Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Convergence Analysis of a Petrov–Galerkin Method for Fractional Wave Problems with Nonsmooth Data

Published: 01 August 2019 Publication History

Abstract

This paper analyzes the convergence of a Petrov–Galerkin method for time fractional wave problems with nonsmooth data. Well-posedness and regularity of the weak solution to the time fractional wave problem are firstly established. Then an optimal convergence analysis with nonsmooth data is derived. Moreover, several numerical experiments are presented to validate the theoretical results.

References

[1]
Luchko, Y.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Inter. J. Geomath. 1, 257–276 (2011)
[2]
Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Soliton Fract. 7(9), 1461–1477 (1996)
[3]
Mainardi, F.: Fractional diffusive waves. J. Comput. Acoust. 9(4), 1417–1436 (2001)
[4]
Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)
[5]
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1998)
[6]
Bazhlekova, E.: Duhamel-type representation of the solutions of non-local boundary value problems for the fractional diffusion-wave equation. In: Proceedings of the 2nd International Workshop, Bulgarian Academy of Sciences, Sofia, pp. 32–40 (1998)
[7]
Bazhlekova, E.: Fractional Evolution Equations in Banach Spaces. PhD thesis, Eindhoven University of Technology (2001)
[8]
Sakamoto, K., Yamamoto, Y.: Initial value or boundary value problems for fractional diffusion wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)
[9]
Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)
[10]
Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
[11]
Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci Comput. 38(1), A146–A170 (2016)
[12]
Li, B., Luo, H., Xie, X.: A time-spectral algorithm for fractional wave problems. J. Sci. Comput. 77(2), 1164–1184 (2018)
[13]
Li, B., Luo, H., Xie, X.: A space-time finite element method for fractional wave problems. (2018). preprint, arXiv:1803.03437
[14]
Lubich, C., Sloan, I., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65(213), 1–17 (1996)
[15]
Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)
[16]
Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)
[17]
Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)
[18]
Sheng, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theor. Meth. Appl. 11, 854–876 (2018)
[19]
Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with nonsmooth solutions in time direction. J. Sci. Comput. (2019). https://doi.org/10.1007/s10915-019-00943-0
[20]
Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)
[21]
Lions, J., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)
[22]
Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)
[23]
Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment. Springer, Berlin (1992)
[24]
Yamamoto, M.: Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations. J. Math. Anal. Appl. 460(1), 365–381 (2018)
[25]
Gorenflo, R., Yamamoto, M.: Operator theoretic treatment of linear Abel integral equations of first kind. Jpn. J. Ind. Appl. Math. 16(1), 137–161 (1999)
[26]
Luchko, Y., Gorenflo, R., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)
[27]
Lunardi, A.: Interpolation Theory. Edizioni della Normale, Pisa (2018)
[28]
Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, London (1993)
[29]
Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57(2), 779–798 (2019)
[30]
Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. D. E. 22(3), 558–576 (2006)
[31]
Demengel, F., Demengel, G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, London (2012)
[32]
Agranovich, M.: Sobolev Spaces. Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains. Springer, Cham (2015)
[33]
Babuška, I.: Error-bounds for finite element method. Numer. Math. 16(4), 322–333 (1971)
[34]
Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)
[35]
Clément, P.: Approximation by finite element functions using local regularization. RAIRO, Anal. Numer. 9, 77–84 (1975)
[36]
Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980)
[37]
Li, B., Luo, H., Xie, X.: Error estimates of a discontinuous Galerkin method for time fractional diffusion problems with nonsmooth data. (2018). preprint, arXiv:1809.02015
[38]
Ke, R., Ng, M., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)

Cited By

View all
  • (2024)Correction of a High-Order Numerical Method for Approximating Time-Fractional Wave EquationJournal of Scientific Computing10.1007/s10915-024-02625-y100:3Online publication date: 22-Jul-2024
  • (2022)A Symmetric Fractional-order Reduction Method for Direct Nonuniform Approximations of Semilinear Diffusion-wave EquationsJournal of Scientific Computing10.1007/s10915-022-02000-993:1Online publication date: 1-Oct-2022
  • (2022)Analysis of a Full Discretization for a Fractional/Normal Diffusion Equation with Rough Dirichlet Boundary DataJournal of Scientific Computing10.1007/s10915-022-01875-y92:1Online publication date: 11-Jun-2022
  • Show More Cited By

Index Terms

  1. Convergence Analysis of a Petrov–Galerkin Method for Fractional Wave Problems with Nonsmooth Data
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Journal of Scientific Computing
            Journal of Scientific Computing  Volume 80, Issue 2
            Aug 2019
            652 pages

            Publisher

            Plenum Press

            United States

            Publication History

            Published: 01 August 2019

            Author Tags

            1. Fractional wave problem
            2. Regularity
            3. Petrov–Galerkin
            4. Convergence analysis
            5. Nonsmooth data

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 15 Jan 2025

            Other Metrics

            Citations

            Cited By

            View all
            • (2024)Correction of a High-Order Numerical Method for Approximating Time-Fractional Wave EquationJournal of Scientific Computing10.1007/s10915-024-02625-y100:3Online publication date: 22-Jul-2024
            • (2022)A Symmetric Fractional-order Reduction Method for Direct Nonuniform Approximations of Semilinear Diffusion-wave EquationsJournal of Scientific Computing10.1007/s10915-022-02000-993:1Online publication date: 1-Oct-2022
            • (2022)Analysis of a Full Discretization for a Fractional/Normal Diffusion Equation with Rough Dirichlet Boundary DataJournal of Scientific Computing10.1007/s10915-022-01875-y92:1Online publication date: 11-Jun-2022
            • (2022)Optimal Error Estimates of a Time-Spectral Method for Fractional Diffusion Problems with Low Regularity DataJournal of Scientific Computing10.1007/s10915-022-01791-191:1Online publication date: 24-Feb-2022
            • (2021)Temporally Semidiscrete Approximation of a Dirichlet Boundary Control for a Fractional/Normal Evolution Equation with a Final ObservationJournal of Scientific Computing10.1007/s10915-021-01522-y88:1Online publication date: 21-May-2021
            • (2020)A space-time finite element method for fractional wave problemsNumerical Algorithms10.1007/s11075-019-00857-w85:3(1095-1121)Online publication date: 4-Jan-2020
            • (2020)Numerical Analysis of Two Galerkin Discretizations with Graded Temporal Grids for Fractional Evolution EquationsJournal of Scientific Computing10.1007/s10915-020-01365-z85:3Online publication date: 22-Nov-2020
            • (2020)Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic EquationsJournal of Scientific Computing10.1007/s10915-020-01350-685:2Online publication date: 27-Oct-2020
            • (2020)Analysis of a Time-Stepping Discontinuous Galerkin Method for Fractional Diffusion-Wave Equations with Nonsmooth DataJournal of Scientific Computing10.1007/s10915-019-01118-782:1Online publication date: 7-Jan-2020

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media