Nothing Special   »   [go: up one dir, main page]

skip to main content
article

A Time-Spectral Algorithm for Fractional Wave Problems

Published: 01 November 2018 Publication History

Abstract

This paper develops a high-accuracy algorithm for time fractional wave problems, which employs a spectral method in the temporal discretization and a finite element method in the spatial discretization. Moreover, stability and convergence of this algorithm are derived, and numerical experiments are performed, demonstrating the exponential decay in the temporal discretization error provided the solution is sufficiently smooth.

References

[1]
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)
[2]
Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227(2), 886---897 (2007)
[3]
Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603---1638 (2016)
[4]
Ciarlet, P.: The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia (2002)
[5]
Deng, W.: Finite element method for the space and time fractional Fokker---Planck equation. SIAM J. Numer. Anal. 47(1), 204---226 (2009)
[6]
Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558---576 (2006)
[7]
Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the caputo fractional derivative and its applications. J. Comput. Phys. 259, 33---50 (2014)
[8]
Huang, J., Tang, Y., Vzquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707---720 (2013)
[9]
Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. Submitted. arXiv:1804.10552 (2018)
[10]
Li, X., Xu, C.: A space---time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108---2131 (2009)
[11]
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533---1552 (2007)
[12]
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65---77 (2004)
[13]
Podlubny, I.: Fractional Eifferential Equations. Academic Press, San Diego (1998)
[14]
Ren, J., Long, X., Mao, S., Zhang, J.: Superconvergence of finite element approximations for the fractional diffusion-wave equation. J. Sci. Comput. 72(3), 917---935 (2017)
[15]
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Philadelphia (1993)
[16]
Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms. Analysis and Applications. Springer, Berlin (2011)
[17]
Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193---209 (2006)
[18]
Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)
[19]
Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703---1727 (2012)
[20]
Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1---15 (2014)
[21]
Yang, J., Huang, J., Liang, D., Tang, Y.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38(14), 3652---3661 (2014)
[22]
Yang, Y., Chen, Y., Huang, Y., Wei, H.: Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Comput. Math. Appl. 73(6), 1218---1232 (2017)
[23]
Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216(1), 264---274 (2006)
[24]
Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862---1874 (2005)
[25]
Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40---A62 (2014)
[26]
Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), 2976---3000 (2013)
[27]
Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195---210 (2014)
[28]
Zhang, Y., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. Siam J. Numer. Anal. 45(50), 1535---1555 (2012)
[29]
Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space---time spectral method for the time fractional Fokker---Planck equation. Siam J. Sci. Comput. 37(2), A701---A724 (2015)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Scientific Computing
Journal of Scientific Computing  Volume 77, Issue 2
November 2018
614 pages

Publisher

Plenum Press

United States

Publication History

Published: 01 November 2018

Author Tags

  1. Finite element
  2. Fractional wave problem
  3. Spectral method

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Optimal Error Estimates of a Time-Spectral Method for Fractional Diffusion Problems with Low Regularity DataJournal of Scientific Computing10.1007/s10915-022-01791-191:1Online publication date: 24-Feb-2022
  • (2020)A space-time finite element method for fractional wave problemsNumerical Algorithms10.1007/s11075-019-00857-w85:3(1095-1121)Online publication date: 4-Jan-2020
  • (2020)Numerical Analysis of Two Galerkin Discretizations with Graded Temporal Grids for Fractional Evolution EquationsJournal of Scientific Computing10.1007/s10915-020-01365-z85:3Online publication date: 22-Nov-2020
  • (2019)Convergence Analysis of a Petrov–Galerkin Method for Fractional Wave Problems with Nonsmooth DataJournal of Scientific Computing10.1007/s10915-019-00962-x80:2(957-992)Online publication date: 1-Aug-2019

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media