares, permite medir el
acuerdo relativo entre decisores y la uniformidad de las alternativas en la toma de decisiones en
grupo.
El mtodo de AHP ha sido utilizado para validar las decisiones en diferentes etapas del ciclo de
vida, pero principalmente en la etapa de ponderacin de las categoras de impacto (Swarr, et.al,
2005). La combinacin de las dos metodologas se ha aplicado con xito en estudios de ACV que
comparan tecnologas de gestin de residuos slidos, (Shoou, 2005) (Fujita, 2005) (Ni, et.al, 2002).
La productividad verde se plantea mediante una combinacin del mtodo AHP y el ACV, donde
diferentes alternativas tecnolgicas se evalan a partir de su desempeo en la evaluacin de ciclo
de vida (Pineda, 2005), en Estados Unidos, el valor de las decisiones de negocios por medio del
AHP tambin se vinculan con ACV (Reisdorph, 2008) y las estrategias de diseo se ven fortalecidas
con este binomio (Heo, 2002). Varios estudios de ACV se han apoyado en el AHP para sustentar la
toma de decisiones mediante anlisis de sensibilidad, (Swarr, et.al, 2005, Shoenoung, 2009).
En el contexto de este estudio, el AHP se utiliza para documentar y validar la toma de decisiones
en la etapa de definicin del objetivo y alcance, principalmente para la unidad funcional, pero
tambin sirve de base para la evaluacin de sensibilidad e incertidumbre de opciones al fin de vida
y su influencia en los diferentes problemas ambientales (categoras de impacto) seleccionadas
para este estudio.
En el marco del AHP, el modelo de decisin se estructura definiendo objetivos que consideren
varias facetas de la meta del problema, de ser necesario subobjetivos que describen ms a detalle
cada uno de los objetivos y finalmente alternativas para cumplir con los objetivos. El mtodo de
evaluacin utilizado en AHP, y descrito ms adelante, facilita la identificacin de los criterios de
decisin y las conclusiones reduciendo significativamente el ciclo de decisin.
Una vez definido el modelo de decisin la metodologa requiere que los diferentes objetivos sean
priorizados con la finalidad de determinar su importancia relativa entre las funciones. Los expertos
deben evaluar entonces en comparaciones uno a uno cada una de las funciones, en el caso de
existir subfunciones se realiza el mismo tipo de comparacin entre las subfunciones de una
funcin.
Con las evaluaciones uno a uno se llena la matriz de evaluaciones MSk, donde el trmino
obtiene de la evaluacin de la funcin 1 con respecto a la 2 en la siguiente escala:

82
ACV de vasos desechables en Mxico. EPS y papel plastificado.

u k ,1
uk , 2

se

ui,j = 1 si ambas funciones tienen la misma importancia


ui,j = 3 si la funcin i es moderadamente ms importante que la j
ui,j = 5 si la funcin i es fuertemente ms importante que la j
y as sucesivamente hasta llegar al grado extremadamente con un valor de 9
el trmino

uk , 2
u k ,1

es siempre el inverso de

u k ,1
uk , 2

, de tal manera que si la funcin j fuera

moderadamente ms importante que la i, entonces ui,j =1/3.


Entonces de forma general la matriz de evaluacin para un solo experto queda de la manera
siguiente:

Donde

u k ,1
uk , 2

se define como la importancia relativa dada por el experto k, de la funcin 1 contra la

funcin 2.
La metodologa de AHP se basa en el clculo de vectores de Eigen (Satty, 1994) de la matriz de
evaluacin para determinar la importancia relativa entre las funciones. Posteriormente debe
integrarse los resultados de expertos, lo cual se obtiene a partir de los vectores Eigen de cada
evaluacin individual.
Bibliografa
Fujita, S., Tamura, H. (2005). A multiagent decision support method for selecting way to disose
kitchen garbage, ISAHP 2005.
Heo. (2002) Methodology for prioritizing DfE Strategies based o LCA and AHP, Master Thesis,
Department of Environmental Engineering, Graduate School of Ajou University, Korea
Ni, J., Wei, H. y Liu, Y.(2002). Life cycle analysis of sanitary landfill and incineration of municipal
solid waste, Non Ferrous Society of China, 1003 - 6326 (2002) 03 - 0545 04
Pineda, R. y Culaba, A. (2007). Developing an Expert System for GP implementation, Asian
Productivity Organization, 2007.
Satty, T. (1994). Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy
Process, RWS.
Shoenoung, J. (2009). Green Electronics LCA, Symposium: The Greening of Electronics in a Global
Economy.
83

Shoou-Yuh, C. y Bindiganaville K. (2005). LCA and Multicriteria Evaluation of Solid Waste Recycling,
Environmental Informatics Archives, Volume 3 (2005), 118 129
Swarr, T., Hunkeler, D. y Margni, M. (2005). Moving from Life Cycle Analysis to LifeCycle Action,
2005.
Reisdorph, D. (2008). LCA in Business Decision Support Systems, Calculating Consequences Beyond
the Box. American Center for Life Cycle Assessment.

84
ACV de vasos desechables en Mxico. EPS y papel plastificado.

Life Cycle Assessment of disposable


cups in Mexico.
Expanded polystyrene (EPS) and coated paper

September 2013

Elaborated by (practicioner)
Center for Life Cycle Assessment and Sustainable Design (CADIS)
Calzada de los Jinetes 22-B, Colonia Las Arboledas, C.P. 54020 Tlalnepantla, Estado de Mxico
Tel/Fax: +52 55 26 02 96 94
www.centroacv.mx
Study concluded: December 2012
Report after critical review: June 2013
Authors:
Juan Pablo Chargoy Amador
Elisa Garca Fiol
Amalia Sojo Bentez
Nydia Suppen Reynaga
Dissemination
Private
Keywords
Disposable cups, EPS, coated paper, life cycle assessment (LCA)
Requested by (commissioner)
National Association of Chemical Industry (ANIQ)
ngel Urraza 505, Col. Del Valle, C.P. 03100, Mxico, D.F.
52 30 51 00
http://www.aniq.org.mx/
CADIS Director and internal reviewer:
Nydia Suppen Reynaga
Critica review panel coordinator:
Mike Levy
Critical reviewers:
Claudia Pea
Luiz Kulay

Content

Figure index

iv

Table index

Acronyms

vi

1. Background and Introduction

1.1 Background

1.1.1 Description and current status of disposable cups market in Mexico

1.1.2 Laws and regulations EPS packaging initiatives

1.2 The Life Cycle Assessment (LCA) methodology

1.3 LCA studies of disposable cups

1.4 Introduction to the LCA study of disposable cups in Mexico

2. Goal of the study

10

2.1 Goal of the LCA study

11

2.2 Intended application, audience and reasons for carrying out the study

11

3. Scope of the study

12

3.1 Session with ANIQ and stakeholders for the definition of the scope of the LCA study

13

3.2 Product system and system boundaries

15

3.3 Data and cut-off criteria

17

3.4 Functions, functional unit and reference flow

18

3.5 Life cycle impact assessment and types of impacts

19

3.6 Critical review considerations

19

4. Life Cycle Inventory Analysis (LCI)

21

4.1 Inventory analysis data collection

22

4.2 Qualitative and quantitative description of unit processes

23

4.2.1 EPS cups description

23

4.2.2 EPS cups LCI

27

ii
LCA of disposable cups in Mexico. EPS and coated paper.

4.2.3 Coated paper cups description

30

4.2.4 Coated paper cups LCI

32

4.3 Sources of the data

34

4.4 Data calculation

35

4.4.1 Assumptions

35

4.4.2 Limitations

35

4.5 Validation of data

35

4.5.1 Data quality analysis

36

4.5.2 Treatment of missing data

39

4.6 Allocation

39

5. Life Cycle Impact Assesment (LCIA)

40

5.1 Impact assessmnet method

41

5.2 Impact categories analyzed

42

5.3 Discussion of Results

44

5.3.1 EPS cups LCIA

44

5.3.2 Coated paper cups LCIA

51

5.3.3 EPS cups and coated paper cups LCIA

57

6. Interpretation

59

6.1 Summary of results

60

6.2 Sensitivity analysis

60

6.3 Uncertainty analysis

69

6.4 Evaluation

72

7. Conclusions, limitations and recommendations

74

8. Critical review

77

9. Annexes

94

Annex A. Analytic Hierarchy Process

95

Bibliografa

97

iii

Figure index
Figure 1. Diagram of a product life cycle. ...................................................................................................... 5
Figure 2. Phases of a Life Cycle Assessment (IMNC, 2008). ............................................................................ 5
Figure 3. Selection of important considerations for study results of AHP analysis...................................... 15
Figure 4. Product system: EPS cup............................................................................................................... 16
Figure 5. Product system: coated paper cup................................................................................................ 17
Figure 6. Life cycle stages of EPS cups. ........................................................................................................ 24
Figure 7. Flow diagram of the EPS beads production process....................................................................... 25
Figure 8. Process flow diagram of EPS production cups. .............................................................................. 26
Figure 9. Life cycle stages of coated paper cup. ........................................................................................... 30
Figure 10. Flow diagram of the production of coated paper cups. ............................................................... 31
Figure 11. EPS cups LCIA. ............................................................................................................................ 45
Figure 12. Evaluation of raw materials stage of EPS cup .............................................................................. 47
Figure 13. Evaluation of production stage of EPS cups. ................................................................................ 48
Figure 14. Evaluation of distribution stage of EPS cups. ............................................................................... 49
Figure 15. Evaluation of end of life stage of EPS cups .................................................................................. 50
Figure 16. Coated paper cups LCIA. ............................................................................................................. 51
Figure 17. Evaluation of the raw material stage of the coated paper cups................................................... 53
Figure 18. Evaluation of the production stage of the coated paper cups. ..................................................... 54
Figure 19. Evaluation of the distribution stage of the coated paper cups. .................................................... 55
Figure 20. Evaluation of the end of life stage of the coated paper cups. ...................................................... 56
Figure 21. EPS cups and coated paper cups LCIA. ........................................................................................ 57
Figure 22. Summary of LCIA results. ............................................................................................................ 60
Figure 23. Sensitivity analysis for EPS cup weight (1,600,000,000 pieces). ................................................... 63
Figure 24. Sensitivity analysis for natural gas consumption in EPS cups production (1,600,000,000 pieces). . 64
Figure 25. Sensitivity analysis for paper cup weight (1,600,000,000 pieces). ................................................ 65
Figure 26. Sensitivity analysis for electricity consumption in SBB coating (1,600,000,000 pieces). ................ 66
Figure 27. Sensitivity analysis for electricity consumption in coated paper cups production (1,600,000,000
pieces). .............................................................................................................................................. 67
Figure 28. Sensitivity analysis of EPS and paper cups percentage disposed in landfill (1,600,000,000 pieces).
.......................................................................................................................................................... 68
Figure 29. EPS cups uncertainty analysis. .................................................................................................... 69
Figure 30. Coated paper cups uncertainty analysis. ..................................................................................... 70
Figure 31. Uncertainty analysis of both EPS and coated paper cups. ............................................................ 72

iv
LCA of disposable cups in Mexico. EPS and coated paper.

Table index

Table 1. Variety of disposable cups in Mexico. .............................................................................................. 3


Table 2. LCA and LCI studies of disposable cups............................................................................................. 7
Table 3. Important considerations of data for the LCA study (decision model). ............................................ 14
Table 4. Average LCI for the production of EPS cups. ................................................................................... 28
Table 5. Average LCI for the distribution of EPS cups. .................................................................................. 29
Table 6. Average LCI for end of life stage of EPS cups. ................................................................................. 29
Table 7. Average LCI for transportation required for end of life stage of EPS cups........................................ 29
Table 8. LCI for the production of coated paper cups. ................................................................................. 32
Table 9. Average LCI for the distribution of coated paper cups. ................................................................... 33
Table 10. LCI for the end of life of coated paper cups. ................................................................................. 33
Table 11. LCI for end of life transportation of coated paper cups. ................................................................ 33
Table 12. Data quality analysis summary. .................................................................................................... 38
Table 13. Impact categories analyzed in the study (Goedkoop, Oele, Schryver, & Vieira, 2008). ................... 43
Table 14. EPS cups LCIA (1,600,000,000 pieces)........................................................................................... 46
Table 15. Coated paper cups LCIA (1,600,000,000 pieces). .......................................................................... 52
Table 16. EPS cups and coated paper cups LCIA (1,600,000,000 pieces). ...................................................... 58
Table 17. Key findings of LCIA results. ......................................................................................................... 60
Table 18. Uncertainty analysis results of EPS cups (1,600,000,000 pieces). .................................................. 70
Table 19. Uncertainty analysis results of coated paper cups (1,600,000,000 pieces). ................................... 71
Table 20. Summary of limitations associated with interpretation. ............................................................... 76

Acronyms
ACC - American Chemistry Council
ADP - Abiotic Depletion Potential
AP - Acidification Potential
LCA - Life Cycle Analysis
AHP - Analytic Hierarchy Process
ANIQ Asociacin Nacional de la Industria Qumica (National Association of the Chemical Industry)
CADIS Centro de Anlisis de Ciclo de Vida y Diseo Sustentable (Center for Life Cycle Assessment and Sustainable Design)
LCIA - Impact Assessment Life Cycle
EPS Expanded Polystyrene
EuP - Eutrophication Potential
GPPS General Purpouse Polystyrene
GWP - Global Warming Potentail
HIPS High Impact Polystyrene
HTP - Human Toxicity Potential
LCI - Life Cycle Inventory
INEGI - Instituto Nacional de Estadstica, Geografa e Informtica (National Institute of Statistics, Geography and Informatics)
ODP - Ozone layer Destruction Potential
PC Polycarbonate
PE Polyethylene
LDPE - Low Density Polyethylene
PET - Poly(ethylene terephthalate)
PLA - Poly(lactic acid)
POCP - Photochemical Ozone Creation Potential
PP Polypropylene
PS Polystyrene
SAM Sesin de Anlisis Multicriterio (Multicriteria Analysis Session)
SEMARNAT - Secretara de Medio Ambiente y Recursos Naturales (Secretariat of Environment and Natural Resources)
SSB - Solid Bleach Board
TEcP - Terrestrial Ecotoxicity Potential
WEcTP - Fresh Water Ecotoxicity Potential
ZMG Zona Metropolitana de Guadalajara (Guadalajara Metropolitan Area)
ZMVM Zona Metropolitana del Valle de Mxico (Metropolitan Area of Mexico)

vi
LCA of disposable cups in Mexico. EPS and coated paper.

1. Background and Introduction

This chapter presents a general background of the plastics industry in the context of
disposables production, as well as the law initiatives related to these products. It also
presents an introduction to the LCA study and a summary of the most recent LCA studies
food containers, including disposable cups. An introduction to the LCA study of disposable
cups in Mexico is provided.

1.1 Background
In 2011, the plastic industry grew 6% in Mexico, with local consumption being of 5.3 million tons;
equivalent to 2% of global consumption. In Mxico, the plastic industry aims to the development
of innovative products that offer advantages over traditional materials (Conde, 2012); in contrast,
plastics have been subject to different regulations that aim to the minimization of environmental
impacts, from conditions in their manufacturing to prohibition or substitution for biodegradable
alternatives. However, knowing the various environmental impacts over the life cycle of the
products and materials is important before implementing a regulation on the matter. Thus, the
National Association of Chemical Industry (ANIQ) commissioned an LCA study of disposable cups of
Expanded Polystyrene (EPS) and coated paper to Centre for Life Cycle Assessment and Sustainable
Design (CADIS). This section describes the current market and legislative conditions of disposable
cups in Mexico as important background to the LCA study.

1.1.1 Description and current status of disposable cups market in Mexico


During 2011, 9% of plastics consumed in Mexico were single use products, such as disposable
cups (Conde, 2012). These products are generally used only once for containing and transporting
beverages at public events or private gatherings. On the market there are a large number of cups,
they are categorized according to the material they are made from (Table 1).

2
LCA of disposable cups in Mexico. EPS and coated paper.

Table 1. Variety of disposable cups in Mexico.

Picture

Material

Characteristics

Beverage type

Polystyrene (PS)

Tough, translucent or
colored

Cold drinks (soda, juice,


flavored water)

Polyethylene
(PE)

Generally with color

Cold drinks (soda, juice,


flavored water)

Polypropylene
(PP)

Lightweight, durable, white


or colored

Primarily cold beverage


(soda, juice, flavored
water, alcohol)

Thermal

Mainly hot beverage


(atole, coffee), it is also
used for cold drinks
(soda, juice, flavored
water)

Poly(ethylene
terephthalate),
(PET)

Transparent, has no odor,


resistant.

Cold drinks (soda, juice,


flavored water, alcohol),
is
offered
as
an
alternative to glasses.

Coated paper

Paper cups with an inner


polyethylene film.

Hot drinks (coffee) and


cold drinks (soda, juice)

Poly(lactic acid),
PLA

Degrade in industrial
compost.

Cold drinks (soda, juice,


flavored water)

Expanded
polystyrene
(EPS), also
known as
unicel

Prepared by CADIS.

For this LCA study, the commissioner requested to evaluate EPS and coated paper cups only. In
Mexico, the highest sales of disposable cups used for containing and transporting hot and cold
beverages are in street stalls, juice outlets, cafeterias and ice cream parlors. There were no official
statistics available for paper cups market, as for EPS cups the national sales from 2005 to 2010,
show an important decrease from 8,310,382 thousand pieces to almost half (INEGI, 2010).

