Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Lax---Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws

Published: 01 September 2015 Publication History

Abstract

Fast sweeping methods are efficient Gauss---Seidel iterative numerical schemes originally designed for solving static Hamilton---Jacobi equations. Recently, these methods have been applied to solve hyperbolic conservation laws with source terms. In this paper, we propose Lax---Friedrichs fast sweeping multigrid methods which allow even more efficient calculations of viscosity solutions of stationary hyperbolic problems. Due to the choice of Lax---Friedrichs numerical fluxes, general problems can be solved without difficult inversion. High order discretization, e.g., WENO finite difference method, can be incorporated to achieve high order accuracy. On the other hand, multigrid methods, which have been widely used to solve elliptic equations, can speed up the computation by smoothing errors of low frequencies on coarse meshes. We modify the classical multigrid method with regard to properties of viscous solutions to hyperbolic conservation equations by introducing WENO interpolation between levels of mesh grids. Extensive numerical examples in both scalar and system test problems in one and two dimensions demonstrate the efficiency, high order accuracy and the capability of resolving singularities of the viscosity solutions.

References

[1]
Abgrall, R.: Toward the ultimate conservative scheme: following the quest. J. Comput. Phys. 167, 277---315 (2001)
[2]
Abgrall, R., Barth, T.: Residual distribution schemes for conservation laws via adaptive quadrature. SIAM J. Sci. Comput. 24, 732---769 (2002)
[3]
Abgrall, R., Mezine, M.: Construction of second order accurate monotone and stable residual distribution schemes for steady problems. J. Comput. Phys. 195, 474---507 (2004)
[4]
Abgrall, R., Roe, P.L.: High order fluctuation scheme on triangular meshes. J. Sci. Comput. 19, 3---36 (2003)
[5]
Amarala, S., Wan, J.: Multigrid methods for systems of hyperbolic conservation laws. Multiscale Model. Simul. 11(2), 586---614 (2013)
[6]
Buckley, Se E., Leverett, MCi: Mechanism of fluid displacement in sands. Trans. AIME 146(107), 1---7 (1942)
[7]
Chen, W., Chou, C.-S., Kao, C.-Y.: Lax-Friedrichs fast sweeping methods for steady state problems for hyperbolic conservation laws. J. Comput. Phys. 234, 452---471 (2013)
[8]
Chou, C.-S., Shu, C.-W.: High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes. J. Comput. Phys. 214, 698---724 (2006)
[9]
Deconinck, H., Struijs, R., Bourgeois, G., Roe, P.: Compact advection schemes on unstructured meshes, computational fluid dynamics. Computational Fluid Dynamics, VKI Lecture Series 1993---04, 1993
[10]
Embid, P., Goodman, J., Majda, A.: Multiple steady states for 1-d transonic flow. SIAM J. Sci. Stat. Comput. 5, 21---41 (1984)
[11]
Goedbloed, J., Poedts, S.: Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, (2004)
[12]
Harten, A., Hyman, J., Lax, P., Keyfitz, B.: On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29(3), 297---322 (1976)
[13]
Hemker, P.W., Spekreijse, S.P.: Multigrid solution of the steady euler equations. In Dietrich B., Wolfgang H., and Ulrich T., (eds.), Advances in Multi-Grid Methods, of Notes on Numerical Fluid Mechanics, vol. 11, pp. 33---44. Vieweg+Teubner Verlag, (1985)
[14]
Jespersen, D.: Design and implementation of a multigrid code for the euler equations. Appl. Math. Comput. 13(3---4), 357---374 (1983)
[15]
Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202---228 (1996)
[16]
Koren, B., Hemker, P.W.: Damped, direction-dependent multigrid for hypersonic flow computations. Appl. Numer. Math. 7(4), 309---328 (1991)
[17]
Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13(2), 217---237 (1960)
[18]
Leclercq, M.P., Stoufflet, B.: Characteristic multigrid method application to solve the euler equations with unstructured and unnested grids. J. Comput. Phys. 104(2), 329---346 (1993)
[19]
Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)
[20]
Liepmann, H.W., Roshko, A.: Elements of Gas Dynamics. Wiley, New York (1957)
[21]
Liu, T.P.: Hyperbolic and viscous conservation laws. CBMS-NSF regional conference series in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000
[22]
Liu, X.-D., Osher, S., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200---212 (1994)
[23]
Roberts, T., Sidilkover, D., Swanson, R.C.: Textbook multigrid efficiency for the steady Euler equations. Aiaa Pap. 97, 1949 (1997)
[24]
Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357---372 (1981)
[25]
Roe, P.L., Sidilkover, D.: Optimum positive linear schemes for advection in two or three dimensions. SIAM J. Numer. Anal. 29, 1542---1588 (1992)
[26]
Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697, pp. 325---432. Springer (1998)
[27]
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439---471 (1988)
[28]
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys. 83, 32---78 (1989)
[29]
Sidikover, D., Brandt, A.: Multigrid solution to steady-state two-dimensional conservation laws. SIAM J. Numer. Anal. 30(1), 249---274 (1993)
[30]
Struijs, R., Deconinck, H., Roe, P.L.: Fluctuation splitting schemes for the 2d euler equations. In: In its Computational Fluid Dynamics 94 p (SEE N91-32426 24---34), vol. 1, 1991
[31]
Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton---Jacobi equations. SIAM J. Numer. Anal. 41, 673---694 (2003)
[32]
Vincenti, W.G., Kruger, C.H.: Introduction to Physical Gas Dynamics. Wiley, New York (1965)
[33]
Wan, J.W.L., Jameson, A.: Monotonicity preserving multigrid time stepping schemes for conservation laws. Comput. Vis. Sci. 11(1), 41---58 (2008)
[34]
Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Secaucus, NJ (2000)
[35]
Zhang, S., Jiang, S., Shu, C.-W.: Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. J Sci. Comput. 47(2), 216---238 (2011)
  1. Lax---Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Scientific Computing
        Journal of Scientific Computing  Volume 64, Issue 3
        September 2015
        399 pages

        Publisher

        Plenum Press

        United States

        Publication History

        Published: 01 September 2015

        Author Tags

        1. Fast sweeping method
        2. Hyperbolic conservation laws
        3. Multigrid method
        4. Steady state
        5. WENO

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 22 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media