Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Multigrid Methods for Hellan---Herrmann---Johnson Mixed Method of Kirchhoff Plate Bending Problems

Published: 01 August 2018 Publication History

Abstract

A V-cycle multigrid method for the Hellan---Herrmann---Johnson (HHJ) discretization of the Kirchhoff plate bending problems is developed in this paper. It is shown that the contraction number of the V-cycle multigrid HHJ mixed method is bounded away from one uniformly with respect to the mesh size. The uniform convergence is achieved for the V-cycle multigrid method with only one smoothing step and without full elliptic regularity assumption. The key is a stable decomposition of the kernel space which is derived from an exact sequence of the HHJ mixed method, and the strengthened Cauchy Schwarz inequality. Some numerical experiments are provided to confirm the proposed V-cycle multigrid method. The exact sequences of the HHJ mixed method and the corresponding commutative diagram is of some interest independent of the current context.

References

[1]
Adams, S., Cockburn, B.: A mixed finite element method for elasticity in three dimensions. J. Sci. Comput. 25, 515---521 (2005)
[2]
Adini, A., Clough, R.: Analysis of plate bending by the finite element method, technical report, NSF Report G. 7337 (1961)
[3]
Arnold, D.N., Awanou, G., Winther, R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77, 1229---1251 (2008)
[4]
Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 7---32 (1985)
[5]
Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1---155 (2006)
[6]
Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401---419 (2002)
[7]
Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput. 35, 1039---1062 (1980)
[8]
Bazeley, G., Cheung, Y., Irons, B., Zienkiewicz, O.: Triangular elements in plate bending--conforming and nonconforming solutions. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson Air Force Base: Dayton, Ohio, pp. 547---576 (1965)
[9]
Beirão da Veiga, L., Niiranen, J., Stenberg, R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165---179 (2007)
[10]
Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer, Heidelberg (2013)
[11]
Bramble, J.H., Pasciak, J.E.: New convergence estimates for multigrid algorithms. Math. Comput. 49, 311---329 (1987)
[12]
Bramble, J.H., Zhang, X.: Multigrid methods for the biharmonic problem discretized by conforming $$C^1$$C1 finite elements on nonnested meshes. Numer. Funct. Anal. Optim. 16, 835---846 (1995)
[13]
Brenner, S.C.: An optimal-order nonconforming multigrid method for the biharmonic equation. SIAM J. Numer. Anal. 26, 1124---1138 (1989)
[14]
Brenner, S.C.: A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity, Math. Comp. 63, 435---460, S1---S5 (1994)
[15]
Brenner, S.C.: Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comput. 68, 25---53 (1999)
[16]
Brenner, S.C., Sung, L.-Y.: $$C^0$$C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22, 83---118 (2005)
[17]
Brenner, S.C., Sung, L.-Y.: Multigrid algorithms for $$C^0$$C0 interior penalty methods. SIAM J. Numer. Anal. 44, 199---223 (2006)
[18]
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (1991)
[19]
Carstensen, C., Gallistl, D., Hu, J.: A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68, 2167---2181 (2014)
[20]
Chen, L.: iFEM: An integrated finite element methods package in MATLAB, technical report, University of California at Irvine (2008)
[21]
Chen, L.: Multigrid methods for constrained minimization problems and application to saddle point problems. arXiv:1601.04091 (2016)
[22]
Chen, L., Hu, J., Huang, X.: Fast auxiliary space preconditioner for linear elasticity in mixed form. Math. Comp. (2017).
[23]
Chen, L., Hu, J., Huang, X.: Stabilized mixed finite element methods for linear elasticity on simplicial grids in $$\mathbb{R}^n$$Rn. Comput. Methods Appl. Math. 17, 17---31 (2017)
[24]
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978)
[25]
Ciarlet, P.G.: On Korn's inequality. Chin. Ann. Math. Ser. B 31, 607---618 (2010)
[26]
Comodi, M.I.: The Hellan---Herrmann---Johnson method: some new error estimates and postprocessing. Math. Comput. 52, 17---29 (1989)
[27]
Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669---3750 (2002)
[28]
Falk, R.S., Osborn, J.E.: Error estimates for mixed methods. RAIRO Anal. Numér. 14, 249---277 (1980)
[29]
Feng, K., Shi, Z.-C.: Mathematical Theory of Elastic Structures. Springer, Berlin (1996)
[30]
de Veubeke, D.F.: Displacement and equilibrium models in the finite element method, ch. 9. In: Zienkiewicz, O., Holister, G.S. (eds.) Stress Analysis, pp. 145---197. Wiley, New York (1965)
[31]
Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris (1992)
[32]
Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechnica Scandinavia, Civ. Eng. Ser. 46, Trondheim (1967)
[33]
Herrmann, L.R.: Finite element bending analysis for plates. J. Eng. Mech. Div. 93, 49---83 (1967)
[34]
Hu, J.: Finite element approximations of symmetric tensors on simplicial grids in $$\mathbb{R}^n$$Rn: the higher order case. J. Comput. Math. 33, 283---296 (2015)
[35]
Hu, J., Zhang, S.: A family of conforming mixed finite elements for linear elasticity on triangular grids. arXiv:1406.7457 (2014)
[36]
Hu, J., Zhang, S.: A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math. 58, 297---307 (2015)
[37]
Hu, J., Zhang, S.: Finite element approximations of symmetric tensors on simplicial grids in $$\mathbb{R}^n$$Rn: the lower order case. Math. Models Methods Appl. Sci. 26, 1649---1669 (2016)
[38]
Huang, J., Huang, X., Xu, Y.: Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J. Numer. Anal. 49, 574---607 (2011)
[39]
Johnson, C.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21, 43---62 (1973)
[40]
Krendl, W., Rafetseder, K., Zulehner, W.: A decomposition result for biharmonic problems and the Hellan---Herrmann---Johnson method. Electron. Trans. Numer. Anal. 45, 257---282 (2016)
[41]
Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. RAIRO Analyse Numérique 9, 9---53 (1975)
[42]
Lee, Y.-J., Wu, J., Xu, J., Zikatanov, L.: A sharp convergence estimate for the method of subspace corrections for singular systems of equations. Math. Comput. 77, 831---850 (2008)
[43]
Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Q. 19, 149---169 (1968)
[44]
Pechstein, A., Schöberl, J.: Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 21, 1761---1782 (2011)
[45]
Peisker, P., Rust, W., Stein, E.: Iterative solution methods for plate bending problems: multigrid and preconditioned cg algorithm. SIAM J. Numer. Anal. 27, 1450---1465 (1990)
[46]
Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, New York (2006)
[47]
Shi, Z.-C., Xu, X.: A $$V$$V-cycle multigrid method for TRUNC plate element. Comput. Methods Appl. Mech. Eng. 188, 483---493 (2000)
[48]
Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25, 151---167 (1991)
[49]
Vanĕk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179---196 (1996). International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994)
[50]
Wang, M.: The $$W$$W-cycle multigrid method for finite elements with nonnested spaces. Adv. Math. (China) 23, 238---250 (1994)
[51]
Wang, M., Shi, Z.-C., Xu, J.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106, 335---347 (2007)
[52]
Wang, M., Shi, Z.-C., Xu, J.: Some $$n$$n-rectangle nonconforming elements for fourth order elliptic equations. J. Comput. Math. 25, 408---420 (2007)
[53]
Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155---169 (2006)
[54]
Wang, M., Xu, J.: Minimal finite element spaces for $$2m$$2m-th-order partial differential equations in $$R^n$$Rn. Math. Comput. 82, 25---43 (2013)
[55]
Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581---613 (1992)
[56]
Xu, X., Li, L.: A $$V$$V-cycle multigrid method and additive multilevel preconditioners for the plate bending problem discretized by conforming finite elements. Appl. Math. Comput. 93, 233---258 (1998)
[57]
Xu, X.-J., Li, L.-K.: A $$V$$V-cycle multigrid method for the plate bending problem discretized by nonconforming finite elements. J. Comput. Math. 17, 533---544 (1999)
[58]
Zhang, S.: An optimal order multigrid method for biharmonic, $$C^1$$C1 finite element equations. Numer. Math. 56, 613---624 (1989)
[59]
Zhao, J.: Convergence of V-cycle and F-cycle multigrid methods for the biharmonic problem using the Morley element. Electron. Trans. Numer. Anal. 17, 112---132 (2004)
[60]
Zhao, J.: Convergence of V- and F-cycle multigrid methods for the biharmonic problem using the Hsieh---Clough---Tocher element. Numer. Methods Partial Differ. Equ. 21, 451---471 (2005)
[61]
Zhou, S.Z., Feng, G.: A multigrid method for the Zienkiewicz element approximation of biharmonic equations. Hunan Daxue Xuebao 20, 1---6 (1993)