1.1.2 Laws and regulations EPS packaging initiatives


As mentioned above, various regulations have emerged around plastics, which aim to the
minimization of their environmental impact. This section will briefly describe the proposed laws or
amendments to existing laws, as well as areas of legal agreement regarding EPS products that
have been filed between 2009 and 2012 as researched by Muoz (Muoz, G. & Albarrn, F., 2012),
and are important reference to the LCA study.
Legislative Assembly of the Federal District
Amendments to the Commercial Establishments and Solid Waste Act of Federal District to prohibit
the use of products made with EPS for packaging and transportation of food. Initiative dismissed in
June 2010.
Congress Senate
Request to the Ministry of Environment and Natural Resources (SEMARNAT, Spanish acronym) to
prepare a report on the generation, use, processing, disposal and impact of EPS in Mexico, and
that the report will assess the relevance of the construction recycling plant. Area of agreement
approved in April 2012.
Congress. Chamber of Deputies
SEMARNAT is encouraged to develop programs to ensure the management and recycling. Area of
agreement approved in March 2011.
Initiatives in states of Mexico
In the state of Morelos, an initiative to prohibit the use of EPS items to all of the three levels of
government began but was dismissed in April 2011.

1.2 The Life Cycle Assessment (LCA) methodology


In Figure 1, the green area represents nature, and products are part of this system, are immersed
in it (product means any good or service). At each stage of the life cycle, matter and energy from

4
LCA of disposable cups in Mexico. EPS and coated paper.

nature (represented by light-green arrows) are usually extracted, and emissions to nature are
generated (illustrated with dark-green arrows). At the end of its life, some the materials may reenter the production stage, when these are properly disposed and recycled.

Figure 1. Diagram of a product life cycle.

A Life Cycle Assessment (LCA) identifies and quantifies the materials and energy used and
emissions and wastes generated at each stage of the life cycle of a product. LCA quantifies
systemically potential environmental impacts, for example, global warming or acidification
(Goedkoop, Oele, Schryver, & Vieira, 2008).
According to the NMX-SAA-14040-IMNC-2008 (ISO 14040:2006), LCA has four phases (Figure 2):
goal and scope definition, inventory analysis, life cycle impact assessment and interpretation, and
it is an iterative process (IMNC, 2008).

Figure 2. Phases of a Life Cycle Assessment (IMNC, 2008).

The scope (including the system boundary and level of detail) of an LCA, depends on the topic to
be covered and the intended use of the study. The depth and the breadth of LCA can differ
considerably depending on the goal of a particular study. (IMNC, 2008).
The inventory analysis is the second phase of an LCA. It is an inventory of inputs and outputs with
regards to the product system being studied. It involves collection of the data necessary to meet
the goal and scope defined for the study. (IMNC, 2008) Subsequently, the impact assessment is
the third phase, and it is an assessment of the potential environmental impacts associated with
the inventory (IMNC, 2008). The fourth phase of an LCA is the interpretation, in which the results
of the inventory analysis and the impact assessment related to the goal and scope of the study,
are summarized and discussed as a basis for conclusions, recommendations and decision-making
(IMNC, 2008)

1.3 LCA studies of disposable cups


As an important reference to the present study, below is a synthesis of nine LCA studies of
disposable cups (Table 2). For each study a description is included with: authors, year of
publication, functional unit, system boundaries, the impact categories analyzed and the most
important results.
The LCA studies presented in Table 2 analyzed the potential environmental impacts of several
types of food containers made of different materials. Some of them focused on comparing
reusable and disposable containers; others analyzed products made of resins and compared them
with corresponding degradable alternatives. On the other hand, some studies focused on
analyzing specific situations as small events and large-scale business activities, or even on the
function to contain certain types of beverages, such as soda and beer. Regarding impact categories
analyzed, some studies only provided information of inventory data such as energy consumption
and waste generation, although the vast majority assessed Global Warming Potential, those that
included more impact categories used the CML method.

6
LCA of disposable cups in Mexico. EPS and coated paper.

Table 2. LCA and LCI studies of disposable cups.


Title

Reusable vs.
disposable cups

Comparative
LCA of 4 types of
drinking
cups used at
events

Life Cycle
Inventory of
Polystyrene
Foam, Bleached
Paperboard, and
Corrugated
Paperboard
Foodservice
Products

Environmental
evaluation of
single-use and
reusable cups

Author
and
(reference)

year

(Institute for Life Cycle


Energy Analysis (ILEA)
and University of
Victoria, 1994)

(Flemish Institute for


Technological Research
(VITO), 2006)

(Franklin Associates
LTD, 2006)

(Garrido & Alvarez del


Castillo, 2007)

Greenhouse Gas
Assessment of
Expanded
Polystyrene Food (Horvath & Chester,
Containers and
2009)
Alternative
products use in
Los Angeles
County (DRAFT)

Place

Functional unit

Impact categories analyzed

Canada

Only evaluated energy


A ceramic, plastic, glass, paper and
consumed in the life cycle,
EPS cup. It is not a functional unit
no further impact
is the unit of analysis.
categories.

Belgium

Fossil fuel consumption,


Cups required to serve 100 liters
mineral resources
of beer or soft drinks in small-scale consumption, acidification /
events (2.000 to 5.000 visitors)
eutrophication, ecotoxicity,
and large (> 30,000 visitors).
ozone layer destruction,
climate change, and
inorganic respiratory
effects, and carcinogenesis.

USA

1) 10,000 cold drinks in 16-ounce


HIPS, PET and PP cups
2) 10,000 16-ounce PLA and PET
dishes
3) 1,000,000 square inches of
GPPS and PLA film
4) 10,000 GPPS and PLA meat
trays
5) 10,000 12 ounces PLA and PET
water bottles.

To serve 1000 liters of beverages.


Barcelona, Spain

Los ngeles, USA

Four types of food containers


(dish, tray, bowl and cup) of EPS
and three alternatives for each
case (bagasse, corn starch,
ceramics, paper, PP and PLA).

Results
Assuming that cups are used only
once, EPS and paper cups consume
less energy than the rest. As the
amount of times that the cup is
reused, reducing the amount of
energy used in the ceramic, glass
and plastic options.
Products analyzed:
1) reusable PC cup (20 to 45 uses)
2) single-use PP cup
3) one use cup of coated paper with
PE
4) single use PLA cup
For both types of events, neither
system stands out in the impact
categories considered in the study

LCI of the products studied.


Climate change

Fossil fuel consumption,


abiotic Resources,
acidification /
eutrophication, ecotoxicity,
ozone layer destruction,
climate change, and
Inorganic respiratory
effects, and Carcinogenesis

Climate change

Results of energy requirements,


solid waste generation and
emissions of greenhouse gases from
the five systems.

The following were compared:


1) single use cups
2) reusable cups
Both of PP, but with different
physical characteristics, such as
mass, shape and capacity.
Cups should be reused at least 10
times to have a lower impact than
single use cups.
They conclude the large role that the
end of life has in the results.
1) If the container is to be recycled
paper is preferred.
2) If it is going to landfill, EPS is the
best option.
3) If it is going to compost, paper is
the best option.
In general, if the ceramic container is
reused 68 times is the best option.

Title

Single use cup or


reusable(coffee)
drinking systems:
an
environmental
comparison

Author and year


(reference)

(Netherlands
Organisation for
Applied Scientific
Research (TNO), 2007)

Environmental
impacts of
disposable cups
with special
(Hkkinen & Vares,
focus on the
2010)
effect of material
choices and end
of life

Life cycle
assessment and
eco-efficiency
analysis of
drinking cups
used at public
events

LCI of foam
polystyrene,
paper based and
PLA foodservice
products

(Vercalsteren,
Spirinckx, & Geerken,
2010)

Place

Netherlands

Finland

Belgium

Functional unit

Impact categories analyzed

Results

Dispatch 1,000 units of hot drinks


(tea / coffee / chocolate) from a
vending machine in an office
environment or industry.

Abiotic Resources, Climate


Change, ozone layer
destruction, human toxicity,
ecotoxicity in Freshwater,
Marine Ecotoxicity,
terrestrial ecotoxicity,
Photochemical ozone
formation, eutrophication
and acidification.

Disposable options are better than


reusable.
The best option is paper cups in the
10 categories evaluated.
The greatest impact associated to
reusable options is due to cleaning.
The biggest impact associated to
disposables is due to the raw
material.

Climate change

Results vary according to the end of


life scenarios of the cups.

Fossil fuel consumption,


reduction of Mineral
Resources, acidification /
eutrophication, ecotoxicity,
ozone layer destruction,
climate change, and
Inorganic respiratory
effects, and Carcinogenesis

Four cup alternatives were studied


(reusable PC, PP, PE and paper
laminated with PLA) The study
concludes that there is no system
with total environmental
advantages. In the eco-efficiency
analysis, the polycarbonate reusable
cup is significantly better than the
other cup, in small events.

Climate change

The EPS plates and cups use much


less energy and water when
compared to their paper and PLA
versions. Regarding emissions of
greenhouse gases the result is not
conclusive, because the paper
degradation conditions are
uncertain.

10,000 cups that have the same


capacity and functionality in terms
of waterproof quality, stiffness
and durability for a single use.

Cups required to serve 100 liters


of beer or soda in small and large
events respectively.

10,000 dishes of 9 inches.


(Franklin Associates
LTD, 2011)

Kansas, USA

10,000 16 and 32 ounces cups for


hot and cold drinks.

8
LCA of disposable cups in Mexico. EPS and coated paper.

1.4 Introduction to the LCA study of disposable cups in Mexico


This study was conducted according to requirements and framework of the ISO life cycle
assessment standards, 14040 and 14044 (NMX-SAA-14040-IMNC-2008 and NMX-SAA-14044IMNC-2008). The study began on June, 3rd 2011 and completion date was December, 12th 2012.
The primary intended use of the study is to provide ANIQ with more complete information about
the potential environmental impacts from the life cycle of disposable EPS and Coated Paper cups
production and use in Mexico and its comparison. The intended audience of the study is: ANIQ
associates, EPS disposable producers and consumers (including government). ANIQ intends to use
this study to support internal decision making and as a support to policy making regarding
disposables.
A secondary intended use is that ANIQ seeks to socialize the main results of the study for
consumers. The present report underwent critical review by an independent critical review panel
in accordance to ISO 14040 and ISO 14044.

2. Goal of the study

This chapter sets out the goal of the study, describes the intended application, the reasons for
carrying out the study; its target audience and establishes that the results will support
comparative assertions.

10
LCA of disposable cups in Mexico. EPS and coated paper.

2.1 Goal of the LCA study


The goal of the study is to

determine the potential environmental impacts in the

life cycle of EPS cups and coated paper cups.


The study will support comparative assertions of the two types of cups, and will be disclosed to
ANIQ stakeholders in Mexico (ANIQ associates and consumers).

2.2 Intended application, audience and reasons for carrying out the study
The primary intended use of the study results is to provide ANIQ with sound information on the
many relevant potential environmental impacts related to EPS and coated paper cups, according
to the Mexican market, consumer patterns and waste management systems. The results of the
different LCA studies of food containers and disposables around the world presented in section 1.3
(Table 3), vary according to the end of life scenarios and the use patterns analyzed; therefore it is
clear that an LCA for this type of products needs to be local, with specific considerations these
aspects.
In Mexico, EPS disposables have been subject to various regulations and initiatives that promote
its replacement, so it is important for ANIQ to have sound information of the life cycle of these
products and its potential environmental impacts in the Mexican context, in order to have a sound
scientific base to support their dialogue with different stakeholders, including government
representatives.
A secondary intended use is public release of the study to selected stakeholders by ANIQ. After
completion and reception of the present LCA study, ANIQ will develop a path for communication
and publication of the results of the study.
The intended audience of the study is ANIQ associates and consumers (including government).
ANIQ will use the results of the study aiming at:

Promote environmental solutions and innovations in the value chain of disposable cups
among its membership.

Promote a culture among consumers and stakeholders to minimize the environmental


impacts of disposables in Mexico by improving end of life management.

Dialogue and participate in the development of future regulations of disposables in the


country.

11

3. Scope of the study

This chapter describes the stages of the life cycle to be considered within the system boundaries
analyzed. It also explains the process undertaken to define important elements of the scope of the
study such as functional unit, system boundaries, potential impact categories to be assessed and
data requirements, among others. The study has been conducted according to the requirements
and framework of ISO 14040 and 14044 standards (NMX-SAA-14040-IMNC-2008 and NMX-SAA14044-IMNC-2008).

12
LCA of disposable cups in Mexico. EPS and coated paper.

3.1 Session with ANIQ and stakeholders for the definition of the scope of the LCA study
In order to have reached an agreement on the definition of the scope of the LCA study, a decision
making session was conducted in June 3, 2011. The session was attended by representatives from
industry and academic researchers with expertise in disposables and waste management. This
process, which is commonly undertaken by CADIS when performing an LCA study, ensures that the
important items to be considered in the study are clearly understood, such as the product system
to be studied, the functions of the product system, the functional unit and system boundary; and
also that are defined supported by the knowledge of the invited experts, whom also share
important information such as technical specifications, manufacturing processes, and
consumption market patterns, which allow to establish important data requirements and the
functional unit. The decision making process for the selection, for example of important data or
the main functions, is supported by the use of the analytical hierarchy process (AHP) for
multicriteria decision making.; since it is a multricriteria analysis based session it is called the SAM
for its acronym in Spanish.
The session also allows introducing the commissioner and different stakeholders to the LCA
methodology and set a common ground for the LCA study, therefore The SAM began with a brief
explanation to the participants on the LCA methodology and the presentation of some LCA studies
related to disposable products (described above in Table 2). Following there brainstorms and
expert opinion on:
4. Data considerations on market and geography, which allowed defining system boundaries
and important data requirements.
5. Identification of main functions of cups in order to establish the functional unit.
6. Identification of relevant environmental problems so as to identify the life cycle impact
assessment methodology.
As for the data considerations of geography and market, the expert group agreed that beverage
types and patterns of production and consumption were important aspects to consider in the
study (Table 3). Regarding beverage types, the expert group discussed the relevance of cold, hot
or both uses of the cups. The expert group was consulted about market, data availability and the
geographical area in Mexico to consider for the study. For the first one, the expert group discussed
to analyze three alternatives: wholesale, retail and special accounts. Considering data availability
and quality, the group suggested collecting data from year 2009 or year 2010. Finally, the group
13

discussed about three geographical alternatives: local (one city), national or based on sales
volume.
Table 3. Important considerations of data for the LCA study (decision model).

Items

Alternatives
Cold

Beverage types

Hot
Hot and cold
Wholesale sector (supply center)
Retail (Selfservice, supermarket)
Special accounts (Cafeterias, mini super)

Type of market
Data and market
considerations

2009
2010
Local
National
Area based on sales volume

Time period
Geographical
representation

In order to assess the relevance of the above mentioned considerations, CADIS used the AHP
software -Expert Choice. The AHP is a multicriteria analysis method used for making complex
decisions; it measures the agreement between decision makers on a set of alternatives,
weighing them according to the criteria of each participant (expert judgment). The details of
this method are presented in Annex A. The software collects the opinions of experts thus with
the expert group the items of geography, market, time period and use of the cup were
decided (Figure 3).

14
LCA of disposable cups in Mexico. EPS and coated paper.

Figure 3. Selection of important considerations for study results of AHP analysis.

Since the results for geography were very similar, the expert group chose two areas in the country:
the Valley of Mexico and the State of Jalisco (for its importance in the market). As per the results
presented in Figure 3, it can be seen that the study would use data from year 2010, focus on the
wholesale market and consider the cups used to contain hot and cold beverages.
The expert group also discussed some other important characteristics of the cups to be analyzed in
the study such as printing and size. It was decided that unprinted cups and the 10 ounce
presentation (the best-selling size in Mexico) would be considered.

3.2 Product system and system boundaries


A product system is a "set of unit processes with elementary flows and product flows, performing
one or more defined functions and serves as a model for the product life cycle" (IMNC, 2008).
Figure 4 shows the product system for EPS cups considered for this study. The system boundary
includes the following:

Raw materials production: EPS beads and packing material (PE bags and corrugated
boxes) and transport to the cups production plant.

15

EPS cups production: Generation and consumption of electricity and natural gas,
emissions and waste of cups manufacturing.
Distribution: Transport of cups from the production plants to wholesale sites and to the
place where the consumer uses it (average).
Use: In the use stage the cups are used once, no input and outputs are considered in this
stage.
End of life: It is considered that the cups, after a single use, are taken to landfill or
recycling.

Figure 4. Product system: EPS cup.

Figure 5 shows the product system for coated paper cups considered for this study. The system
boundary includes the following:

Raw materials production: Coated cardboard and packaging (PE bags and corrugated
boxes) and transport to the production plant.
Coated paper cup production: Generation and electricity consumption, emissions and
waste of cups manufacturing.
Distribution: Transport of cups from the manufacturing plant to wholesale sites and to the
place where the consumer uses it (average).
Use: In the use stage the cups are used once, no inputs and outputs are considered in this
stage.
End of life: It is considered that all cups, after a single use, are taken to the landfill.

16
LCA of disposable cups in Mexico. EPS and coated paper.

Figure 5. Product system: coated paper cup.

3.3 Data and cut-off criteria


According to ISO 14040 (NMX-SAA-14040-IMNC-2008), data selected for an LCA may be collected
from the production sites associated with the unit processes within the system boundary, or they
may be obtained or calculated from other sources. As it was described before, together with the
commissioner and an expert group, important considerations related to data were taken during
the SAM, such as use data for year 2010 and the wholesale market for Mexico.
The ISO 14040, also states that cut-off criteria is the specification of the amount of material or
energy flow or the level of environmental significance associated with unit processes or product
system to be excluded from a study.
Most information was collected from Mexican sources, EPS cups primary data was obtained from
Mexican companies. The manufacturing process for paper coated cups was validated with
Mexican data and coated paper production primary data was adjusted to Mexican conditions,
although following the modeling of international processes, which are used in the country (this
discussion is added in section 4.1).
Secondary energy data was obtained from MEXICANIUH, the national life cycle inventory database
developed by CADIS; it contains datasets of electric energy generation, petrochemical substances,
building materials, solid waste treatment and other important key products and processes
representative of Mexico. As for main raw materials, inventory data was obtained directly from
the company suppliers, mainly from US and Mxico.
In order to ensure that all relevant data needed to satisfy the goal and scope is available and
complete, no cut-off criteria was applied to the information obtained from companies. All flows
reported by companies were considered in the inventory. Companies reported data on
consumption and transportation of raw materials, consumption of electricity, fuel, and water,
water discharges, consumption of packaging for cups, as well as data related to distribution.

