Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Quasi-optimal convergence rate for an adaptive hybridizable $$C^0$$C0 discontinuous Galerkin method for Kirchhoff plates

Published: 01 August 2018 Publication History

Abstract

In this paper, we present an adaptive hybridizable $$C^0$$C0 discontinuous Galerkin (HCDG) method for Kirchhoff plates. A reliable and efficient a posteriori error estimator is produced for this HCDG method. Quasi-orthogonality and discrete reliability are established with the help of a postprocessed bending moment and the discrete Helmholtz decomposition. Based on these, the contraction property between two consecutive loops and complexity of the adaptive HCDG method are studied thoroughly. The key points in our analysis are a postprocessed normal---normal continuous bending moment from the HCDG method solution and a lifting of jump residuals from inter-element boundaries to element interiors.

References

[1]
Adjerid, S.: A posteriori error estimates for fourth-order elliptic problems. Comput. Methods Appl. Mech. Eng. 191(23---24), 2539---2559 (2002).
[2]
An, R., Huang, X.: A compact $$C^0$$C0 discontinuous Galerkin method for Kirchhoff plates. Numer. Methods Partial Differ. Equ. 31(4), 1265---1287 (2015)
[3]
Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19(1), 7---32 (1985)
[4]
Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comp. 35(152), 1039---1062 (1980).
[5]
Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219---268 (2004)
[6]
Bonito, A., Nochetto, R.H.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48(2), 734---771 (2010).
[7]
Brenner, S.C., Gudi, T., Sung, L.Y.: An a posteriori error estimator for a quadratic $$C^0$$C0-interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30(3), 777---798 (2010). http://imajna.oxfordjournals.org/content/30/3/777.abstract
[8]
Brenner, S.C., Gudi, T., Sung, L.Y.: A weakly over-penalized symmetric interior penalty method for the biharmonic problem. Electron. Trans. Numer. Anal. 37, 214---238 (2010)
[9]
Brenner, S.C., Sung, L.Y.: $$C^0$$C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83---118 (2005)
[10]
Carstensen, C., Gallistl, D., Hu, J.: A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles. Numer. Math. 124(2), 309---335 (2013).
[11]
Carstensen, C., Gallistl, D., Hu, J.: A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68((12, part B)), 2167---2181 (2014).
[12]
Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524---2550 (2008)
[13]
Charbonneau, A., Dossou, K., Pierre, R.: A residual-based a posteriori error estimator for the Ciarlet---Raviart formulation of the first biharmonic problem. Numer. Methods Partial Differ. Equ. 13(1), 93---111 (1997).
[14]
Chen, L., Hu, J., Huang, X.: Multigrid methods for Hellan---Herrmann---Johnson mixed method of Kirchhoff plate bending problems. J. Sci. Comput. (2018).
[15]
Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comp. 77(264), 1887---1916 (2008).
[16]
Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40(1---3), 141---187 (2009).
[17]
Cockburn, B., Gopalakrishnan, J.: A characterization of hybridized mixed methods for second order elliptic problems. SIAM J. Numer. Anal. 42(1), 283---301 (2004).
[18]
Cockburn, B., Gopalakrishnan, J.: New hybridization techniques. GAMM Mitt. 28(2), 154---182 (2005)
[19]
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319---1365 (2009).
[20]
Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math. Comp. 79(271), 1351---1367 (2010).
[21]
Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comp. 78(265), 1---24 (2009).
[22]
Cockburn, B., Nochetto, R.H., Zhang, W.: Contraction property of adaptive hybridizable discontinuous Galerkin methods. Math. Comp. 85(299), 1113---1141 (2016).
[23]
Comodi, M.I.: The Hellan---Herrmann---Johnson method: some new error estimates and postprocessing. Math. Comp. 52(185), 17---29 (1989).
[24]
Dörfler, W.: A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33(3), 1106---1124 (1996)
[25]
Falk, R.S., Osborn, J.E.: Error estimates for mixed methods. RAIRO Anal. Numér. 14(3), 249---277 (1980)
[26]
Feng, K., Shi, Z.C.: Mathematical Theory of Elastic Structures. Springer, Berlin (1996)
[27]
Georgoulis, E.H., Houston, P., Virtanen, J.: An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31(1), 281---298 (2011).
[28]
Gudi, T.: Residual-based a posteriori error estimator for the mixed finite element approximation of the biharmonic equation. Numer. Methods Partial Differ. Equ. 27(2), 315---328 (2011).
[29]
