Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Two finite difference schemes for time fractional diffusion-wave equation

Published: 01 December 2013 Publication History

Abstract

Time fractional diffusion-wave equations are generalizations of classical diffusion and wave equations which are used in modeling practical phenomena of diffusion and wave in fluid flow, oil strata and others. In this paper we construct two finite difference schemes to solve a class of initial-boundary value time fractional diffusion-wave equations based on its equivalent partial integro-differential equations. Under the weak smoothness conditions, we prove that our two schemes are convergent with first-order accuracy in temporal direction and second-order accuracy in spatial direction. Numerical experiments are carried out to demonstrate the theoretical analysis.

References

[1]
Agrawal, O.P.: Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 83(4), 265---274 (2003)
[2]
Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P.: Limit theorem for continuous-time random walks with two time scales. J. Appl. Prob. 41, 455---466 (2004)
[3]
Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier analysis method for the fractional diffusion equation describing sub-diffusion. J. Comput Phys. 227(2), 886---897 (2007)
[4]
Chen, C., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math. Comput. 81, 345---366 (2012)
[5]
Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
[6]
Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34(10), 2998---3007 (2010)
[7]
Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance. III, The diffusion limit. In: Mathematical Finance, Trends in Math, pp. 171---180. Birkhäuser, Basel (2001)
[8]
Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129---143 (2002)
[9]
Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229---307 (1984)
[10]
Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855---875 (2011)
[11]
Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional differential equation. SIAM J. Numer. Anal. 47(3), 2108---2131 (2009)
[12]
Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533---1552 (2007)
[13]
Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46(E), 488---504 (2005)
[14]
Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160---176 (2009)
[15]
Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27(1), 20---31 (1990)
[16]
Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704---719 (1986)
[17]
Mainardi, F.: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals. Springer, Wien (1997)
[18]
Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Physica A 370, 114---118 (2006)
[19]
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
[20]
Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749---755 (2002)
[21]
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivative, Theory and Applications. Gordon and Breach, New York (1993)
[22]
Sanz-Serna, J.M.: A numerical method for a partial integro-differential equations. SIAM J. Numer. Anal. 25(2), 319---327 (1988)
[23]
Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193---209 (2006)
[24]
Meerschaert, M.M., Zhang, Y., Baeumerc, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078---1086 (2010)
[25]
Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309---319 (1993)
[26]
Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264---274 (2006)
[27]
Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank---Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49(6), 2302---2322 (2011)
[28]
Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 46(2), 1079---1095 (2008)
[29]
Zhuang, P., Liu, F., Anh, V., Turner, I.: Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process. IMA J. Appl. Math. 74(5), 645---667 (2009)

Cited By

View all
  • (2025)Second-order non-uniform and fast two-grid finite element methods for non-linear time-fractional mobile/immobile equations with weak regularityApplied Mathematics and Computation10.1016/j.amc.2024.129043486:COnline publication date: 1-Feb-2025
  • (2024)A finite difference/Kansa method for the two-dimensional time and space fractional Bloch-Torrey equationComputers & Mathematics with Applications10.1016/j.camwa.2023.12.007156:C(1-15)Online publication date: 15-Feb-2024
  • (2024)Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equationsApplied Mathematics and Computation10.1016/j.amc.2023.128457466:COnline publication date: 1-Apr-2024
  • Show More Cited By
  1. Two finite difference schemes for time fractional diffusion-wave equation

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Numerical Algorithms
        Numerical Algorithms  Volume 64, Issue 4
        December 2013
        161 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 December 2013

        Author Tags

        1. Crank---Nicolson method
        2. Euler method
        3. Finite difference scheme
        4. Fractional diffusion-wave equation
        5. Integro-differential equation

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 15 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2025)Second-order non-uniform and fast two-grid finite element methods for non-linear time-fractional mobile/immobile equations with weak regularityApplied Mathematics and Computation10.1016/j.amc.2024.129043486:COnline publication date: 1-Feb-2025
        • (2024)A finite difference/Kansa method for the two-dimensional time and space fractional Bloch-Torrey equationComputers & Mathematics with Applications10.1016/j.camwa.2023.12.007156:C(1-15)Online publication date: 15-Feb-2024
        • (2024)Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equationsApplied Mathematics and Computation10.1016/j.amc.2023.128457466:COnline publication date: 1-Apr-2024
        • (2024)Improved uniform error bounds of Lawson-type exponential integrator method for long-time dynamics of the high-dimensional space fractional sine-Gordon equationNumerical Algorithms10.1007/s11075-023-01745-097:3(1179-1214)Online publication date: 1-Nov-2024
        • (2024)Uniqueness and Numerical Method for Determining a Spatial Source Term in a Time-Fractional Diffusion Wave EquationJournal of Scientific Computing10.1007/s10915-024-02523-399:2Online publication date: 10-Apr-2024
        • (2023)An alternating direction implicit compact finite difference scheme for the multi-term time-fractional mixed diffusion and diffusion–wave equationMathematics and Computers in Simulation10.1016/j.matcom.2023.06.003213:C(194-210)Online publication date: 1-Nov-2023
        • (2023)Well‐posedness and Mittag–Leffler stability for a nonlinear fractional telegraph problemAsian Journal of Control10.1002/asjc.312825:6(4232-4243)Online publication date: 16-Nov-2023
        • (2022)A fully discrete spectral scheme for time fractional Cahn-Hilliard equation with initial singularityComputers & Mathematics with Applications10.1016/j.camwa.2022.10.015127:C(213-224)Online publication date: 1-Dec-2022
        • (2022)A second-order L2-1 Crank-Nicolson difference method for two-dimensional time-fractional wave equations with variable coefficientsComputers & Mathematics with Applications10.1016/j.camwa.2022.05.018118:C(183-207)Online publication date: 15-Jul-2022
        • (2021)A linearized high-order Galerkin finite element approach for two-dimensional nonlinear time fractional Klein-Gordon equationsNumerical Algorithms10.1007/s11075-020-00978-787:2(551-574)Online publication date: 1-Jun-2021
        • Show More Cited By

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media