17

Regarding distribution and end of life stages, these were modeled with Mexican information in
both cases. Distances from cup plant production to wholesaler was calculated with companies
information, also averages distances from wholesaler to consumer, and from consumer to end of
life stage were calculated according to the Mexican situation. End of life of EPS and coated paper
cups was modeled with MEXICANIUH landfill datasets.

3.4 Functions, functional unit and reference flow


A fundamental concept in LCA is the functional unit. It serves as the basis for calculating the life
cycle inventories and environmental impacts, and allows the comparison of different systems with
the same function. ISO 14040 (NMX-SAA-14040-IMNC-2008) states that the functional unit is the
"quantified performance of a system for use as a reference unit."
In order to define the functional unit, a brainstorm of the main functions of cups was done with
the expert group during the SAM, identifying the following:
To contain beverages
To maintain temperature
To pile up
To communicate

The expert group reached consensus that to

contain

beverages and to

maintain

temperature are the main functions of disposable cups.


Once the above was discussed, the functional unit for the study was defined with the expert group
as:

To contain and maintain the temperature of hot and cold beverages in


disposable cups of 10 oz in the Valley of Mexico and Jalisco in the year
2010
ISO 14040 (NMX-SAA-14040-IMNC-2008) states that reference flow is the measure of the outputs
from processes in a given product system required to fulfill the function expressed by the
functional unit. To obtain the reference flow that fulfill the functional unit mentioned above it is
necessary to know the amount of 10 oz. cups sold through wholesalers in the Metropolitan Area of
Mexico (ZMVM, spanish acronym) and in the Metropolitan Area of Guadalajara, Jalisco (ZMG,
18
LCA of disposable cups in Mexico. EPS and coated paper.

spanish acronym) used for containing all types of hot and cold beverages, and maintain
temperature, thus not all types of materials used to manufacture disposable cups fulfill this
function.
The amount of cups was obtained using data from the National Institute of Statistics, Geography
and Informatics (INEGI, Spanish acronym), (INEGI, 2010) and further market information from cups
producers and distributors. The amount of EPS cups sold in 2010 through wholesalers in both
zones is approximately 1,600,000,000. This figure is used as a reference flow in order to compare
the potential environmental impact for using EPS cups or paper coated cups.

3.5 Life cycle impact assessment and types of impacts


During the SAM, a discussion was carried out with the expert group so as to identify the main
environmental problems as seen by different stakeholders of disposable cups in Mexico. Based on
the discussion and the impact categories considered in similar LCA studies, there was consensus to
select the CML midpoint impact assessment method.

3.6 Critical review considerations


Critical review is a process that aims to ensure consistency between an LCA and the principles and
requirements of the ISO 14040 (NMX-SAA-14040-INMC-2008). This study includes comparative
assertions, and follows the ISO 14040 requirements with regards to comparative assertions, as
such, it is mandatory to carry out a critical review, which was conducted by the following panel of
experts:
Mike Levy (Chair)
Director within the American Chemistry Council (ACC) Plastics Division for the Plastics Foodservice
Packaging Group (PFPG, representing producers and manufacturers of plastics foodservice
packaging), and Director, Life Cycle Issues for all plastics within the Plastics Division. Franklin
Associates Vice President (Research industry), manager of regulatory and legislative affairs for
ExxonMobil Chemical Company and responsible for the divisions of Mobil Chemical Company:
Petrochemical (PE, PS), plastic film (PE, bags, PS products for food stretch film), consumer
products and paints and coatings.
He specializes in LCA, has 13 years of experience in the development and application of this tool in
a wide range of companies and organizations.

19

Luiz Alexandre Kulay


PhD in Chemical Engineering from Escola Politcnica da Universidade de So Paulo. He worked as
an engineer in the Environmental Control of Suzano de Papel e Celulose. His area of specialty for
almost two decades is in control and prevention of pollution, mainly in the field of LCA. Currently,
performs work in LCA database development for Brazil in petrochemicals, polymers and
biopolymers. He has had a major contribution in the fields of electricity, fertilizers and biofuels.
Claudia Pea
Co-chair of the Ibero-American Network of LCA. She was director of industrial sustainability in the
Chilean Research Center of Mining and Metallurgical for 11 years, where she developed projects of
LCA, Life Cycle Management, Environmental Product Declarations, Eco-efficiency and industrial
ecology. She was a researcher at the Department of Chemical Engineering at the University of
Leuven in Belgium for four years.

Critical review of the panel and the replica is found in Chapter 8.

20
LCA of disposable cups in Mexico. EPS and coated paper.

4. Life Cycle Inventory


Analysis (LCI)

This chapter describes the collection process of inventory data and explains the production
processes of EPS and coated paper cups. Also, it describes the sources of information, the
calculation procedures and validation of data.

21

4.1 Inventory analysis data collection


A Life Cycle Inventory (LCI) quantifies all inputs and outputs of the product life cycle (IMNC, 2008).
The inventory analysis is an iterative process that consists in the definition of goal and scope,
preparation for data collection, data collection, data validation, relating data to unit process and
functional unit, data aggregation and refining system boundaries (IMNC, 2008).
The definition of the goal and scope of a study provides the initial plan for conducting the LCI.
Chapter 2 and Chapter 3 describe the goal and scope definition, respectively. The following were
the activities to prepare for data collection:
Desk based research of manufacturing processes and end of life scenarios, market data on
production and consumption in Mexico, and existing related LCA studies
Elaborate of unit processes flow diagrams
Identify material and energy inputs, and outputs for each unit process within the product
system boundaries
Design of life cycle inventory data collection formats based on the above
Data collection is the most time consuming step in LCI because it is important to find reliable
sources of information that are willing to provide data. Data collection consisted in:
Research and identification of EPS cups and paper coated cups producing companies in
Mexico
Invitation to participate of producing and supplier companies, as well as wholesalers.
Visits to companies to explain LCA methodology and goal and scope of the study
Agreements with companies on data use
Visits to production plants that agreed to provide data in order to collect information
Monitoring data collection through e-mail and telephone
Visit companies to review collected data
Meetings with companies in order to validate aggregated LCI information and confirm
confidentiality agreements were respected
Raw materials required producing the EPS beads and EPS cups were obtained from producers.
They also provided data about transportation of these materials from suppliers to the production
plant. Fuels and electricity consumption, as well as water discharges were reported by companies
too. Regarding coated paper cups data, representative Mexican and US companies provided
general data about the production process and some LCA data. Also, LCA studies conducted by
22
LCA of disposable cups in Mexico. EPS and coated paper.

international coated paper cups producers where consulted to get information about energy
consumption.
In both cases, EPS and paper cups, secondary energy data was obtained from the MEXICANIUH life
cycle inventory database. Also, data of distribution and disposal was obtained from Mexican
sources for both types of cups. For packaging materials (PE bag and corrugated boxes) generic
international models were adjusted using MEXICANIUH electricity data set.
EPS beads used for cups production are imported from US, in order to adapt data obtained from
Mexican sources, CADIS was supported by US producers to validate the LCI model. Solid Bleach
Board (SBB) used in coated paper production is also imported from US, in this case and following
recommendation from US producers, an Ecoinvent was used. Further, the US electricity data set
was used to model the EPS bead and SBB production.
Data validation was conducted with mass and energy balances, anomalies where consulted with
the sources. Data validation is discussed in section 4.5.
Data was aggregated through mathematical relations that express average inputs and outputs
flows of each unit process according to our established functional unit. Refining the system
boundary was needed since information related to raw material packaging was not available.

4.2 Qualitative and quantitative description of unit processes


This section contains an overview of the stages of the life cycle of each product analyzed, the flow
diagram of the production processes for obtaining cups, and life cycle inventories collected.
4.2.1 EPS cups description
Figure 6 shows the scheme of the life cycle stages of EPS cups, which identifies the main inputs
and outputs.

23

Figure 6. Life cycle stages of EPS cups.

24
LCA of disposable cups in Mexico. EPS and coated paper.

Production of EPS beads


This raw material is in the form of small spherical beads containing therein a blowing agent, which
allows its expansion during the process of transformation. Blowing agent is a hydrocarbon of low
boiling point. In the manufacture of EPS the family of chlorofluorocarbons or hydro fluorocarbons
is not used as blowing agents.
The manufacturing process is carried out by a chemical reaction of polymerization. This is a
chemical reaction obtaining macromolecules formed of long chains of one monomer, in this case
styrene. This is done by suspension of styrene in water reactors equipped with agitators; catalysts
are added to the suspension to initiate the reaction, additives for stabilizing the mixture and
regulating diameter of the bead are added too. The polymerization reaction is exothermic so the
reactor is equipped with a temperature regulation system. At the end of this stage an aqueous
mixture of EPS is obtained, which is sent to a homogenization tank. The blowing agent is
introduced with pressure to reactor. Finally, the drying step is performed by means of filtration,
centrifugation and screening. Figure 7 shows a general scheme of the production process of the
EPS beads.

Figure 7. Flow diagram of the EPS beads production process.

25

EPS cups production


EPS cups are made from the beads described above. It transformation is generally performed in
three stages (MIRKEM, 2009):

Stage 1. Pre-expansion. The beads are heated with steam pre-expander machine at
temperatures between 80 and 100 C. During the pre-expansion process small cells with
air inside are formed in the beads.

Stage 2. Intermediate maturation and stabilization. Cooling pre-expanded material takes


place during the maturing process aerated intermediate silos. The beads are dried at the
same time, to gain a greater elasticity and to improve its capacity of expansion, which is
very important for further processing.

Stage 3. Expansion and molding. During this stage, the pre-expanded and stabilized beads
are transported to molds where they are again subjected to steam for binding. By rapid
cooling the final density is obtained as well as the shape of the cups.

The EPS cups manufactured by companies participating in the study meet the requirements
established by the Food and Drug Administration (FDA) for this type of products. Figure 8 shows a
general scheme of the production process of EPS disposable cups.

Figure 8. Process flow diagram of EPS production cups.

26
LCA of disposable cups in Mexico. EPS and coated paper.

4.2.2 EPS cups LCI


The inventory of the production of EPS bead was derived from data provided by companies in
Mexico producing the resin, which was adapted to the American process, as the beads that used in
the manufacture of cups in Mexico are imported mainly from the United States. For packaging
materials generic models were used for PE bag and corrugated boxes. Table 4 presents the
average LCI for EPS cups production. This Table includes raw materials and its transportation to
the cups production plant, electric energy, fuel and water consumption of the production of cups,
water emissions generated, and amount of waste generated and transport to recycling. It is
noteworthy that the model used for natural gas, takes into account its production and air
emissions generated by burning. Water emissions data was obtained from water discharge
analyses performed by EPS cups producers.

27

Table 4. Average LCI for the production of EPS cups.

Raw materials
Input

Quantity

Unit

Dataset

Database

EPS beads

4,277

ton

Expandable polystyrene/ MX-US U

Carboard boxes

1,716

ton

Corrugated board, recycling fiber, double wall, at plant/RER U

Ecoinvent Adapted

383

ton

LDPE bags, at plant/ RER U

Ecoinvent Adapted

PE bags

CADIS

Raw material transport


Input

Quantity (ton)

Distance (km)

tkm

Transport of EPS beads

4,277

Transport of boxes

1,701

200

383

200

Transport of PE bags

Dataset

Databse

2,674 11,433,383 Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

343,170 Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

76,587 Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

Production
Input

Quantity

Electric energy

5,783

Natural gas
Water

Unit

Dataset

MWh

Electricity, medium voltage, production MX, at grid/ MX U

Database
MEXICANIUH

283

TJ

Natural gas, burned in boiler modulating >100kW/RER U

Ecoinvent

65,931

ton

Tap water, at user/RER U

Ecoinvent

Emissions
Output

Quantity

Waste water

Unit

298

ton

Waste wter

TSS

26

kg

Total suspended solids

BOD

41

kg

BOD5, Biological Oxygen Demand

N total

5.4

kg

Nitrogen

Oils

5.6

kg

Oil and grease

1.3

kg

Phosphorus

As

0.001

kg

Arsenic

Cd

0.001

kg

Cadmium

CN

0.01

kg

Cyanide

Cu

0.02

kg

Copper

Cr

0.01

kg

Chromium

Hg

0.0003

kg

Mercury

Ni

0.02

kg

Nickel

Pb

0.02

kg

Lead

Zn

0.05

kg

Zinc

Waste
Output

Quantity

EPS waste to recycling

125

Unit

Dataset

Database

ton

Recycling mixed plastics/RER U

Ecoinvent

Transport of waste
Input
Transport of EPS waste to recycling

Quantity (ton)

Distance (km)

125

20

tkm

Dataset

2,491 Transport, lorry 3.5-7.5t, EURO5/RER U

28
LCA of disposable cups in Mexico. EPS and coated paper.

Databse
Ecoinvent

The inventory of the distribution stage was performed according to the product transport logistics
provided by the parties, to the supply centers of the ZMVM and ZMG, considering that 70% of the
reference flow goes to Valley Mexico and the rest to Guadalajara. The transport of the central
supply to the consumer was calculated according to average distances to the various
municipalities in metropolitan areas. Table 5 shows LCI for this stage of the cycle.
Table 5. Average LCI for the distribution of EPS cups.

Distribution
Input

Quantity (ton)
6,251

Transport from plant to wholesale

Distance (km)

tkm
Dataset
319 1,994,206 Transport, lorry 16-32t, EURO5/RER U
133,294
21
Transport, lorry 3.5-7.5t, EURO5/RER U

6,251

Transport from wholesale to user

Databse
Ecoinvent
Ecoinvent

In the use stage there are not considered inputs and outputs of materials or energy, since the cups
are sold with a hot or cold drink, to complete its function, and then it is placed in a container for
transport to the landfill or recycling.
According to information validated by the companies participating in the study, 0.5% of the cups
are taken to a recycling plant, while 99.5% of the cups end up in the landfill. For this stage life cycle
inventories were made for plastic mix in landfills, according to data from the Federal District and
the characteristics of landfills in Mexico, where there is no incineration or landfill gas capture.
Table 6 shows the LCI corresponding to the end of life stage and Table 8 describes the
transportation required.
Table 6. Average LCI for end of life stage of EPS cups.

End of life
Output

Quantity

EPS cups to landfill


EPS cups to recycling
PE bags to landfill
Cardboard boxes to recycling

Unit

Dataset

Database

4,131

ton

Disposal, plastics mixture, 32% water, to sanitary landfill/ MX U

MEXICANIUH

21

ton

Recycling mixed plastics/RER U

383

ton

Disposal, plastics mixture, 32% water, to sanitary landfill/ MX U

1,716

ton

Recycling cardboard/RER U

Ecoinvent
MEXICANIUH
Ecoinvent

Table 7. Average LCI for transportation required for end of life stage of EPS cups.

Transport to end of life


Input
Transport EPS cups to landfill
Transport EPS cups to recycling
Transport PE bags to landfill
Transport Cardboard boxes to recycling

Quantity (ton)

Distance (km)

4,131

18

72,710

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

21

20

415

Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

383

18

6,740

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

1,701

20

34,317

Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

29

tkm

Dataset

Databse

4.2.3 Coated paper cups description


Figure 9 shows a scheme of the stages of the life cycle of coated paper cups, which identifies the
main inputs and outputs.

Figure 9. Life cycle stages of coated paper cup.

30
LCA of disposable cups in Mexico. EPS and coated paper.

Production process of coated paper cups


The main raw material of this cup is a type of paper called Solid Bleach Board (SSB) which is made
from virgin pulp chlorinated. This material is coated with a film of Low Density Polyethylene (LDPE)
in the inside of the roll, whose function is to prevent the absorption of fluids by paper and runoff,
as well as keeping drinks hot.
The coated SBB is placed on a platen that carries a rotary cutter, which cuts according to a preset
size and shape, while the other blade cuts the circular bases of the cups. These steps generate
paper waste that is taken to recycling. The pieces are initially moved on a conveyor belt to a
rotating device with mechanical clamps each winding cone-shaped piece, immediately hot air gun
seals sleeve. Then, to form cup the base are placed within the cones and are joined with heat and
pressure, this process is called knurling. Subsequently, an edge is added to the cup to prevent the
liquid from leaking, this is accomplished with a heated tool which rolls the edge of each, to what is
known as curling. Then the cups are transported to the packing area, where they are stacked and
inserted in plastic bags and cardboard boxes (Rajshree, 2011). Figure 10 outlines this process.

Figure 10. Flow diagram of the production of coated paper cups.

31

4.2.4 Coated paper cups LCI


The SBB for the manufacture of coated paper cups previously imported from the United States.
Table 8 shows the average LCI for paper coated cups production. This Table includes raw
materials, transportation required for them, energy consumption in cup production and packaging
and amount of waste and its transportation.
The production process of paper coated cups is automated and it requires electric energy to
operate. This process does not require any kind of fuel or water. Thus, direct air emissions and
water discharges are not generated during cups production. However, waste paper is produced in
cutting process which is sent to recycling.

Table 8. LCI for the production of coated paper cups.