Gudi, T., Guzmán, J.: Convergence analysis of the lowest order weakly penalized adaptive discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 48(3), 753---764 (2014).
[30]
Hansbo, P., Larson, M.G.: A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff---Love plate. Comput. Methods Appl. Mech. Eng. 200(47---48), 3289---3295 (2011).
[31]
Hoppe, R.H.W., Kanschat, G., Warburton, T.: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47(1), 534---550 (2008/2009).
[32]
Hu, J., Shi, Z.: A new a posteriori error estimate for the Morley element. Numer. Math. 112(1), 25---40 (2009)
[33]
Hu, J., Shi, Z., Xu, J.: Convergence and optimality of the adaptive Morley element method. Numer. Math. 121(4), 731---752 (2012).
[34]
Huang, J., Huang, X., Han, W.: A new $$C^0$$C0 discontinuous Galerkin method for Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 199(23---24), 1446---1454 (2010).
[35]
Huang, J., Huang, X., Xu, Y.: Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J. Numer. Anal. 49(2), 574---607 (2011).
[36]
Huang, X., Huang, J.: A reduced local $$C^0$$C0 discontinuous Galerkin method for Kirchhoff plates. Numer. Methods Partial Differ. Equ. 30(6), 1902---1930 (2014)
[37]
Huang, X., Huang, J.: A superconvergent $$C^0$$C0 discontinuous Galerkin method for Kirchhoff plates: error estimates, hybridization and postprocessing. J. Sci. Comput. 69(3), 1251---1278 (2016).
[38]
Huang, X.H., Lai, J.J., Wang, W.Q.: A modified Argyris element method for Kirchhoff plates bending problems. J. Shanghai Jiaotong Univ. 47(2), 203---209 (2013)
[39]
Karakashian, O.A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45(2), 641---665 (2007).
[40]
Liu, K., Qin, X.: A gradient recovery-based a posteriori error estimators for the Ciarlet---Raviart formulation of the second biharmonic equations. Appl. Math. Sci. (Ruse) 1(21---24), 997---1007 (2007)
[41]
Maubach, J.M.: Local bisection refinement for $$n$$n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16(1), 210---227 (1995).
[42]
Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, New York (2006)
[43]
Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483---493 (1990)
[44]
Segeth, K.: A comparison of a posteriori error estimates for biharmonic problems solved by the FEM. J. Comput. Appl. Math. 236(18), 4788---4797 (2012).
[45]
Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25(1), 151---167 (1991)
[46]
Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comp. 77(261), 227---241 (2008)
[47]
Traxler, C.T.: An algorithm for adaptive mesh refinement in $$n$$n dimensions. Computing 59(2), 115---137 (1997).
[48]
Beirão da Veiga, L., Niiranen, J., Stenberg, R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106(2), 165---179 (2007)
[49]
Beirão da Veiga, L., Niiranen, J., Stenberg, R.: A posteriori error analysis for the Morley plate element with general boundary conditions. Int. J. Numer. Methods Eng. 83(1), 1---26 (2010)
[50]
Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series, Advances in Numerical Mathematics. Wiley-Teubner, Chichester (1996)
[51]
Fraeijs de Veubeke, B.: Displacement and equilibrium models in the finite element method. In: Zienkiewicz, O., Holister, G.S. (eds.) Stress Analysis, Chapter 9, pp. 145---197. Wiley, New York (1965)
[52]
Xu, Y., Huang, J.: A class of high order adaptive mixed element methods for Kirchhoff plate bending problems. Sci. Sin. Math. 42(5), 473---489 (2012). (in Chinese)
[53]
Xu, Y., Huang, J., Huang, X.: A posteriori error estimates for local $$C^0$$C0 discontinuous Galerkin methods for Kirchhoff plate bending problems. J. Comput. Math. 32(6), 665---686 (2014)
[54]
Zhang, W.: Convergence of adaptive hybridizable discontinuous Galerkin methods for second-order elliptic equations. Ph.D. thesis, University of Minnesota (2012)

Cited By

View all

Index Terms

  1. Quasi-optimal convergence rate for an adaptive hybridizable $$C^0$$C0 discontinuous Galerkin method for Kirchhoff plates

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Numerische Mathematik
      Numerische Mathematik  Volume 139, Issue 4
      August 2018
      224 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 August 2018

      Author Tags

      1. 65N12
      2. 65N30
      3. 65N50
      4. 65Y20
      5. 74K20
      6. A posteriori error estimates
      7. Adaptive hybridizable $$C^0$$C0 discontinuous Galerkin method
      8. Computational complexity
      9. Convergence
      10. Kirchhoff plate bending problems

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 21 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media