Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Procedural texturing of solid wood with knots

Published: 22 July 2022 Publication History

Abstract

We present a procedural framework for modeling the annual ring pattern of solid wood with knots. Although wood texturing is a well-studied topic, there have been few previous attempts at modeling knots inside the wood texture. Our method takes the skeletal structure of a tree log as input and produces a three-dimensional scalar field representing the time of added growth, which defines the volumetric annual ring pattern. First, separate fields are computed around each strand of the skeleton, i.e., the stem and each knot. The strands are then merged into a single field using smooth minimums. We further suggest techniques for controlling the smooth minimum to adjust the balance of smoothness and reproduce the distortion effects observed around dead knots. Our method is implemented as a shader program running on a GPU with computation times of approximately 0.5 s per image and an input data size of 600 KB. We present rendered images of solid wood from pine and spruce as well as plywood and cross-laminated timber (CLT). Our results were evaluated by wood experts, who confirmed the plausibility of the rendered annual ring patterns.
Link to code: https://github.com/marialarsson/procedural_knots.

Supplemental Material

MOV File
supplemental material
ZIP File
supplemental material

References

[1]
Jean Philippe Andreu and Alfred Rinnhofer. 2003. Modeling knot geometry in norway spruce from industrial CT images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2749 (2003).
[2]
Baptiste Angles, Marco Tarini, Brian Wyvill, Loïc Barthe, and Andrea Tagliasacchi. 2017. Sketch-based implicit blending. In ACM Transactions on Graphics, Vol. 36.
[3]
Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthias Müller, and Robert Jagnow. 2002. A procedural approach to authoring solid models. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '02.
[4]
Jean Michel Dischler and Djamchid Ghazanfarpour. 1999. Interactive image-based modeling of macrostructured textures. IEEE Computer Graphics and Applications 19, 1 (1999).
[5]
Ehren Choy. 2016. Smooth Signed Distance Field Textures. Ph.D. Dissertation. Carleton University, Ottawa.
[6]
Christina Foley. 2003. Modeling the effects of knots in Structural Timber. Ph.D. Dissertation. Lund University. https://lup.lub.lu.se/search/publication/f026a551-2812-4539-98a2-0e7ee2ca4d5f
[7]
Forest Products Laboratory - USDA. 2010. Wood Handbook: Wood as an Engineering Material.
[8]
Geoffrey Y. Gardner. 1984. SIMULATION OF NATURAL SCENES USING TEXTURED QUADRIC SURFACES. Computer Graphics (ACM) 18, 3 (1984).
[9]
Geoffrey Y. Gardner. 1985. VISUAL SIMULATION OF CLOUDS. Computer Graphics (ACM) 19, 3 (1985).
[10]
Olivier Gourmel, Loic Barthe, Marie Paule Cani, Brian Wyvill, Adrien Bernhardt, Mathias Paulin, and Herbert Grasberger. 2013. A gradient-based implicit blend. ACM Transactions on Graphics 32, 2 (2013).
[11]
Anders Grönlund, Lars Björklund, Stig Grundberg, and Göran Berggren. 1995. Manual för furustambank. Technical Report. Luleå Technical University.
[12]
Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. 2020. Learning a Neural 3D Texture Space from 2D Exemplars. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 8353--8361.
[13]
Takashi Ijiri, Shigeru Owada, and Takeo Igarashi. 2006. The sketch L-system: Global control of tree modeling using free-form strokes. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 4073 LNCS.
[14]
Erik Johansson, Dennis Johansson, Johan Skog, and Magnus Fredriksson. 2013. Automated knot detection for high speed computed tomography on Pinus sylvestris L. and Picea abies (L.) Karst. using ellipse fitting in concentric surfaces. Computers and Electronics in Agriculture (2013).
[15]
Johannes Kopf, Chi Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski, and Tien Tsin Wong. 2007. Solid texture synthesis from 2D exemplars. ACM Transactions on Graphics (2007).
[16]
J. Kratt, M. Spicker, A. Guayaquil, M. Fiser, S. Pirk, O. Deussen, J. C. Hart, and B. Benes. 2015. Woodification: User-Controlled Cambial Growth Modeling. In Computer Graphics Forum, Vol. 34.
[17]
Z. Lam and Scott A. King. 2005. Simulating tree growth based on internal and environmental factors. In Proceedings - GRAPHITE 2005 - 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia.
[18]
Aristid Lindenmayer. 1968. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. Journal of Theoretical Biology 18, 3 (1968).
[19]
Albert Julius Liu, Zhao Dong, Miloš Hašan, and Steve Marschner. 2016. Simulating the structure and texture of solid wood. ACM Transactions on Graphics (2016).
[20]
Joanne Mann, Mike Plank, and Andy Wilkins. 2006. Tree growth and wood formation --- applications of anisotropic surface growth. In Proceedings of the Mathematics in Industry Study Group. 153--192.
[21]
Stephen R. Marschner, Stephen H. Westin, Adam Arbree, and Jonathan T. Moon. 2005. Measuring and modeling the appearance of finished wood. In ACM Transactions on Graphics.
[22]
Guilherme N. Oliveira, Rafael P. Torchelsen, João L.D. Comba, Marcelo Walter, and Rui Bastos. 2010. Geotextures: A multi-source geodesic distance field approach for procedural texturing of complex meshes. In Proceedings - 23rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2010.
[23]
Darwyn R. Peachey. 1985. SOLID TEXTURING OF COMPLEX SURFACES. Computer Graphics (ACM) 19, 3 (1985).
[24]
Ken Perlin. 1985. An Image Synthesizer. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '85). Association for Computing Machinery, New York, NY, USA, 287--296.
[25]
Ken Perlin. 2002. Improving Noise. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (San Antonio, Texas) (SIGGRAPH '02). Association for Computing Machinery, New York, NY, USA, 681--682.
[26]
Bui Tuong Phong. 1975. Illumination for Computer Generated Pictures. Commun. ACM 18, 6 (1975).
[27]
Sören Pirk, Ondrej Stava, Julian Kratt, Michel Abdul Massih Said, Boris Neubert, Radomír Měch, Bedrich Benes, and Oliver Deussen. 2012. Plastic trees: Interactive self-adapting botanical tree models. ACM Transactions on Graphics 31, 4 (2012).
[28]
Inigo Quilez. 2013. Smooth minimum. https://www.iquilezles.org/www/articles/smin/smin.htm
[29]
Damien Sellier, Michael J. Plank, and Jonathan J. Harrington. 2011. A mathematical framework for modelling cambial surface evolution using a level set method. Annals of Botany 108, 6 (2011).
[30]
Kenshi Takayama, Makoto Okabe, Takashi Ijiri, and Takeo Igarashi. 2008. Lapped solid textures: Filling a model with anisotropic textures. ACM Transactions on Graphics 27, 3 (2008).

Cited By

View all
  • (2024)Learned Inference of Annual Ring Pattern of Solid WoodComputer Graphics Forum10.1111/cgf.1507443:6Online publication date: 22-Apr-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 41, Issue 4
July 2022
1978 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3528223
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 July 2022
Published in TOG Volume 41, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. distance field
  2. natural phenomena
  3. procedural texturing
  4. smooth minimum
  5. volumetric texturing
  6. wood

Qualifiers

  • Research-article

Funding Sources

  • JST, ACT-I, Japan
  • JST, ACT-X, Japan
  • JST, CREST, Japan

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)75
  • Downloads (Last 6 weeks)14
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Learned Inference of Annual Ring Pattern of Solid WoodComputer Graphics Forum10.1111/cgf.1507443:6Online publication date: 22-Apr-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media