Raw materials
Input

Quantity

SBB

Unit

Dataset

Database

15,230

ton

Solid bleached board, SBB, at plant/RER U

Ecoinvent Adapted

802

ton

Packaging film, LDPE, at plant/RER U

Ecoinvent Adapted

LDPE
Electric energy for coating

3,215

PE bags
Cardboard boxes

MWh

Electricity, medium voltage, production USA, at grid/US U

Ecoinvent

202

ton

Packaging film, LDPE, at plant/RER U

Ecoinvent Adapted

1,342

ton

Packaging, corrugated board, mixed fibre, single wall, at plant/RER U

Ecoinvent Adapted

Transport of raw materials


Input

Quantity (ton)

Transport of coated SBB

Distance (km)

16,032

Transport of PE bags
Trasnport of cardboard boxes

tkm

Dataset

Databse

1,904 30,518,195 Transport, lorry >16t, fleet average/RER U

Ecoinvent

202

50

10,080

Transport, lorry 3.5-7.5t, EURO3/RER U

Ecoinvent

1,342

50

67,120

Transport, lorry 3.5-7.5t, EURO3/RER U

Ecoinvent

Production
Input
Manufacturing electric energy

Quantity

Unit

Dataset

15,985

MWh

Electricity, medium voltage, production MX, at grid/ MX U

MEXICANIUH

86

MWh

Electricity, medium voltage, production MX, at grid/ MX U

MEXICANIUH

Unit

Dataset

Packaging electric energy

Database

Solid waste
Output
SBB waste to recycling

Quantity

1,248 ton

Database

Recycling paper/RER U

Ecoinvent

Transport of solid waste


Input
Transport of SBB to recycling

Quantity (ton)

Distance (km)

1,248

20

tkm

Dataset

24,960

Transport, van <3.5t/RER U

32
LCA of disposable cups in Mexico. EPS and coated paper.

Databse
Ecoinvent

The inventory of the distribution stage takes into account the distance from the production plant
to the supply centers of the ZMVM and ZMG, considering that 70% of the reference flow is
directed to the Valley of Mexico and the rest to Guadalajara. The transport to the consumer was
calculated according to average distances to the various municipalities in metropolitan areas.
Table 9 shows the LCI of this life cycle stage.

Table 9. Average LCI for the distribution of coated paper cups.

Distribution
Input

Quantity (ton)

Transport from plant to wholesale

16,328

Transport from wholesale to user

16,328

Distance (km)

Tkm

Dataset
Transport, lorry 16-32t, EURO5/RER
187 3,045,172 U
Transport, lorry 3.5-7.5t, EURO5/RER
21
349,419 U

Databse
Ecoinvent
Ecoinvent

In the use stage inputs and outputs of energy are not considered, since the cup is sold with a hot
or cold drink, to terminate its function is placed in a container for transport to sanitary landfills.
For end of life stage life cycle inventories were made for paper in landfills, according to data from
the Federal District and the characteristics of landfills in Mexico, where there is no incineration or
landfill gas capture Tables 10 and 11 describe the LCI of this stage.

Table 10. LCI for the end of life of coated paper cups.

End of life
Output

Quantity

Unit

Dataset

Database

13,982

ton

Disposal, paper, 32% water, to sanitary landfill / MX U

MEXICANIUH

LDPE from cups to landfill

802

ton

Disposal, plastics mixture, 32% water, to sanitary landfill/ MX U

MEXICANIUH

PE bags to landfill

202

ton

Disposal, plastics mixture, 32% water, to sanitary landfill/ MX U

MEXICANIUH

1,342

ton

Recycling paper/RER U

SBB from cups to landfill

Cardboard boxes to recycling

Ecoinvent

Table 11. LCI for end of life transportation of coated paper cups.

Transport to end of life


Input
Transport of SBB from cups to landfill
Transport of LDPE from cups to landfill
Transport of PE bags to landfill

Quantity (ton)
14,784

Distance (km)

tkm

Dataset

Databse

18

260,198

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

202

18

3,548

Transport, lorry 16-32t, EURO5/RER U

Ecoinvent

1,342

20

26,848

Transport, lorry 3.5-7.5t, EURO5/RER U

Ecoinvent

33

4.3 Sources of the data


The sources of information used in this study are described below:
EPS Cups
Raw material consumption, transportation of materials, electricity and fuel used in cups
production, water discharges generated in manufacture, distribution to wholesaler, and
percentage of recycled cups at end of life stage was obtained from the following primary sources:
companies producing EPS beads in Mexico and USA, EPS cups manufacturers, and distribution
centers. Ecoinvent US electricity dataset was used to model EPS and MEXICANIUH electricity
dataset was used as input in production inventory.
Data related to solid waste generated at the production stage was calculated by mass balance.
Average distance from wholesaler to consumer was calculated according the main selling sites in
the Valley of Mexico and Jalisco. Similar, average distance from consumer to landfill was
calculated according the distance from several municipalities in the corresponding area to the
main landfill in that place.
The dataset of plastics in landfill from MEXICANIUH was used to model the end of life stage. This
dataset includes disposal of plastics, land use, energy and fuel consumption, and emissions. CADIS
developed this dataset in collaboration with the Autonomous Metropolitan University, who
collected and characterized waste streams and generated the Mexican municipal solid waste data
from facilities without: biogas capture, incineration and leachate treatment (Espinoza, et al.,
2011).
Coated paper cups
Description of the production process of coated paper cups in the country was obtained from
companies in Mexico. Besides, international companies provided description of the manufacture
process too. The similarities of the processes are similar and do not present any significant
difference. Information provided was compared and validated with studies and international
databases. Solid Bleached Board (SBB) is the type of paper used as main raw material. This is
produced and coated with PE in U.S.A, thus American energy dataset was used to model SBB
production and coating. Once coated SBB reaches the production plant in Mexico, it enters into an
automated process that performs several steps to assemble cups. This process requires electric
energy solely, which was modeled with MEXICANIUH database. Distance from raw material
suppliers to cups manufacture was calculated according main paper cups producer location in
Mexico. Data related to solid waste generated in production stage was calculated by mass balance.

34
LCA of disposable cups in Mexico. EPS and coated paper.

Average distance from wholesaler to consumer was calculated according the main selling sites in
Valley of Mexico and Jalisco. Similar, average distance from consumer to landfill was calculated
according the distance from several districts in the corresponding area to the main landfill in that
place. The MEXICANIUH dataset of paper in landfill was used to model end of life stage.

4.4 Data calculation


Calculation procedures include the validation of data collected, relating data to unit process and
relating data to the reference flow of the established functional unit. These procedures are
needed to generate the results of the inventory for each unit process and for the defined
functional unit of the product system that is to be modeled.
4.4.1 Assumptions
All the cups have a single use
The cardboard boxes are sent to recycling
No recycling of coated paper cup
4.4.2 Limitations
The target market for paper cups is not the same as the market cups of EPS, but for
purposes of this study the same conditions of sale and distribution were considered.
We calculated the sales estimates for the Valley of Mexico and Guadalajara by
approximate percentages, according to information provided by the manufacturers.
Model using data from paper cups production companies in the U.S. and Europe, adapted
to Mexican conditions in distribution, transportation and end of life.
The scope of the study only includes two types of materials (EPS, coated paper) and two
applications hot and cold of disposable cups. Therefore the LCA study is specific for
these types of cups and does not cover all EPS or coated paper food packaging
applications, and not non-EPS or non-coated paper alternatives.

4.5 Validation of data


According to ISO 14044 (NMX-SAA-14044-2008), a check on data validity shall be conducted during
the process of data collection to confirm and provide evidence that the data quality requirements
for the intended application have been fulfilled.
Once data were received from production companies, we analyzed the data to identify any
anomalies and check the consistency of the input and output flows by mass and energy balances
35

and comparative analyses of release factors. In case of finding any discrepancy, balances results
were used to appropriate data equalization. Mass and energy provide a useful check on the
validity of a unit process description. Finally, the calculated data were presented to information
providers for validation.
Addressed data quality requirements are specified in the next section. These enable the goal and
scope of the LCA to be met.

4.5.1 Data quality analysis

Time related coverage


In the scope of the study it was established that the reference year would be 2010. For specific
processes data from 2010 are used, other data falls between the 2007 and 2010 period.

Geographical coverage
The study applies to Valley of Mexico and Guadalajara, Jalisco, which are the areas with the
highest sales volume in the country. Information of unit processes from US were either adjusted or
collected so as to be representative of this geographical coverage.

Technology coverage
Collected data applies to average technology situation in Mexico and US.

Precision
For most unit processes a weighted average was calculated. If data could be obtained from
literature, these were used as an extra check.

Completeness
All the relevant information and data needed for interpretation are available and complete.

Representativeness
Data reflects the overall situation of 10 oz paper cups in Mexico. Data collection considered
geographic situation and Mexican context along life cycle stages.

36
LCA of disposable cups in Mexico. EPS and coated paper.

Consistency
The LCA methodology was applied consistently in all phases of the study.

Reproducibility
Some data in LCI are confidential; the results reported in the study could be partially reproduced.

Sources of the data


Depending on the type of process different data sources were used: data from a specific process,
average from a specific process, average from all suppliers, or previous LCA information.

Uncertainty
The main causes of uncertainty are the assumptions made. Uncertainty analysis was performed;
the coefficient of variation is less than 11% in all cases, indicating an appropriate model for both
types of cups.

Table 12 summarizes data quality analysis across the life stages of evaluated products.

37

According
place

Average
from data
suppliers

All
relevant
flows
included

According to
confidentiality

Uncertainty

Compliance
with LCA
standards

Sources of the data

Overall
Mexico
situation

Reproducibility

Completeness

Precision

Technology coverage
Average

Consistency

2005
2010

Representativeness

Initial DQ

Geographical coverage

Life Cycle
Stage

Time related coverage

Table 12. Data quality analysis summary.

Companies
and
Mexican
data

Coefficient of
variation less
than 11%

EPS CUPS DATA


Raw material
production
Raw material
transportation
Production

2010

USA

2010

Mexico

2010

Mexico

MEXICANIUH
datasets for
energy

Distribution to
wholesalers

2010

Transport to
consumer

2010

Transport to
end of life

2010

End of life

20052009

Valley of
Mexico and
Guadalajara
Valley of
Mexico and
Guadalajara
Valley of
Mexico and
Guadalajara
Valley of
Mexico and
Guadalajara

MEXICANIUH
datasets

Confidential

COATED PAPER CUPS DATA


Raw material
production

2005 2010

USA

Raw material
transportation
Production

2010

Mexico

2005 2010

Mexico

MEXICANIUH
datasets for
energy

Distribution to
wholesalers

2010

Transport to
consumer

2010

Transport to
end of life

2010

End of life

20052009

Valley of
Mexico and
Guadalajara
Valley of
Mexico and
Guadalajara
Valley of
Mexico and
Guadalajara
Valley of
Mexico and
Guadalajara

MEXICANIUH
datasets

38
LCA of disposable cups in Mexico. EPS and coated paper.

Companies
and
previous
LCA

Companies
and
previous
LCA

4.5.2 Treatment of missing data


Anomalies in information generate data gaps, which were addressed calculating mass and energy
balances. Other gap in information was distances in distribution and end of life stages, in those
cases an average distance was calculated considering the wholesalers site and the main districts
in Valley of Mexico and Jalisco.

4.6 Allocation
The standards ISO 14040 and 14044 (NMX-SAA-14044 and 14044-IMNC-2008) state that allocation
is partitioning the input or output flows of a process or a product system between the product
system under study and one or more other product systems.
Based in the fact that most industrial processes have several outputs at their facilities, allocation
procedures must be explained. According to the standards allocation should be avoided wherever
possible, and physical allocation is preferable to other relations as economic value:

4. Wherever possible, allocation should be avoided by dividing the unit process to be


allocated into two or more sub-processes and collecting the input and output data related
to these sub-processes, or expanding the product system to include the additional
functions related to the co-products
5. Where allocation cannot be avoided, the inputs and outputs of the system should be
partitioned between its different products or functions in a way that reflects the
underlying physical relationships between them
6. Where physical relationship alone cannot be established or used as the basis for
allocation, the inputs should be allocated between the products and functions in a way
that reflects other relationships between them. For example, input and output data might
be allocated between co-products in proportion to the economic value of the products...

Moreover, the facilities considered in the study, manufacture mainly cups of different sizes, but of
the same material. Therefore, the mass (and raw materials) used for every cup was directly
proportional to the product, and physical allocation was possible. So, following the standards,
mass allocation was chosen. The data provided correspond to total productions, so mass
allocations were made considering the average weight of the cups.

39

5. Life Cycle Impact


Assesment (LCIA)

This chapter presents the results of the life cycle impact assessment.

40
LCA of disposable cups in Mexico. EPS and coated paper.

5.1 Impact assessmnet method


According to ISO 14040 and 14044 (NMX-SAA-14040-IMNC-2008 and NMX-SAA-14044-IMNC2008), Classification and Characterization are mandatory elements of any LCIA, with specific
considerations for an LCIA intended to be used in comparative assertions intended to be disclosed
to the public:

An LCIA that is intended to be used in comparative assertions to be disclosed to the public


shall employ a sufficiently comprehensive set of category indicators. The comparison shall
be conducted category indicator by category indicator.

An LCIA shall not provide the sole basis of comparative assertion intended to be disclosed
to the public of overall environmental superiority or equivalence, as additional
information will be necessary to overcome some of the inherent limitations in the LCIA.
Value-choices, exclusion of spatial and temporal, threshold and dose-response
information, relative approach, and the variation in precision among impact categories
are examples of such limitations. LCIA results do not predict impacts on category
endpoints, exceeding thresholds, safety margins or risks.

Category indicators intended to be used in comparative assertions intended to be


disclosed to the public shall, as a minimum, be
scientifically and technically valid, i.e. using a distinct identifiable environmental
mechanism and/or reproducible empirical observation, and
environmentally relevant, i.e. have sufficiently clear links to the category
endpoint(s) including, but not limited to, spatial and temporal characteristics.
Category indicators intended to be used in comparative assertions intended to be
disclosed to the public should be internationally accepted.
Weighting, shall not be used in LCA studies intended to be used in comparative
assertions intended to be disclosed to the public.

Considering all the above, the method chosen was CML midpoint: it accomplishes the mandatory
elements of classification and characterization, it doesnt take into account weighting or other
value choices and the results can be analyzed by each category indicator. CML and the categories
that uses are international accepted, and the methods used are scientific and technically valid. The
ideal method would be one that reflects the local environmental situation, but since there are not
41

yet recognized and scientifically sound LCI methods for the region, it was used the best
methodology available (CML).
All calculations were performed using the SimaPro 7.2 software. SimaPro performs the calculation
of the potential environmental impacts aligned to the ISO 14040 and 14044 requirements. First,
classification is performed. For example, an SO2 emission is classified in the acidification impact
category. The next step is characterization; this involves the conversion of LCI results to common
units and the aggregation of the converted results within the same impact category. This
conversion uses characterization factors included in SimaPro 7.2. The outcome of the calculation is
a numerical indicator result.

5.2 Impact categories analyzed


The impact categories and the factors used are the ones within SimaPro, Table 13 provides the
impact categories analyzed, as well as the reference substance for each potential environmental
impact category.

42
LCA of disposable cups in Mexico. EPS and coated paper.

Table 13. Impact categories analyzed in the study (Goedkoop, Oele, Schryver, & Vieira, 2008).
Impact category

Reference
substance
Sb eq

Description

Acidification
Potential (AP)

SO2 eq

Acidifying substances cause a wide range of impacts on soil, groundwater, surface water, organisms, ecosystems and materials
(buildings). Acidification Potentials (AP) for emissions to air is calculated with the adapted RAINS 10 model, describing the fate
and deposition of acidifying substances. AP is expressed as kg SO2 equivalents/ kg emission. The time span is eternity and the
geographical scale varies between local scale and continental scale. Characterization factors including fate were used when
available. When not available, the factors excluding fate were used (In the CML baseline version only factors including fate
were used). The method was extended for Nitric Acid, soil, water and air; Sulphuric acid, water; Sulphur trioxide, air; Hydrogen
chloride, water, soil; Hydrogen fluoride, water, soil; Phosphoric acid, water, soil; Hydrogen sulfide, soil, all not including fate.
Nitric oxide, air (is nitrogen monoxide) was added including fate.

Eutrophication
Potential (EuP)

PO4 eq

Eutrophication (also known as nutrification) includes all impacts due to excessive levels of macronutrients in th e environment
caused by emissions of nutrients to air, water and soil. Nutrification potential (NP) is based on the stoichiome tric procedure of
Heijungs, and expressed as kg PO4 equivalents/ kg emission. Fate and exposure is not included, time span is eternity, and the
geographical scale varies between local and continental scale.

Global Warming
Potential (GWP)

CO2 eq

Climate change can result in adverse effects upon ecosystem health, human health and material welfare. Climate change is
related to emissions of greenhouse gases to air. The characterization model as developed by the Intergovernmental Panel on
Climate Change (IPCC) is selected for development of characterization factors. Factors are expressed as Global Warming
Potential for time horizon 100 years (GWP100), in kg carbon dioxide/kg emission. The geographic scope of this indicator is
global scale. Some characterization factors were added from the IPCC 2001 GWP 100a method.

Ozone
layer
Destruction
Potential (ODP)

CFC-11 eq

Because of stratospheric ozone depletion, a larger fraction of UV-B radiation reaches the earth surface. This can have harmful
effects upon human health, animal health, terrestrial and aquatic ecosystems, biochemical cycles and on materials. This
category is output-related and at global scale. The characterization model is developed by the World Meteorological
Organization (WMO) and defines ozone depletion potential of different gasses (kg CFC-11 equivalent/ kg emission). The
geographic scope of this indicator is a global scale. The time span is infinity.

