Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Circuit modelling of 2-AG indirect pathway via astrocyte as a catalyst for synaptic self repair

Published: 01 April 2018 Publication History

Abstract

Recent neurophysiological findings illustrate that the brain detects the faulty synapses and is able to repair them to some extent. It was shown that retrograde signaling via astrocytes leads to modulation of synaptic activity. Specifically, indirect signaling pathways of endocannabinoids modulate the synaptic transmission probability. Given these observations, this paper presents a novel analog circuit realization of the bio-inspired neuron-Astrocyte using analog elements which designed and simulated in LTSPICE simulator (Linear Technology SPICE simulator). This is based on the principle of retrograde signaling in the astrocyte-neuron network using astrocytic calcium dynamics. The simulation results of the analog circuit, demonstrate that 2-AG indirect signaling via astrocytes increases the probability of neurotransmitter release at the damaged synapses. This result indicates a promising approach toward a new class of adaptive, distributed computing systems in which self-repairing mechanism actively contributes to fault diagnosis and modification which also can be extended to neuronal networks.

References

[1]
Johnson, A. P., Halliday, D. M., Millard, A. G., Tyrrell, A. M., Timmis, J., Liu, J., Harkin, J., McDaid, L., & Karim, S. (2016). An FPGA-based hardware-efficient fault-tolerant astrocyte-neuron network. Symposium series on computational intelligence (SSCI).
[2]
Amiri, M., Bahrami, F., & Janahmadi, M. (2011). Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Computing and Appl.,20(8), 1131---1139.
[3]
Amiri, M., Montaseri, G., & Bahrami, F. (2011). On the role of astrocytes in synchronization of two coupled neurons: A mathematical perspective. Journal of Biological Cybernetics,105(2), 153---166.
[4]
Amiri, M., Hosseinmardi, N., Bahrami, F., & Janahmadi, M. (2013). Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: A study based on modeling and experiments. Journal of Computational Neuroscience,34(3), 489---504.
[5]
Giugliano, M. (2009). Calcium waves in astrocyte networks: Theory and experiments. Frontiers in Neuroscience,3(2), 160---161.
[6]
Amiri, M., Montaseri, G., & Bahrami, F. (2013). A phase plane analysis of neuron---astrocyte interactions. Neural Networks,44, 157---165.
[7]
Amiri, M., Bahrami, F., & Janahmadi, M. (2012). On the role of astrocytes in epilepsy: a functional modeling approach. Journal of Neuroscience Research,72(2), 172---180.
[8]
Amiri, M., Bahrami, F., & Janahmadi, M. (2012). Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. Journal of Computational Neuroscience,33(2), 285---299.
[9]
Porter, J. T., & McCarthy, K. D. (1996). Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. Journal of Neuroscience,16(16), 5073---5081.
[10]
Agulhon, C., Petravicz, J., McMullen, A., Sweger, E., Minton, S. K., et al. (2008). What is the role of astrocyte calcium in neurophysiology. Neuron,59, 932---946.
[11]
Navarrete, M., & Araque, A. (2010). Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron,68(1), 113---126.
[12]
Volman, V., Ben-Jacob, E., & Levine, H. (2007). The astrocyte as a gatekeeper of synaptic information transfer. Neural Computation,19, 303---326.
[13]
Wade, J. J., McDaid, L. J., Harkin, J., Crunelli, V., Kelso, J. A. S., & Beiu, V. (2011). Exploring retrograde signaling via astrocytes as a mechanism for self-repair. In Proceedings of international joint conference on neural networks, pp. 3149---3155.
[14]
Liu, J., Harkin, J., Maguire, L., McDaid, L., Wade, J., & McElholm, M. (2016). Self-repairing hardware with astrocyte-neuron networks. In Proceedings of ISCAS, pp. 1350---1353.
[15]
Nazari, S., Faez, K., Amiri, M., & Karami, E. (2015). A digital implementation of neuron---astrocyte interaction for neuromorphic applications. Neural Netw.,66, 79---90.
[16]
Ambroise, M., Levi, T., Joucla, S., Yvert, B., & Saïghi, S. (2013). Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Frontiers in Neuroscience, 7, 1---11.
[17]
Cassidy, A. S., Georgiou, J., & Andreou, A. G. (2013). Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Networks.,45, 4---26.