Cited By

View all
  • (2022)A new mixed finite-element method for H 2 elliptic problemsComputers & Mathematics with Applications10.1016/j.camwa.2022.10.024128:C(300-319)Online publication date: 15-Dec-2022
  • (2018)Quasi-optimal convergence rate for an adaptive hybridizable $$C^0$$C0 discontinuous Galerkin method for Kirchhoff platesNumerische Mathematik10.1007/s00211-018-0953-7139:4(795-829)Online publication date: 1-Aug-2018
  1. Multigrid Methods for Hellan---Herrmann---Johnson Mixed Method of Kirchhoff Plate Bending Problems

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Scientific Computing
        Journal of Scientific Computing  Volume 76, Issue 2
        August 2018
        653 pages

        Publisher

        Plenum Press

        United States

        Publication History

        Published: 01 August 2018

        Author Tags

        1. Exact sequence
        2. Hellan---Herrmann---Johnson mixed method
        3. Kirchhoff plate
        4. Multigrid method
        5. Stable decomposition

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 22 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2022)A new mixed finite-element method for H 2 elliptic problemsComputers & Mathematics with Applications10.1016/j.camwa.2022.10.024128:C(300-319)Online publication date: 15-Dec-2022
        • (2018)Quasi-optimal convergence rate for an adaptive hybridizable $$C^0$$C0 discontinuous Galerkin method for Kirchhoff platesNumerische Mathematik10.1007/s00211-018-0953-7139:4(795-829)Online publication date: 1-Aug-2018

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media