Human Toxicity
Potential (HTP)

1,4-DB eq

This category concerns effects of toxic substances on the human environment. Health risks of exposure in the working
environment are not included. Characterization factors, Human Toxicity Potentials (HTP), are calculated with USES-LCA,
describing fate, exposure and effects of toxic substances for an infinite time horizon. For each toxic substance HTPs are
expressed as 1,4-dichlorobenzene equivalents/ kg emission. The geographic scope of this indicator determines on the fate of a
substance and can vary between local and global scale.

Fresh
Water
Ecotoxicity
Potential (WEcP)

1,4-DB eq

This category indicator refers to the impact on fresh water ecosystems, as a result of emissions of toxic substances to air, water
and soil. Eco-toxicity Potential (FAETP) is calculated with USES-LCA, describing fate, exposure and effects of toxic substances.
The time horizon is infinite characterization factors are expressed as 1,4-dichlorobenzene equivalents/kg emission. The
indicator applies at global/continental/ regional and local scale.

Terrestrial
Ecotoxicity
Potential (TEcP)
Photochemical
Ozone Creation
Potential (POCP)

1,4-DB eq

This category refers to impacts of toxic substances on terrestrial ecosystems (see description fresh water toxicity).

C2H4 eq

Photo-oxidant formation is the formation of reactive substances (mainly ozone) which are injurious to human health and
ecosystems and which also may damage crops. This problem is also indicated with summer smog. Winter smog is outside the
scope of this category. Photochemical Ozone Creation Potential (POCP) for emission of substances to air is calculated with th e
UNECE Trajectory model (including fate), and expressed in kg ethylene equivalents/kg emission. The time span is 5 days and
the geographical scale varies between local and continental scale.

Abiotic Depletion
Potential (ADP)

This impact category is concerned with protection of human welfare, human health and ecosystem health. This impact
category indictor is related to extraction of minerals and fossil fuels due to inputs in the system. The Abiotic Depletion Factor
(ADF) is determined for each extraction of minerals and fossil fuels (kg antimony equivalents/kg extraction) based on
concentration reserves and rate of accumulation. The geographic scope of this indicator is a global scale.

43

5.3 Discussion of Results


The outcome of an LCI is the starting point for life cycle impact assessment. The LCI results are
assigned to the selected impact categories (classification) in order to calculate a category indicator
(characterization). The next section presents the results of LCIA.
The comparisons of the LCI results of EPS cups and coated paper cups are quantified by the same
functional unit.

5.3.1 EPS cups LCIA


Figure 11 shows the LCIA of EPS cups. It is observed that the raw materials stage contributes the
most to Abiotic Depletion Potential (ADP), Acidification Potential (AP), Eutrophication Potential
(EuP), Fresh Water Ecotoxicity Potential (WEcP), Terrestrial Ecotoxicity Potential (TEcP), and
Photochemical Ozone Creation Potential (POCP). The potential impact of the six categories
mentioned is due to the process to obtain styrene required to produce the EPS bead. While the
combustion of natural gas in the production stage of the cup causes the greatest impact in the
categories of Global Warming Potential (GWP) and Human Toxicity Potential (HTP). Most of the
Ozone layer Destruction Potential (ODP) is generated during extraction and transportation of
natural gas used in production. The stages of distribution and end of life are contributing less to
the potential impact, which is due to transport from the production plants to wholesalers and
transport packaging material to its end of life.

44
LCA of disposable cups in Mexico. EPS and coated paper.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 11. EPS cups LCIA.

45

Table 14 shows the percentage contributions of each life cycle stage to each potential impact
category.

Potencial impact

Table 14. EPS cups LCIA (1,600,000,000 pieces).


Raw material Production Distribution End of life

Total

ADP
(kg Sb eq)

213,632

199,489

2,792

325

416,238

51.3%

47.9%

0.7%

0.1%

100%

AP
(kg SO2 eq)

59,374

58,823

1,162

186

119,546

49.7%

49.2%

1.0%

0.2%

100%

EuP
(kg PO4 eq)

6,269

2,275

207

38

8,789

71.3%

25.9%

2.4%

0.4%

100%

18,300,984

22,715,103

391,820

46,127

41,454,033

44.1%

54.8%

0.9%

0.1%

100%

ODP
(kg CFC-11 eq)

0.5240

2.7145

0.0617

0.0069

3.3071

15.8%

82.1%

1.9%

0.2%

100%

HTP
(kg 1,4, DB eq)

2,662,648

3,011,620

71,328

7,676

5,753,272

46.3%

52.3%

1.2%

0.1%

100%

WEcP
(kg 1,4, DB eq)

672,072

89,190

15,812

1,420

778,493

86.3%

11.5%

2.0%

0.2%

100%

TEcP
(kg 1,4, DB eq)

17,352

8,407

835

80

26,675

65.0%

31.5%

3.1%

0.3%

100%

3,648

3,157

48

6,861

53.2%

46.0%

0.7%

0.1%

100%

GWP
(kg CO2 eq)

POCP
(kg C2H4 eq)

46
LCA of disposable cups in Mexico. EPS and coated paper.

Figure 12 shows raw materials stage evaluation. It is appreciated that the production of EPS beads
contributes the most to potential impact in seven of the nine categories analyzed. The major
contribution to Abiotic Depletion Potential (ADP), Acidification Potential (AP), Eutrophication
Potential (EuP), Global Warming Potential (GWP), Human Toxicity Potential (HTP), and
Photochemical Ozone Creation Potential (POCP) is due to emissions and waste generated in the
production of styrene, which is the main raw material for the manufacture of the beads. While the
greatest impact to Ozone layer Destruction Potential (ODP) and Terrestrial Ecotoxicity Potential
(TEcP) is caused by oil extraction for fuels required in packaging material transportation.
Furthermore, it is observed that the transport of the EPS bead generates the least potential impact
of the stage of raw material in all categories analyzed.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 12. Evaluation of raw materials stage of EPS cup

47

Figure 13 shows production stage evaluation. It is appreciated that the use of natural gas
generates the greatest impact in seven of the nine categories analyzed. The major contribution to
Abiotic Depletion Potential (ADP) is caused by gas extraction. The greatest impact to
Eutrophication Potential (PEu), Global Warming Potential (GWP) and Human Toxicity Potential
(HTP) is generated by burning fuel during cup production, which also contributes to Photochemical
Ozone Creation Potential (POCP). Moreover, the extraction and transport of natural gas contribute
the most to Ozone layer Destruction Potential (ODP). Regarding Fresh Water Ecotoxicity Potential
(WEcP) and Terrestrial Ecotoxicity Potential (TEcP) the waste generated during gas production
causes the greatest impact. While the largest contribution to Acidification Potential (AP) and
Photochemical Ozone Creation Potential (POCP) is due to the generation of electrical energy
mainly. In Figure 13, other, includes solid waste and water emissions generated during cup
production. These outputs and the water consumption cause the least impact on the production
stage for categories analyzed.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 13. Evaluation of production stage of EPS cups.

48
LCA of disposable cups in Mexico. EPS and coated paper.

Figure 14 shows distribution stage evaluation. It shows that transportation to wholesalers


generates the greatest potential impact on all categories analyzed. Abiotic Depletion Potential
(ADP) and Ozone layer Destruction Potential (ODP) are mainly due to the oil extraction for fuel.
Acidification Potential (AP), Eutrophication Potential (PEu), Global Warming Potential (GWP) and
Photochemical Ozone Creation Potential (POCP) are caused by the fuel burning during vehicle
operation. Human Toxicity Potential (HTP), Fresh Water Ecotoxicity Potential (WEcP), and
Terrestrial Ecotoxicity Potential (TEcP) are due to the manufacturing of the vehicles used in the
distribution.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 14. Evaluation of distribution stage of EPS cups.

49

Figure 15 shows end of life stage evaluation. It is observed that the transport of packaging
materials to end of life (bag to landfill and box to recycling) generates the most impact in six of the
nine categories analyzed. The major contribution to Abiotic Depletion Potential (ADP) and Ozone
layer Destruction Potential (ODP) is due to oil extraction for fuel required. The biggest impact to
Global Warming Potential (GWP) is due to fuel burning during vehicle operation. The biggest
impact to Human Toxicity Potential (HTP), Fresh Water Ecotoxicity Potential (WEcP), and
Terrestrial Ecotoxicity Potential (TEcP) is caused by the emissions generated in the production of
fuel. While the major contribution to Acidification Potential (AP), Eutrophication Potential (PEu)
and Photochemical Ozone Creation Potential (POCP) is due to the operation of machinery for cup
disposal in landfill.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 15. Evaluation of end of life stage of EPS cups

50
LCA of disposable cups in Mexico. EPS and coated paper.

5.3.2 Coated paper cups LCIA


Figure 16 shows coated paper cups LCIA. It shows that raw materials stage contributes the most in
all categories analyzed, due to coated SBB production. The production and distribution stages
contribute the less to coated paper cups potential impact. The potential impact of manufacturing
stage is due to power consumption, whereas distribution stage impact corresponds to cups
transport from the manufacturing plant to wholesalers. It is appreciated that the end stage of life
has a significant contribution in the categories of Global Warming Potential (GWP) and
Photochemical Ozone Creation Potential (POCP).

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 16. Coated paper cups LCIA.

51

In Table 15 the percentage contribution is shown.

Potencial impact

Table 15. Coated paper cups LCIA (1,600,000,000 pieces).


Raw material Production
Distribution
End of life

Total

ADP
(kg Sb eq)

277,479

16,726

4,188

297

298,689

92.9%

5.6%

1.4%

0.1%

100%

AP
(kg SO2 eq)

179,974

25,552

2,040

335

207,901

86.6%

12.3%

1.0%

0.2%

100%

EuP
(kg PO4 eq)

34,030

378

388

211

35,007

97.2%

1.1%

1.1%

0.6%

100%

GWP
(kg CO2 eq)

58,906,533

1,582,748

585,930

34,734,688

95,809,900

61.5%

1.7%

0.6%

36.3%

100%

ODP
(kg CFC-11 eq)

2.5521

0.1625

0.0927

0.0052

2.8126

90.7%

5.8%

3.3%

0.2%

100%

HTP
(kg 1,4, DB eq)

11,150,779

153,226

107,127

13,536

11,424,669

97.6%

1.3%

0.9%

0.1%

100%

WEcP
(kg 1,4, DB eq)

2,438,439

8,143

23,595

617

2,470,795

98.7%

0.3%

1.0%

0.0%

100%

TEcP
(kg 1,4, DB eq)

176,213

712

1,247

29

178,201

98.9%

0.4%

0.7%

0.0%

100%

8,791

1,042

80

8,259

18,172

48.4%

5.7%

0.4%

45.5%

100%

POCP
(kg C2H4 eq)

52
LCA of disposable cups in Mexico. EPS and coated paper.

Figure 17 shows raw material stage evaluation. It shows that coated SBB generates the greatest
potential impact on all categories analyzed. The largest contribution to t Abiotic Depletion
Potential (ADP) is due to fuel extraction for coated SBB. The biggest impact to Acidification
Potential (AP), Eutrophication Potential (PEu), Human Toxicity Potential (HTP) and Fresh Water
Ecotoxicity Potential (WEcP) is caused by air emissions, water discharges and pulp production for
SBB manufacturing. The largest contribution to Global Warming Potential (GWP) and
Photochemical Ozone Creation Potential (POCP) is due to air emissions and electricity
consumption for SBB production. The biggest impact to Ozone layer Destruction Potential (ODP)
corresponds to oil extraction for fuels required in the manufacture of paper. As for Terrestrial
Ecotoxicity Potential (TEcP), the biggest impact comes from the solid waste generated in SBB
production. It is observed that SBB transport ranks second in terms of contribution to the potential
impact, followed by the manufacturing of packaging material, and finally, the transport of the
latter represents the least impact on raw material stage in all categories analyzed.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 17. Evaluation of the raw material stage of the coated paper cups.

53

Figure 18 shows the production stage evaluation. It is appreciated that the generation and
consumption of electricity for cups manufacture causes the largest potential impact in all
categories analyzed. The largest contribution to Abiotic Depletion Potential (ADP) and Human
Toxicity Potential (HTP) is due to oil extraction for fuel needed to generate electricity. The biggest
impact to Acidification Potential (AP), Eutrophication Potential (PEu), Global Warming Potential
(GWP), Fresh Water Ecotoxicity Potential (WEcP), Terrestrial Ecotoxicity Potential (TEcP), and
Photochemical Ozone Creation Potential (POCP) is due to coal and natural gas burning for
electricity generation. Ozone layer Destruction Potential (ODP) is due to natural gas transport to
power generation sites. It is also observed that the energy for packaging and transport of waste
represents the lowest impact of the production stage in all categories analyzed.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 18. Evaluation of the production stage of the coated paper cups.

54
LCA of disposable cups in Mexico. EPS and coated paper.

Figure 19 shows distribution stage evaluation. It shows that transportation to wholesalers


generates the greatest potential impact on all categories analyzed. Abiotic Depletion Potential
(ADP) and Ozone layer Destruction Potential (ODP) are mainly due to the oil extraction for fuel.
Acidification Potential (AP), Eutrophication Potential (PEu), Global Warming Potential (GWP) and
Photochemical Ozone Creation Potential (POCP) are caused by fuel burning during vehicle
operation. Human Toxicity Potential (HTP), Fresh Water Ecotoxicity Potential (WEcP), and
Terrestrial Ecotoxicity Potential (TEcP) are due to the manufacturing of the vehicles used in the
distribution.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 19. Evaluation of the distribution stage of the coated paper cups.

55

Figure 20 shows end of life stage evaluation. It shows that SBB from cups in landfill generates the
greatest potential impact on six of the nine categories analyzed. The greatest impact to Abiotic
Depletion Potential (ADP) and Ozone layer Destruction Potential (ODP) are due to fuel extraction
required in the operation of the landfill. The largest contribution to Acidification Potential (AP) is
caused by fuel burning to operate machinery at the landfill. The greatest impact of Eutrophication
Potential (PEu), Global Warming Potential (GWP), Human Toxicity Potential (HTH) and
Photochemical Ozone Creation Potential (POCP) are generated by cups emissions in the landfill.
While major contribution to Fresh Water Ecotoxicity Potential (WEcP) and Terrestrial Ecotoxicity
Potential (TEcP) are due to cups transport disposal site. It is also noted that cups PE film end of
life, packaging materials and their transport generate the least impact of this stage in all categories
analyzed.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 20. Evaluation of the end of life stage of the coated paper cups.

56
LCA of disposable cups in Mexico. EPS and coated paper.

5.3.3 EPS cups and coated paper cups LCIA


Figure 21 presents LCIA of the cups analyzed in the study. It is observed that coated paper cups
have greater potential impact on seven of the nine categories analyzed, which is generated by the
manufacture of coated SBB. EPS cups generate greater impact to Abiotic Depletion Potential
(ADP), caused by obtaining styrene to produce EPS beads and Ozone layer Destruction Potential
(ODP) due to the extraction and transportation of natural gas used in cups manufacture.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 21. EPS cups and coated paper cups LCIA.

57

Table 16. EPS cups and coated paper cups LCIA (1,600,000,000 pieces).
Potencial impact

EPS cups

Coated paper cups

ADP (kg Sb eq)

416,238

298,689

AP (kg SO2 eq)

119,546

207,901

8,789

35,007

41,454,033

95,809,900

ODP (kg CFC-11 eq)

3.3071

2.8126

HTP (kg 1,4, DB eq)

5,753,272

11,424,669

WEcP (kg 1,4, DB eq)

778,493

2,470,795

TEcP(kg 1,4, DB eq)

26,675

178,201

6,861

18,172

EuP (kg PO4 eq)


GWP (kg CO2 eq)

POCP (kg C2H4 eq)

58
LCA of disposable cups in Mexico. EPS and coated paper.

6. Interpretation

This chapter discusses the results of the LCIA, to reach understandable and complete analyses
consistent with the goal and scope of the study. It shows the sensitivity analysis for different
weights of the cup, natural gas and electricity consumption, as well as the percentage of cups
taken to landfill. Finally, it presents the results of the uncertainty analysis.

59

6.1 Summary of results


Figure 22 shows the main results of LCIA. It is observed that coated paper cups have greater
potential impact in seven of nine categories analyzed.
Potencial impact

EPS cups

Coated paper cups

ADP (kg Sb eq)

416,238

298,689

AP (kg SO2 eq)

119,546

207,901

8,789

35,007

41,454,033

95,809,900

ODP (kg CFC-11 eq)

3.3071

2.8126

HTP (kg 1,4, DB eq)

5,753,272

11,424,669

WEcP (kg 1,4, DB eq)

778,493

2,470,795

TEcP(kg 1,4, DB eq)

26,675

178,201

6,861

18,172

EuP (kg PO4 eq)


GWP (kg CO2 eq)

POCP (kg C2H4 eq)


ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 22. Summary of LCIA results.

Table 17 presents a summary of main LCIA findings of both types of cups.


Table 17. Key findings of LCIA results.

Life cycle stage


Raw materials

Production

Distribution

End of life

EPS cups key findings


Stage that generates greater
potential environmental impacts
mainly due to the styrene
production process.
Use of natural gas causes the
greatest potential impacts.

Coated paper cups key findings


Stage that generates greater potential
impact, due to production process of
SBB.

Transport from production plants to


wholesalers generates the greatest
impact of the distribution stage,
which is due to fossil fuels required.
Stage that generates less potential
impact.

Transport from production plants to


wholesalers generates the greatest
impact of the distribution stage, which
is due to fossil fuels required.
SBB in landfills has significant
contributions in Global Warming
Potential (GWP) and Photochemical
Ozone Creation Potential (POCP).

Use of electricity causes the greatest


potential impacts.