[18]
Irizarry, Y., & Parker, A. C. (2015). An astrocyte neuromorphic circuit that influences neuronal phase synchrony. IEEE Transactions on Biomedical Circuits and Systems,9(2), 175---187.
[19]
Naeem, M., McDaid, L. J., Harkin, J., Wade, J. J., & Marsland, J. (2015). On the Role of Astroglial Syncytia in Self-Repairing Spiking Neural Networks. IEEE Transactions on Neural Networks and Learning Systems.,26(10), 2370---2380.
[20]
Liu, J., Harkin, J., McDaid, L., Halliday, D. M., Tyrrell, A. M., & Timmis, J. (2016). Self-repairing mobile robotic car using astrocyte-neuron networks. In Proceedings of IJCNN, pp. 1379---1386.
[21]
Johnson, A. P., Halliday, D. M., Millard, A. G., Tyrrell, A. M., Timmis, J., Liu, J., Harkin, J., McDaid, L., & Karim, S.: An FPGA-based hardware-efficient fault-tolerant astrocyte-neuron network. In Proceedings of SSCI, pp. 1---8.
[22]
Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity (pp. 102---104). Cambridge: Cambridge University Press.
[23]
Gerstner, W., & Naud, R. (2009). How good are neuron models. Science,326(5951), 379---380.
[24]
Izhikevich, E. M. (2004). Which model to use for cortical spiking neuron. IEEE Transactions on Neural Networks,15(5), 1063---1107.
[25]
Nadkarni, S., & Jung, P. (2004). Dressed neurons: modeling neural-glial interactions. Physical Biology,1, 1---2.
[26]
Nadkarni, S., & Jung, P. (2007). Modeling synaptic transmission of the tripartite synapse. Physical Biology,4(1), 1---9.
[27]
Li, Y., & Rinzel, J. (1994). Equations for InsP3 receptor-mediated calcium oscillations derived from a detailed kinetic model a Hodgkin-Huxley like formalism. Journal of Theoretical Biology,166, 461---473.
[28]
JIM THOMPSON'S. http://www.analog-innovations.com/.
[29]
Buscarino, A., Fortuna, L., Frasca, M., & Sciuto, G. (2014). A concise guide to chaotic electronic circuits, Springer Briefs in Applied Sciences and Technology (pp. 18, 19). Berlin, Germany: Springer.
[30]
Matveev, V., & Wang, X. J. (2000). Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: A computational study. Journal of Neuroscience,20(4), 1575---1588.
[31]
Maass, W., & Zador, A. M. (1999). Dynamic stochastic synapses as computational units. Neural Computation,11, 903---917.
[32]
Fuhrmann, G., Segev, I., Markram, H., & Tsodyks, M. (2002). Coding of information by activity-dependent synapses. Journal of Neurophysiology,87, 140---148.
[33]
Wade, J., McDaid, L., Harkin, J., Crunelli, V., & Kelso, S. (2012). Self-repair in a bidirectionally coupled astrocyte-neuron (AN) system based on retrograde signaling. Frontiers in Computational Neuroscience,6(76), 1---12.
[34]
Rusakov, D. A., Zheng, K., & Henneberger, C. (2011). Astrocytes as regulators of synaptic function: a quest for the Ca2+ master key. Neuroscientist,17, 513---523.
[35]
Zamanfarsa, E., Nazari, S., & Gholami, M. (2015). Function approximation by hardware spiking neural network. Journal of Computational Electronics,14(1), 227---239.
[36]
Ranjbar, M., & Amiri, M. (2015). An analog astrocyte-neuron interaction circuit for neuromorphic applications. Journal of Computational Electronics,14(3), 707---716.

Cited By

View all
  • (2020)Design of bioinspired tripartite synapse analog integrated circuit in 65-nm CMOS TechnologyJournal of Computational Electronics10.1007/s10825-020-01514-519:3(1313-1328)Online publication date: 18-May-2020
  1. Circuit modelling of 2-AG indirect pathway via astrocyte as a catalyst for synaptic self repair

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Analog Integrated Circuits and Signal Processing
    Analog Integrated Circuits and Signal Processing  Volume 95, Issue 1
    April 2018
    183 pages

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 April 2018

    Author Tags

    1. 2-AG indirect signaling
    2. Analog implementation
    3. Astrocyte
    4. Calcium wave
    5. Circuit modeling

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)Design of bioinspired tripartite synapse analog integrated circuit in 65-nm CMOS TechnologyJournal of Computational Electronics10.1007/s10825-020-01514-519:3(1313-1328)Online publication date: 18-May-2020

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media