6.2 Sensitivity analysis


The sensitivity analysis is important to the interpretation of results, because it allows seeing the
way that results may vary or change due to some variables of the study.
60
LCA of disposable cups in Mexico. EPS and coated paper.

The LCIA results show that EPS bead production and natural gas consumption are the aspects that
contribute most to potential impact of EPS cups, in terms of coated paper cups LCIA shows that
coated SBB production, electricity consumption and disposal of paper in landfill are the issues with
greater impact. According to that, it was performed a sensitivity analysis for weight of both types
of cups, consumption of gas and electricity, as well as the number of cups that are carried to the
landfill.
Figure 23 shows sensitivity analysis varying EPS cups weight (between 2.0 and 3.2 g), the dotted
line indicates the mean value considered in the study (2.6 g) and the orange line shows the paper
cup impact without variation (9.2 g). The limits of the range were selected according to EPS cups
(10 oz.) weight variation in Mexican market. It is noted that in case cup weighs less than 2.0 g
Abiotic Depletion Potential (ADP) would be lower than paper cups, regarding Ozone layer
Destruction Potential (ODP) is noted that if EPS cup weighs less than 2.2, then impact is smaller
than the other cups. For other impact categories, EPS cups potential impact remains below paper
cup impact along parameter variation.
Figure 24 shows sensitivity analysis varying natural gas consumption in EPS cups production
(between 0.09 and 0.36 MJ/cup), the dotted line indicates the average value considered in the
study (0.18 MJ/cup) and the orange line shows coated paper cups impact without variation, as a
reference. The limits of the range were selected according to variation of natural gas consumption
reported in other sources. It is appreciated that if EPS cup production consumes less than 0.09
MJ/cup Abiotic Depletion Potential (ADP) would be lower than paper cups, regarding Ozone layer
Destruction Potential (ODP) shows that if EPS cups production consumes less than 0.13 MJ/cup
the impact is less than that of other cups. For other impact categories, EPS cups potential impact
remains below paper cups impact along parameter variation.
Figure 25 shows sensitivity analysis varying paper cup weight (between 8.6 and 9.8 g), the dotted
line indicates the average value considered in the study (9.2 g) and the blue line shows EPS cups
impact without variation in the weight (2.6 g). The limits of the range were selected according to
coated paper cups (10 oz.) weight variation in Mexican market. It is appreciated that in all the
categories, coated paper cups potential impact remains above EPS cups impact along parameter
variation.
Figure 26 shows sensitivity analysis of electrical energy consumption for SBB coating (between 1.0
and 4.0 Wh /cup), the dotted line indicates the mean value considered in the study (2.0 Wh /cup)
and the blue line shows EPS cups impact without variation. The limits of the range were selected in

61

order to verify effect in results reducing 50% or increasing 100% electric consumption.

It is

appreciated that in all the categories, paper cups potential impact remains above EPS cups impact
along parameter variation.
Figure 27 shows sensitivity analysis varying electric consumption in coated paper cups production
(between 5.0 and 20.0 Wh/cup), the dotted line indicates the average value considered in the
study (10.0 Wh/cups) and the blue line shows the impact of EPS cups without variation, as a
reference. The limits of the range were selected in order to verify effect in results reducing 50% or
increasing 100% electric consumption. It is appreciated that if paper cup production consumes
more than 16.25 Wh/cup Abiotic Depletion Potential (ADP) would be greater than EPS cups,
regarding Ozone layer Destruction Potential (ODP) shows that if paper cup production consumes
over 12.5 Wh/cup the impact is greater than that of other cups. For other impact categories,
coated paper cups potential impact remains above EPS cups impact along parameter variation.
Figure 28 shows sensitivity analysis varying percentage of cups carried to landfill and considering
that the amount not disposed at this site was sent to recycling. In the study was considered that
99.5% of EPS cups are carried to landfill, whereas in the case of paper cups 100% are disposed
there. It is observed that in all the categories, coated paper cups potential impact remains above
EPS cups impact along parameter variation, but there is a substantial reduction of potential impact
decreasing the amount of cups carried to landfill and increasing the number of cups sent to
recycling.

62
LCA of disposable cups in Mexico. EPS and coated paper.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 23. Sensitivity analysis for EPS cup weight (1,600,000,000 pieces).

63

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 24. Sensitivity analysis for natural gas consumption in EPS cups production (1,600,000,000 pieces).

64
LCA of disposable cups in Mexico. EPS and coated paper.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 25. Sensitivity analysis for paper cup weight (1,600,000,000 pieces).

65

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 26. Sensitivity analysis for electricity consumption in SBB coating (1,600,000,000 pieces).

66
LCA of disposable cups in Mexico. EPS and coated paper.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 27. Sensitivity analysis for electricity consumption in coated paper cups production (1,600,000,000
pieces).

67

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 28. Sensitivity analysis of EPS and paper cups percentage disposed in landfill (1,600,000,000 pieces).

68
LCA of disposable cups in Mexico. EPS and coated paper.

6.3 Uncertainty analysis


Uncertainty analysis is a systematic procedure to find and quantify the uncertainty introduced into
a LCI, due to the cumulative effects of the inaccuracy of the model inputs and data variability
(IMNC, 2008).
The uncertainty in the data can be expressed as a standard deviation. The Monte Carlo statistical
method is used to assess the uncertainty of the results of an LCA, establishing a range for the
potential impact values calculated. Figure 29 shows graphically the results of the uncertainty
analysis for EPS cups, where 100% represents the average result of the analysis and the blue lines
the magnitude of the variation range.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 29. EPS cups uncertainty analysis.

Table 18 shows numerical results of EPS cups uncertainty analysis, which shows that the average
result obtained with the Monte Carlo method is similar to LCIA, moreover, the coefficient of
variation for all impact categories is less than 10%. Also it shows minimum (2.50%) and maximum
(97.50%) of the result with a confidence interval of 95%.
69

Table 18. Uncertainty analysis results of EPS cups (1,600,000,000 pieces).


Impact Category

LCIA result

Mean

ADP

416,766

432,000

AP

119,658

118,386

EuP

8,807

Standard
Deviation

2,130,000

41,300,000

ODP

3.3104

3.3100

HTP

5,778,247

5,759,416

WEcP

779,856

776,719

TEcP

26,759

26,675

POCP

6,873

3.99%

4,725
492

41,487,930

7.23%

31,200

8,720

GWP

Coefficient of
variation

5.64%
5.17%
4.73%

0.1567

4.53%

261,010

6.58%

51,125

4.46%

1,190

6,791

7.08%

481

2.50%

97.50%

396,000

453,000

112,922

121,801

8,350

9,280

40,000,000

43,700,000

3.1286

3.4234

5,468,209

5,985,909

725,831

827,607

25,463

27,888

6,274

7,226

Figure 30 shows graphically results of uncertainty analysis for paper cups, where 100% represents
the average result of the analysis and the orange lines the magnitude of the variation range.

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 30. Coated paper cups uncertainty analysis.

70
LCA of disposable cups in Mexico. EPS and coated paper.

Table 19 shows numerical results of coated paper cups uncertainty analysis, which shows that the
average result obtained with the Monte Carlo method is similar to LCIA, moreover, the coefficient
of variation for all impact categories is less than 11%. Also it shows minimum (2.50%) and
maximum (97.50%) of the result with a confidence interval of 95%.
Table 19. Uncertainty analysis results of coated paper cups (1,600,000,000 pieces).
Impact Category
ADP
AP
EuP
GWP
ODP
HTP
WEcP
TEcP
POCP

LCIA result
298,689
207,901
35,007
95,809,900
2.8126
11,424,669
2,470,795
178,201
18,172

Mean
299,625
205,972
34,619
94,400,000
2.8536
11,307,048
2,468,799
181,772
19,500

Mediana
265,000
196,000
33,000
93,700,000
2.9000
11,000,000
2,500,000
185,000
20,300

StandarD
deviation
31,590
10,347
1,909
2,680,000
0.1996
762,092
245,989
14,641
1,850

Coefficient
of variation
10,5%
5,02%
5,51%
2,84%
6,99%
6,74%
9,96%
8,05%
9,49%

2.50%

97.50%

263,814

319,919

194,047

212,476

32,476

36,013

92,200,000

97,400,000

2.6490

3.0479

10,538,608

12,075,488

2,197,096

2,676,768

168,385

197,272

17,300

20,700

Finally, Figure 31 shows uncertainty analysis for both types of cups. It notes that it is more likely
that EPS cups potential impact be less in eight categories of impact, while Abiotic Depletion
Potential (ADP) is more likely to be lesser for paper cups.

71

ADP

Abiotic Depletion Potential

GWP Global Warming Potential

WEcP

Fresh Water Ecotoxicity Potential

AP

Acidification Potential

ODP

Ozone layer Destruction Potential

TEcP

Terrestrial Ecotoxicity Potential

EuP

Eutrophication Potential

HTP

Human Toxicity Potential

POCP

Photochemical Ozone Creation Potential

Figure 31. Uncertainty analysis of both EPS and coated paper cups.

6.4 Evaluation
The objective of evaluation element within Life Cycle Interpretation is to establish and enhance
confidence and reliability of the results of the LCA. The following techniques were considered in
the study:

Completeness: All the relevant information and data needed for interpretation are available and
complete.

Sensitivity: uncertainties in the data like variation in cups weight, natural gas consumption,
electric energy consumption and percentage of recycling at end of life stage do not affect the
overall LCIA results. Sensitivity analysis was performed on detected key parameters like: amount
of raw material (cups weight), fuel and energy, and end of life recycling. Uncertainty analysis was
performed; the coefficient of variation is less than 11% in all cases, indicating an appropriate
model for both types of cups.
72
LCA of disposable cups in Mexico. EPS and coated paper.

Consistency: The assumptions, methodology and data are consistent with the goal and scope of
the study. Data quality is consistent along the product system life cycle and between different
products analyzed.

73

7. Conclusions, limitations
and recommendations
This chapter sets out the findings of the study, limitations related to the interpretation of results
and recommendations from the analysis.

74
LCA of disposable cups in Mexico. EPS and coated paper.

Conclusions

EPS cups
The production of raw materials is the stage of the life cycle of EPS cups that generates greater
potential environmental impacts mainly due to the styrene production process.
In the EPS production, the use of natural gas contributes to the greatest potential impact.
Transport of EPS cups from the production plants to the central distribution center is what
generates the greatest impact of the distribution stage, which is due to fossil fuels required to
transport the product.
The end of life of EPS cups is the stage of the cycle that generates less potential impact

Coated paper cups


For coated paper cups, raw material procurement is the life cycle stage that generates greater
potential impact, which is due to production process SBB.
In the production stage of laminated paper, the use of electricity causes the greatest potential
impacts.
The transport of coated paper cups from the production plant to the central distribution center
causes the greatest impacts, due to fossil fuels required to transport the product.
SBB in landfills has significant contributions in Global Warming Potential (GWP) and
Photochemical Ozone Creation Potential (POCP).

Overall the coated paper cup presents higher potential impacts on seven of the nine categories
evaluated, while the EPS cup is higher in Abiotic Depletion Potential (ADP), due to the EPS bead
production and in Ozone layer Destruction Potential (ODP), caused by the extraction and transport
of natural gas.

It is observed that the conclusions of this LCA study are similar to other studies:
d. The conclusion that no system has total environmental advantages over others
(VITO,2006; Vercalsteren, Spirinckx, & Geerken, 2010)). In this study, neither EPS cups nor
coated paper cups stands out in all the categories evaluated with CML method. However,
EPS cups have less impact in seven of nine categories analyzed.

75

e. The important role of end of life scenarios in the results, (Horvath & Chester,2009;
Hkkinen & Vares, 2010). Results of this study considering solely Global Warming category
show that the less coated paper disposed in landfill impact in Global Warming potential
decreases.
f.

Relevance of energy and water consumption. Franklin Associates LTD (2011) evaluated
foam polystyrene, paper based and PLA foodservice products. The overall results show EPS
products use much less energy and water when compared to their paper and PLA versions.
This study shows energy consumption in the production stage is greater for EPS cups.
However, considering all stages coated paper cups require more energy than EPS cups.
Concerning to water, coated paper cups do not have water consumption in the production
stage. Nevertheless, in the same way as with energy, coated paper cups consume more
water across their life cycle.

The limitations associated with the interpretation of results


LCA results are based on a relative approach, they indicate potential environmental effects, and do
not predict actual impacts on category endpoints, the exceeding thresholds or safety margins or
risks.
The main limitations associated with the interpretation of results reside in the uncertainties
generated in LCI. Table 20 presents the limitations associated to uncertainty in the models.
Table 20. Summary of limitations associated with interpretation.

Life cycle stage


Raw materials
Production

Distribution

EPS cups limitations


EPS beads LCI was adapted to US
conditions.
Data obtained for modeling this
stage has variations on fuel
consumptions, thus sensitivity
analysis was performed.
Average distances were
calculated to main sites in areas
considered.

Coated paper cups limitatiosn


Data related with SBB production was
obtained of international data bases.
Data were obtained with less detail than
EPS cups data, and some was adapted
from literature.
Average distances were calculated to
main sites in areas considered.

Recommendations
After the findings of the present study, it is strongly recommended to promote recycling for both
EPS cups and coated paper cups.

76
LCA of disposable cups in Mexico. EPS and coated paper.

8. Critical review

77

Critical Review Panel Comments March 18, 2013


Life Cycle Assessment of Disposable Cups in Mexico (Expanded Polystyrene and Coated
Paper)
Commissioned by ANIQ, Report 2012
Key Findings:
Are the methods used to carry out the study scientifically and technically valid?
Yes, though more documentation throughout the report is needed
Are the data used appropriate and reasonable in relation of the goal of the study?
Yes
Do the interpretations reflect the limitations identified and the goal of the study
Yes
Is the report transparent and consistent?
No, the information given in the report is incomplete
Practitioner response- Key findings: Our team at the Center for LCA and Sustainable
Design (CADIS), as practitioners of the study: Life Cycle Assessment of disposable cups
in Mexico -Expanded polystyrene (EPS) and coated paper, greatly appreciate the critical
review panel feedback and comments.
As one of the key findings relates to information presented in the report of the study, we
have made all the necessary inclusions and explanations so that transparency,
consistency and quality are assured, while the confidentiality of the information provided
by many sources is also considered.
The report has been updated following each specific comment and recommendation
received; you will find the answers below.
General Comments:
If in addition to evaluating the environmental performance of EPS cups the study
also proposes to do an LCA of paper cups covered with PE, it would be important
to include in topic 1.3 some data on the marketing of this product, as well as
statistics on the acquisition of PE nationwide.
Practitioners response: Current section 1.1.1 Description and current status of
disposable cups market in Mexico includes only general statistics of sales of
disposable EPS cups in Mxico, unfortunately information for paper cups was not
found. The section does not include statistics on raw materials, as per specific
comments from review panel regarding the removal of these statistics tables.

Since this is a comparative assertion study, extra care should be done in explaining
in clear terms the steps taken to meet the ISO requirements in doing such a
comparison. This would not be an endorsement of results necessarily, but a
validation that the process followed was consistent with ISO.

78
LCA of disposable cups in Mexico. EPS and coated paper.

Practitioners response: Careful review of wording and explanations has been


carried out.

While this is a Presentation issue many of the tables/data can perhaps be


summarized or shown in either a reordered or summarized format (see Specific
Comments).
Practitioners response: The specific comments have been followed regarding this
general comment.

An LCA really doesnt get into any marketing or legislative issues so we need to
make sure that is stated so as not to confuse the audience. Were also limited in
scope of two material substrates (EPS, coated paper) and two cup applications
hot and cold. So the comparisons should be made clear to the reader that this is
what this particular report covers not all EPS or coated paper food packaging
applications, and not non-EPS or non-coated paper alternatives.
Practitioners response: We agree that LCA does not get into marketing or
legislation, but for these study these is important background information. Also, it
has been clearly stated that the focus of the report and the results are only for the
two cup applications.

Overall, an excellent effort. In general, more data transparency would be helpful.


Practitioners response: We appreciate this general comment, and have ensured
transparency to the level possible to not compromise confidentiality from the
sources.

It would be interesting to indicate what kind of advantages Mexican industry of


plastics aims to provide with the innovative products as compared to traditional
materials but is probably outside the scope of this study.
Practitioners response: This is indeed outside of the scope of the study.

Indicate that for the phase of goal definition of a LCA study it should be clearly
established. The reasons for carrying out the study; its intended applications; its
target audience; and statement of intent to support comparative assertion to be
disclosed to the public. As for scope definition, the text must to be complemented
by pointing that some other essential elements the study - such as functional unit;
data quality requirements; the selected life cycle impact assessment (LCIA) model,
and limitations of the study - are also established;
Practitioners response: We have carefully followed all the specific comments
regarding the goal and scope, although the mentioned essential elements were
already included in the report, as mandatory elements of an LCA.

Add that the LCI comprises the quantification of input and output flows of material
and energy which cross the boundaries of the product system.
Practitioners response: this sentence has been added.

Replace the term "significance" for "effect";


Practitioners response: It has been replaced.

79

Indicate all the bibliography of which were collected laws, amendments, and legal
provisions established for EPS. Not sure if the legislative history is applicable the
study is primarily a straight LCA regardless of policy.
Practitioners response: the legislative situation in the country is one of the main
reasons the study was commissioned, and it was also an important background for
the commissioner. The bibliography was referenced in the report, Muoz, et.al,
2012. (Muoz, G. & Albarrn, F., 2012)

In Hanna Ziada (2009) it were not informed the Functional unit" and the "Impact
categories" analysed in that study.
This gap contradicts the text of the introduction of the topic 1.5. It is suggested to
remove the citation.
Practitioners response: although the study was included, it was stated that it was
not an LCA study, therefore no information on the functional unit and impact
categories was found.

It has been removed from the literature review, as

suggested.

If in addition to evaluating the environmental performance of EPS cups, the study


also proposes to do an LCA of paper cups covered with PE, it would be important
to include in topic 1.3 .
Practitioners response: the section with market information has been updated, now
1.1.1 and care has been taken to provide as much information for each type of cup
as it was possible to find in the literature and statistics.

It is suggested a general review of expression to the English language be


performed on the text.
Practitioners response: the report has been translated into English for critical
review purposes, but following this suggestion the general review English language
was done.

Topic 4.3 was not found in the text that comprises chapter 4, entitled "Life Cycle
Inventory Analysis"
Practitioners response: the numbering has been corrected, there was no section
missing but a numbering issue.

Practitioner response - General: General comments are attended through specific


comments. In general we have included the formatting requested. It is important to
mention that the section related to market and legislation is an important one for ANIQ and
as background to the study, although we understand it is not part of the normative
requirements, it is included for this purpose.
Additionally, and with respect to language and use of clear terminology to express the
results of the study, extra care has been taken; it is important to clarify that the report has
been written in both English and Spanish, and that some lack of clarity might have been
lost in the English translation; this general comment and recommendation has been
carefully followed throughout the report in both languages.
80
LCA of disposable cups in Mexico. EPS and coated paper.

Specific Comments:
ISO Requirement: General Aspects - LCA Commissioner, practitioner of LCA
(internal or external)
Background, page 2: it is not clear why the study was commissioned by ANIQ: to
support internal decision on innovations and production decisions, or to provide
regulatory mechanisms with sound information for policy making regarding EPS, or
both?: Please clarify the intended audience and potential uses for this study
(independent if this is clarify later in the report, it should be also included here to
provide the reader with a more specific perspective of the work done)
Practitioner response: The intended audience and potential uses for the study are further
clarified and explained in the Introduction section.
The primary intended use of the study is to provide ANIQ with more complete information
about the environmental burdens from the life cycle of disposable EPS and coated paper
cups. The intended audience of the study is ANIQ associates and consumers (including
regulators).

Dissemination private. Will this study be publicly available on either ANIQs or


CADIS website? If so, should take off dissemination private statement

Practitioner response: The dissemination status is changed to Public. ANIQ is


responsible for the dissemination procedure.

ISO Requirement: General Aspects - date of the report


Change report date from 2012 to April 2013 Title is okay (perhaps include EPS
after term, expanded polystyrene)
Practitioner response: The study concluded in 2012 and due to contract requirements it is
important to keep the date. Clear indication of the date of report after critical review is
included in page i, as April 2013. EPS acronym has been added in the title.

We suggest incorporating an Introduction section after the Background one, in


which the purpose of the report, as well as the intended audience (see previous
comments), its potential uses, methodology (according to the ISO standards ) and
other important issues, such as this study underwent critical review and the date of
completion, is clearly stated (and not in the background section).
Practitioner response: Introduction section is incorporated, including the suggested items
(new Section 1.3 of report).
The completion date of the report does not appear indicated in the document. We
suggest adding this information in a suitable and visible place at the end of Chapter
1.
Practitioner response: The completion date of the report is included in page i, and it was
previously indicated in the front page - December 2012.
81

ISO Requirement: General Aspects - statement that the report has been conducted
according to the requirements of ISO applicable standards (14040/14044)

Met requirement by stating the report is conducted under the requirements and
framework by ISO 14040 and 14044
Include this statement in the Introduction
Practitioner response: The report had the statement in the Background section, but now it
is incorporated in 1.3 Introduction, as suggested.
The statement that the report has been conducted according to the requirements of
ISO applicable standards (14040/14044) does not appear indicated in the text. We
also suggest adding this information in a suitable and visible place at the
introduction of Chapter 3.
Practitioner response: The statement was included but it is now it is placed according to
reviewers suggestion, and also in Chapter 3.
ISO Requirement: Goal of the study reasons for carrying out the study.
Reason for study could be more clear what and who exactly are the target
audiences. It is only slightly mentioned in the paragraph critical review. Include
this in a standalone point in the section Goal of the study.
Practitioner response: A section specifying the reasons for carrying out the study is added.

We suggest the statement of the purpose of the study, which is indicated at the
introduction of Chapter 2, should be complemented with other normative elements
of "Goal definition" phase of an LCA: the Reasons for carrying out the study; its
target audience; and the statement of intent to support comparative assertion to be
disclosed to the public.
Practitioner response: The statement of the purpose of the study is complemented with the
suggested items.

We suggest title of this section be, Laws and regulations EPS packaging
initiatives

Practitioner response: Title is changed as suggested.


ISO Requirement: Goal of the study its intended applications

If we are just focusing on EPS cups, do we need Table 3 which would show all
EPS imports to U.S.?
Practitioner response: The section has been rearranged and tables were removed
according reviewers comments.

Do we have a similar table for coated paper cups either imported or manufactured
in Mexico? If not, perhaps the tables should be removed if only for one material.

82
LCA of disposable cups in Mexico. EPS and coated paper.

Practitioner response: Unfortunately our country statistics did not include information for
paper cups, therefore tables are removed following the suggestion.
ISO Requirement: Goal of the study its target audience

There needs to be a clear statement as to the intended audience which could be


multiple stakeholders regulators, consumers, food vendors, and NGO groups
logical place would be on page 4 before 1.3 or perhaps on page 11... The line on
top of page 11 The goal of study is to determine the potential impacts in the life
cycle of EPS cups and coated papers should be expanded perhaps we can
suggest language like this, The primary intended use of the study results is to
provide ANIQ with more complete information about the environmental burdens
and greenhouse gas impacts from the life cycle of disposable EPS and Coated
Paper products. A secondary intended use is public release of the study. The LCA
has been conducted following internationally accepted standards for LCI
methodology. Before the study is made publicly available, the completed report will
be peer reviewed by an independent critical review panel in accordance with ISO
standards for life cycle assessment.
Practitioner response: The intended audience and uses are further explained in an
additional section 2.2 Reasons to carry out the study.

Its not clear that this report might have been commissioned by ANIQ for evaluating
future regulation of disposables. For example (from past studies involving the
copper industry), this report produces a lot of information will governments do
something with the results? There should be a description of all the intended
audiences including the government and a path for communication on how to
deliver and publish this study.

Practitioner response: As mentioned above this has been further explained, since the path
for communication or publications is not responsibility of the practitioner, it has been
clearly stated that ANIQ will plan and decide on their communication strategy.
ISO Requirement: Goal of the study statement of intent to support comparative
assertion to be disclosed to the public

It is fine as it is mentioned in the paragraph regarding the critical review process.


Could be interesting to link this purpose to the many studies done and included in
table 4, for it will give a context about the contribution of the present study and then
what is expected out from the intended comparative assertions.

Practitioner response: A paragraph is added in section 2.2, in order to incorporate this


suggestion.

We also suggest there be a statement this study does include comparative


assertion information, and follows the ISO 14040 additional standards with respect
to comparative assertions.

Practitioner response: The statement is included.

83

ISO Requirement: Scope of the study function, including performance characteristics


and any omission of additional functions in comparisons.

Perhaps Sections 3.2 and 3.3 can be combined and shortened Functional Unit
and Reference Flow. Its not clear whether the functional unit is number of cups
(1.6 billion) or 10 ounces hot and cold (equivalent amount of liquid). Need to be
clearer on the functional unit - The function of a disposable foodservice cup is
to hold a serving, 10 ounces in this case, of food or beverage for a single use
application. Is it 2009 or 2010 10 oz, not total # cups of cups data.
Practitioner response: Sections 3.2 and 3.3 are reorganized as suggested in order to be
clearer on the functional unit and reference flow.

It is important to clarify the reasons for the Period of Time employee in the
definition of "function" (shown in Table 5) has been determined as 2009-2010.
Likewise, it is necessary to explain the reason for that year 2010 was selected as
the measurement period for consumption of EPS cups. For this, we recommend to
use information shown in Figure 5.
Practitioner response: This item is clarified.
ISO Requirement: Scope of the study functional unit, including consistency with goal
and scope, definition, result of performance measurement
Yes, It is consistent with the goal and scope of the study
Practitioner response: We appreciate the comment.

1.3 first line. Suggest edit .. .During 2011, 9% of plastics consumption in Mexico
was in the single use products market application, such as disposable cups
(Conde, 2012)
Practitioner response: Edited as suggested.

Page 5 Table 1. EPS formatting in table, also known as unicel Thermal


just need to make that a uniform sentence.
Practitioner response: Format is added.
General comment table is good addition
Practitioner response: Appreciate this general comment.
ISO Requirement: Scope of the study system boundary including omissions of life cycle
stages, processes or data needs, quantification of energy and material inputs and outputs,
assumptions about electricity production.

Product system boundary section should be organized a bit more clear. Also,
Figure 4. Has a picture of an EPS foam cup instead of a coated paper cup.
Practitioner response: The product system boundary is organized as suggested. Although
the picture was a coated paper cup, the image is changed to avoid confusion.
Reorganize the text doesnt follow steps of scope definition
Practitioner response: The mandatory elements of scope definition were outlined. Text
was reorganized as suggested in the comment below by reviewers, but still the order is
different from the order provided by the LCA ISO standard.
84
LCA of disposable cups in Mexico. EPS and coated paper.

In Topic 3.1: "Product system and system boundaries definition" it is important that
the hypotheses and assumptions considered for the definition of the product
system be better founded. We suggest that chapter 3 should be reordered placing
topic 3.4 "Cut-off criteria right after "topic 3.1". We also suggest that the
content of # 3.4 is expanded. It should be included in this topic the constraints that
guided the modelling of systems of study product: cut off criteria for initial inclusion
of inputs and outputs, including description of cut-off criteria and assumptions,
effect of selection on results, inclusion of mass, energy and environmental cut-off
criteria.
Practitioner response: Text was reorganized as suggested, although the order of elements
is different from the standard.
ISO Requirement: Scope of the study cut off criteria for initial inclusion of inputs and
outputs, including description of cut-off criteria and assumptions, effect of selection on
results, inclusion of mass, energy and environmental cut-off criteria

This cut off section cannot just be one line. You should explain how much (for
instance, 95%) of all mass and energy and various toxic/hazardous materials
would be in included in the analysis. Also, where is their cut-off? Some studies
state, No flow representing more than 1% of the total mass or energy of the
system was excluded.
Practitioner response: Cut-off criteria have been stated as required.

There is not information about the criteria used for cut-off material and energy, nor
regarding upstream processes information (this is considered or not?).
Practitioner response: Cut-off criteria for material and energy are further clarified.
ISO Requirement: Life Cycle Inventory Analysis data collection procedures

Perhaps a discussion under 4.1 should include the types of inventory data
collected process-related data (for EPS and coated paper cups), and fuel-related
data.
Practitioner response: A brief discussion is included.
How much data is from Mexico, vs. from global sources?
Practitioner response: Most of the information was from Mexican sources. All the
information related to EPS cups was obtained from Mexican companies. Coated paper
production data was adjusted to Mexican conditions although following the description of
international processes that are used in the country, distribution and end of life stages
were modeled with Mexican information. This discussion is added in section 4.1.
Application of uncertainty or sensitivity or Monte Carlo analysis?
Practitioner response: Uncertainty and sensitivity analysis was performed since the initial
report; results are presented in Chapter 6.
How data gaps were addressed?
Practitioner response: This is discussed in section 4.5.2 Treatment of missing data.

What about materials used in the production phase that were not produced in
Mexico (chemicals, others): have you taken this information also from Ecoinvent?
85

Practitioner response: This item is explained in section 4.1.

If this is the case, how you handled the eventual consistency problems between
different data sources? How have you handled the use of Ecoinvent in the end-oflife stage (disposal/recycling) in terms of the geographical representation for the
applications of this database: this should be mentioned at the end of the report in
the discussion section, after the uncertainty analysis, as limitation of the study, and
opportunities to improve the results.
Practitioner response: Landfill LCI for paper and plastic was modeled according to the
Mexican context
ISO Requirement: Life Cycle Inventory Analysis qualitative and quantitative description
of unit processes
EPS Cups LCI should explain procedure for using/adjusting data outside of
Mexico, and how that is integrated with data collected from EPS resin and
converter companies in Mexico.
Practitioner response: EPS beads used for cups production are imported from USA, in
order to adapt data obtained from Mexican sources, CADIS verified the information with
representative producers from the US.
ISO Requirement: Life Cycle Inventory Analysis sources of published literature
Please clarify, how did you fill data gaps?
Practitioner response: This is discussed in section 4.5.2 Treatment of missing data.

Also, please indicate which information comes from primary sources, from mass
and energy balances, as well as which data that were coming from secondary
sources were used in the energy and mass balances (if any).
Practitioner response: This is discussed in section 4.3 Sources of data.

Part of this information was provided, but it is scattered through the LCI chapter:
please provide this information in a more structured way
Practitioner response: This information is provided in section 4.3 Sources of data.

We suggest grouping the Tables 6, 8, 9, and 10 in a single table entitled: Average


LCI for the production of EPS cups.
Practitioner response: Tables are grouped as suggested.

It must provide a source of data that quantify material flows released into the
environment (= liquid effluents) from the production stage of EPS cups.
Practitioner response: As previously described, water emissions data was obtained from
water discharge analyses performed by EPS cups producers.

We suggest grouping the Tables 15, 17 and 18 in a single table entitled: "Average
LCI of the production of coated paper cups." This table should bring environmental
burdens (and their amounts) corresponding to emissions to water and air if they
exist. If such losses do not occur, we suggest to add this information to the
description of the process as well as the reasons for that.
Practitioner response: Tables are grouped as suggested.
86
LCA of disposable cups in Mexico. EPS and coated paper.

Finally, the destination of the other materials that are used in the process - in
addition to the SSB - needs to be clarified. Likewise it is important to present as
were modelled environmental burdens of these activities.
Practitioner response: This comment is clarified in section 4.2.4.
Met requirement 10 good reference studies
Practitioner response: Thank you, this is an important feedback.
ISO Requirement: Life Cycle Inventory Analysis calculation procedures for relating data
to unit process and functional unit
Mass balance data gaps and consistency is an issue
Practitioner response: In order to provide the reviewers with more detail and details on
consistency, an excel file is provided. This file contains confidential information, which is
not possible to show in the report.

Please provide the necessary information: only the final results are available. This
must be explicitly incorporated. It would be useful to have access to the excel files
used in the calculations.
Practitioner response: An excel file is presented to the panel in order to clarify calculations.
According confidentiality agreements, it is not possible to incorporate this information to
the report.

All calculation procedures must be documented explicitly and the assumptions


used in them must be clearly stated and justified. It is also desirable that calculation
procedures be applied in a uniform and consistent manner throughout the whole
study.
Practitioner response: A general explanation related to calculation procedures was
included in order to keep the confidentiality and aggregated nature of the data, however
explicit calculation is presented in an additional excel file to the panel.

Data source should include a listing of how primary (collected data) and published
data were used together. Calculation procedures should also be better
documented and stated more clearly.
Practitioner response: This information is provided in section 4.3 Sources of data.
ISO Requirement: Life Cycle Inventory Analysis validation of data including data quality
assessment and treatment of missing data.
This is where a short write-up on Data quality goals for the study would be good.
ISO 14044:2006 states that Data quality requirements listed include time-related
coverage, geographical coverage, technology coverage, and more. Section 4.6
dies address some of these issues. Im not clear on their statement about missing
data.

87

Practitioner response: Data quality requirements are specified in 4.5.1, section 4.5.2
discuss treatment of missing data.

It is important to better detail the steps made in the process of data validation.
Indicate whether material and/or energy balances were carried out, as well as if
other mechanisms for checking the validity of a process unit were applied.
Practitioner response: The steps made in the process of data validation have been
described in more detail, as suggested.

Anomalies evident in the data, identified by such validation procedures require that
other data should be collected in order to correct the problem. These data must to
be in accordance with the set of data that already composes the inventory. It is
important that the process for detecting anomalies and the equalization of such
differences be highlighted in the report.
Practitioner response: The process for detecting anomalies is explained, as suggested.
ISO Requirement: Life Cycle Inventory Analysis sensitivity analysis for refining the
system boundary
Why was mass allocation chosen and not other allocation methods (like economic)
some discussion should be included here
Practitioner response: A discussion about this topic is included as suggested.

The allocation procedures and principles adopted at the study must to be better
justified and documented.
Practitioner response: Allocation procedures are described and documented.

If the allocation procedures have been applied on more than one occasion
throughout the study, it is recommended that such application has been made
uniformly. In situations where this did not happen, we recommend to be displayed
suitable justifications.
Practitioner response: Allocation procedures were applied uniformly throughout the study.

Allocation section could be explained a bit more than mass allocation. Coproduct credit, energy of material resource, and post-consumer recycling are areas
of allocation that could be
Practitioner response: Allocation procedures are described and documented.
ISO Requirement: Life Cycle Impact Assessment - the LCIA procedures, calculations
and results of the study
No procedures for conducting the LCIA were included and should be inserted
before 5.2
Practitioner response: Procedures for conducting LCIA are inserted as suggested.

Why was CML used what was the justification (for comparing other studies made
on cups?) justify why CML) - under 5.1
Practitioner response: Justification is explained as suggested.

There was no presentation or description of LCIA procedures and calculations.


Only the final results for the studies were presented and discussed. In this context.

88
LCA of disposable cups in Mexico. EPS and coated paper.

we suggest that these gaps are complemented, at least, with a general description
of these operations that could be supplemented by an explanatory example.
Practitioner response: LCIA procedures and calculations are explained.
ISO Requirement: Life Cycle Impact Assessment - limitations of the LCIA results to the
defined goal and scope
If this kind of kind of LCI is to be objective, it would be beneficial to have some
explanation of how the output in terms of impact assessment can be comparative
Practitioner response: An explanation is included in section 5.3.
This seems adequate (midpoint is adequate for the study)
Practitioner response: We followed the ISO 14040 requirement.

There were no presented limitations of the LCIA results to the defined goal and
scope. If such limitations actually occurred, we strongly recommend that they be
reported in the text that comprises chapter 5. Otherwise, just register their
nonexistence.
Practitioner response: Limitations are described in Table 13.
ISO Requirement: Life Cycle Impact Assessment - relationship of LCIA results to the
defined goal and scope
This seems adequate
Practitioner response: Thanks
ISO Requirement: Life Cycle Impact Assessment - relationship of the LCIA results to the
LCI results
These were not presented a table would be needed to summarize assumptions
and limitations of each impact assessment factor/model
Practitioner response: A table with suggested items is included.
Its not quite clear who the LCIA results are related to the LCI results.
Practitioner response: Relation between LCI results and LCIA is further explained
according ISO 14044.

There were no presented LCIA descriptions/reference to all characterization


models, characterization factors and methods used including assumptions and
limitations. I suggest that these gaps are complemented, by the construction of a
table in which all requirements and limitation could be presented clearly, objectively
and synoptic.
Practitioner response: A brief description was included in the report, but as suggested a
table is included.
ISO Requirement: Life Cycle Impact Assessment - impact categories and category
indicators considered, including a rationale for their selection and a reference to their
source.
No explanation included in study
Practitioner response: Explanation is included in section 5.2.

We suggest that a more detailed reference to the source of the Life Cycle Impact
Assessment (LCIA) method selected to the study be presented in topic 5.1
89

Practitioner response: A more detailed reference is presented.


ISO Requirement: Life Cycle Impact Assessment - descriptions/reference to all
characterization models, characterization factors and methods used including assumptions
and limitations

These were not presented a table would be needed to summarize assumptions


and limitations of each impact assessment factor/model
Practitioner response: A table with suggested items is included.

There were not presented LCIA descriptions/reference to all characterization


models, characterization factors and methods used including assumptions and
limitations. I suggest that these gaps are complemented, by the construction of a
table in which all requirements and limitation could be presented clearly, objectively
and synoptic.
Practitioner response: A table with suggested items is included.
ISO Requirement: Life Cycle Impact Assessment - descriptions of or reference to all
value-choices
Not applicable. The LCIA was carried out only until the Characterization step.
Practitioner response: As established by the ISO 14040.
ISO Requirement: Life Cycle Impact Assessment a statement that the LCIA results are
relative expressions and do not predict impacts on category endpoints, the exceeding of
thresholds, safety margins or risks.
Not relevant for this study, because it refers to midpoint impacts. A mention of this
topic regarding the potential use of the report in endpoint calculation could be
made.
Practitioner response: Noted

Not applicable. The statement was done in Topic 5.1 with the expression by of the
team of practitioners that a midpoint Life Cycle Impact Assessment method would
be used in the study.
Practitioner response: Noted

It should be noted this is a limitation for use by regulators regulations should not
be based on midpoints.
Practitioner response: The comment by the reviewer is not clear. The intended use of the
study is to provide ANIQ stakeholders with information about the potential environmental
impacts of the two types of cups assessed, not a direct use for regulations. Also, as
established in the ISO 14040 standards, and considering the uncertainty of endpoint
models and applicability to the local context, the best option for LCIA is a midpoint model,
as recognized in many of the above comments by the expert panel.
ISO Requirement: Life Cycle Interpretation summary of the results

We recommend changing the word arguments in the first line of this statement of
Interpretation to the word analyses. A summary table of the results would be
very helpful here.
90
LCA of disposable cups in Mexico. EPS and coated paper.

Practitioner response: The word is changed and a summary section is added.

We suggest that a summary of the results be included in the introduction of


Chapter 6 in order to present the elements that will be evaluated and verified both
by Sensitivity and Uncertainty Analysis.
Practitioner response: A summary is added at the beginning of Chapter 6.
ISO Requirement: Life Cycle Interpretation assumptions and limitations associated with
the interpretations of results, both methodology and data related
This chapter should either be expanded to include Chapter 6, or beefed up with a
similar table. The summary, conclusions, and limitations might be able to be
combined.
Practitioner response: Chapter is expanded.

Important to take into account what is purpose of difference done a discussion of


the general result of studies to this one
Practitioner response: A discussion of general results of studies is included.

We recommend to include an analysis regarding similar studies published in


scientific literature, in terms of the results achieved, limitations of the inventory and
applicability of the results, uncertainties, and the LCIA method used.
Practitioner response: A discussion of general results of studies is included.
Please include full references.
Practitioner response: References were included in Table 4 for the LCA studies, but are
now added in the reference list. Other references were cross checked and were already
included in the list.

We suggest that Chapter 7, entitled "Conclusions, limitations and


recommendations" is broadened in terms of their contents. This will allow that
assumptions and limitations associated with the interpretations of results, both
methodology and data related could be reported.
Practitioner response: Chapter is broadened.
ISO Requirement: Life Cycle Interpretation data quality assessment

Perhaps a data quality assessment can be extracted from the 6.1 sensitivity
analysis section to summarize the DQ issues
Practitioner response: A section is added to discuss completeness, sensitivity and
consistency.

We suggest that justified limits of variation ranges of the parameters which were
considered in the Sensitive Analysis be explained.
Practitioner response: Selection of variation ranges is explained.
Regarding Uncertainty analysis, there are no comments.
Practitioner response: Noted
ISO Requirement: Critical Review name and affiliation of reviewers
91

Met requirement.
Practitioner response: Thank you

Claudia Pena list as Chair of the Ibero-American Network of LCA.

Practitioner response: Corrected and updated with current position as co-chair of the
network.

Edits to Mike Levy write-up Director within the American Chemistry Council
(ACC) Plastics Division for the Plastics Foodservice Packaging Group (PFPG,
representing producers and manufacturers of plastics foodservice packaging, and
Director, Life Cycle Issues for all plastics within the Plastics Division. rest is
okay, staring with Franklin Associates,
Practitioner response: Edited

92
LCA of disposable cups in Mexico. EPS and coated paper.

July 1, 2013
Juan Pablo Chargoy Amador
Center for Life Cycle Assessment and Sustainable Design (CADIS)
Calzada de los Jinetes 22-B, Colonia Las Arboledas, C.P. 54020 Tlalnepantla, Estado de Mexico
RE:

Critical Review Panel Final Sign-Off: Life Cycle Assessment of disposable cups in Mexico.
Expanded polystyrene and coated paper (Report 2012 for ANIQ) revised report with
Critical Review Panel comments included (pages 77-92)

Dear Juan Pablo,


On behalf of our Critical Review Panel (Luiz Alexandre Kulay, PhD, Escola Politecnia da
Universidade de Sao Paulo/LCA expert; Claudia Pena, Chair of the Ibero-American Network of LCA;
and Mike Levy, Director, Life Cycle Issues, American Chemistry Council/ACC Plastics Division), we
are pleased to provide you with our final sign-off on the review and recommendations regarding
the ISO peer review of the above referenced report.
The Critical Review Panel has reviewed the revised April 2013 report which includes and addresses
all of our comments and suggestions (as outlined in our March 18, 3012 Critical Review Panel
Comments), including the transparency of data issues and respect of addressing industry
confidential business information (CBI), and we give you our approval that this report was
conducted according to the requirements of ISO applicable LCA standards (14040/14044). All
conclusions of the study are consistent and appropriate to the results of the analysis.
Again, please thank your team for conducting this comprehensive study on disposable cups. We
hope you found the comments constructive in nature, and the Panel appreciates the changes you
made in the final report.
Regards,

Mike Levy, Critical Review Panel chair


Dr. Luiz Kulay and Claudia Pena, Critical Review Panel members

93

9. Annexes

94
LCA of disposable cups in Mexico. EPS and coated paper.

Annex A. Analytic Hierarchy Process


The AHP is a discrete multicriteria decision methodology used for complex decision making,
through a one to one comparison process, to measure the agreement between decision makers
and the uniformity of the alternatives in group decision making.
The AHP method has been used to validate the decisions at different stages of the life cycle, but
mainly at the stage of weighting of the impact categories (Swarr, et.al, 2005). The combination of
the two methodologies has been applied successfully in LCA studies comparing solid waste
management technologies, (Shoou, 2005) (Fujita, 2005) (Ni, et.al, 2002). The "green productivity"
arises through a combination of AHP and LCA method, where different technological alternatives
are evaluated based on their performance in life cycle assessment (Pineda, 2005), in the United
States, the value of the decisions business through AHP also linked to stroke (Reisdorph, 2008) and
design strategies are strengthened with this binomial (Heo, 2002). Several LCA studies have relied
on the AHP to support decision making by sensitivity analysis (Swarr, et.al, 2005, Shoenoung,
2009).
In the context of this study, the AHP is used to document and validate the decision-making stage
of the goal and scope definition, mainly for functional unit. Under the AHP, the decision model is
structured by defining objectives to consider several facets of the goal, if necessary more subgoals
that describe in detail each of the objectives and finally alternatives to meet the objectives. The
evaluation method used in AHP, and described below, facilitates the identification of decision
criteria and findings significantly reducing decision cycle.
Once the decision model methodology requires that the different objectives are prioritized in
order to determine their relative importance between functions. Experts must then evaluate
comparisons one to one each of the functions, in the case of subfunctions exist performs the same
type of comparison between the subfunctions of a function.
With one to one evaluations the MSk matrix is filled, where

u k ,1
uk , 2

function 1 related to function 2 with the next scale:


ui,j = 1 if both functions have the same relevance
ui,j = 3 if function i is moderately more relevant than function j
ui,j = 5 if function i is strongly more relevant than function j

95

is obtained with the evaluation of

and so on until "extremely" with a value of 9.


The term

uk , 2
u k ,1

is always the inverse of

u k ,1
uk , 2

, therefore if function j is moderately more relevant

that i, then ui,j =1/3.


In an overall way, the matrix for one expert evaluation is:

Where

u k ,1
uk , 2

is defined as the relative relevance given by the expert k of function 1 vs function 2.

The AHP methodology is based on the calculation of Eigen vectors (Satty, 1994) of the evaluation
matrix to determine the relative importance between the functions. Subsequently be an
integrated expert result, which is obtained from the eigenvectors in each individual evaluation.
Bibliography
Fujita, S., Tamura, H. (2005). A multiagent decision support method for selecting way to disose
kitchen garbage, ISAHP 2005.
Heo. (2002) Methodology for prioritizing DfE Strategies based o LCA and AHP, Master Thesis,
Department of Environmental Engineering, Graduate School of Ajou University, Korea
Ni, J., Wei, H. y Liu, Y.(2002). Life cycle analysis of sanitary landfill and incineration of municipal
solid waste, Non Ferrous Society of China, 1003 - 6326 (2002) 03 - 0545 04
Pineda, R. y Culaba, A. (2007). Developing an Expert System for GP implementation, Asian
Productivity Organization, 2007.
Satty, T. (1994). Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy
Process, RWS.
Shoenoung, J. (2009). Green Electronics LCA, Symposium: The Greening of Electronics in a Global
Economy.
Shoou-Yuh, C. y Bindiganaville K. (2005). LCA and Multicriteria Evaluation of Solid Waste Recycling,
Environmental Informatics Archives, Volume 3 (2005), 118 129
Swarr, T., Hunkeler, D. y Margni, M. (2005). Moving from Life Cycle Analysis to LifeCycle Action,
2005.
Reisdorph, D. (2008). LCA in Business Decision Support Systems, Calculating Consequences Beyond
the Box. American Center for Life Cycle Assessment.
96
LCA of disposable cups in Mexico. EPS and coated paper.

Bibliografa

97

ANAPE. (2012). Asociacin Nacional de Poliestireno Expandido. Retrieved Junio 13, 2012, from
Fabricacin del Poliestireno Expandible: http://www.anape.es/pdf/ficha71.pdf
Conde, O. M. (2012). Presente Futuro de la Industria del Plstico en Mxico. D.F.: Centro
Empresarial del Plstico.
Espinoza, R., Garca, B., Garca, M., Quecholac, X., Vzquez, A., Vazquez, R., et al. (2011). Reporte
del Anlisis de seleccin y cuantificacin de subproductos en residuos slidos. Estado de
Mxico: Universidad Autnoma Metropolitana.
Flemish Institute for Technological Research (VITO). (2006). Comparative LCA of 4 types of
drinking.

Mechelen:

Public

Waste

Agency

for

the

Flemish

Region

(OVAM)

D/2006/5024/06.
Franklin Associates LTD. (2006). Life Cycle Inventory of Polystyrene Foam, Bleached Paperboard,
and Corrugated Paperboard Foodservice Products. Prairie Vilalge: Polystyrene Packaging
Council (PSPC).
Franklin Associates LTD. (2011). LCI of foam polystyrene, paper based and PLA foodservice
products. Prairie Village: Plastic FoodService Packaging Group.
Garrido, N., & Alvarez del Castillo, M. (2007). Environmental evaluation of single-use and reusable
cups. International Journal of Life Cycle Assessment, 12 (4): 252256.
Goedkoop, M., Oele, M., Schryver, A., & Vieira, M. (2008). SimaPro Database Manual. Methods
Library. Retrieved mayo 2, 2011, from http://www.pre.nl/content/manuals
Hkkinen, T., & Vares, S. (2010). Environmental impacts of disposable cups with special focus on
the effect of material choices and end of life. Journal of Cleaner Production, 18:1468 1463.
Horvath, A., & Chester, M. (2009). Greenhouse Gas Assessment of Expanded Polystyrene Food
Containers and Alternative products use in Los Angeles County (DRAFT). Los Angeles:
Responsible Purchasing Network.
IMNC. (2008). NMX-SAA-14040-IMNC Gestin ambiental - Anlisis de ciclo de vida - Principios y
marco de referencia. Mxico, D.F.: IMNC.
INEGI. (2010). Banco de Informacin Econmica. Retrieved junio 14, 2012, from Series que ya no
se actualizan > Sector manufacturero > Encuesta industrial mensual ampliada (SCIAN
2002) > Volumen y valor de produccin por clase de actividad y producto > 326 Industria

98
LCA of disposable cups in Mexico. EPS and coated paper.

del

plstico

del

hule

>

3261

Fabricacin

de

productos

de

plstico:

http://www.inegi.org.mx/sistemas/bie/
Institute for Life Cycle Energy Analysis (ILEA) and University of Victoria. (1994). Reusable Vs.
disposable cups. Seatle: ILEA.
MIRKEM. (2009). MIRKEM. Production Technology. Retrieved Julio 6, 2012, from Production
process: http://www.mirkem.si/ENG/production_technology.php
Muoz, G., R., & Albarrn, F., M. (2012). Seguimiento a Iniciativas Ley Antibolsas, Prohibicin
EPS, sustitucin de Envases y Empaques Plsticos. D.F.: ANIQ.
Netherlands Organisation for Applied Scientific Research (TNO). (2007). Single use cup or
reusable(coffee) drinking systems: an environmental comparison. Apeldoorn: Benelux
Disposables Foundation.
PR Consultants. (2010). Data base manual. Methods library. Retrieved abril 20, 2010, from
http://www.pre.nl/download/manuals/DatabaseManualMethods.pdf
Rajshree. (2011). Paper company. Retrieved agosto 3, 2012, from Process in making paper cups.:
http://www.paper-cup.in/paper-cup-manufacturing-process/
UN Comtrade. (2012). United Nations Commodity Trade Statistics Database . Retrieved julio 12,
2012,

from

http://comtrade.un.org/db/dqBasicQueryResults.aspx?px=HS&cc=390311&r=842&p=484
&rg=2&y=2011,2010,2009,2008,2007&so=8
Vercalsteren, A., Spirinckx, C., & Geerken, T. (2010). Life cycle assessment and eco-efficiency
analysis of drinking cups used at public events. International Journal of Life Cycle
Assessment, 15:221 - 230.

Referencias de imgenes
Agua - http://www.freepik.es/vector-gratis/gota-de-agua_517449.htm
Bolsa de plstico - http://ofertamex.mercadoshops.com.mx/foodsaver-rollo-de-bolsa-de-plastico20-_115xJM
Caja de cartn - http://www.definicionabc.com/general/caja.php
Combustible - http://www.elcoche.net/tag/gasolina/
Emisiones - http://eficienciaenergeticainversion0.wordpress.com/2011/05/31/cuidado-con-lasemisiones-de-co2-los-bolsillos-estan-avisados/

99

Energa elctrica - http://melitachofi.wikispaces.com/


Gas natural - http://ww2.noticiasmvs.com/Explota-tanque-de-gas-en-Zapopan.html
Perla EPS - http://www.frigolit.com.mx/perla.html
Trailer - http://santiago.olx.cl/carrocerias-fabricacion-planas-furgones-carga-gral-y-refrigeradosventas-iid-408701797
Relleno sanitario - http://www.infrastructurene.ws/2012/06/06/medical-sector-second-largestproducer-of-landfill-waste/
Residuos slidos - http://superacionpersonal.mx/2010/11/basura/
Smbolo reciclaje - http://www.economiadelaenergia.com/reciclaje/
Vaso

EPS

http://www.hotfrog.es/Empresas/Monouso-Vasos-de-Plastico-y-Envases-

Alimentarios/Vaso-de-Foam-Porex-o-Vaso-Termico-para-Cafe-120ml-75227
Vaso

papel

plastificado

http://www.tiendadecafeyte.com.ar/index.php?route=product/product&product_id=216#.ULhSO
OQ3tQU

100
LCA of disposable cups in Mexico. EPS and coated paper.

También podría gustarte