Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Autonomous search in a social and ubiquitous Web

Published: 09 June 2020 Publication History

Abstract

Recent W3C recommendations for the Web of Things (WoT) and the Social Web are turning hypermedia into a homogeneous information fabric that interconnects heterogeneous resources: devices, people, information resources, abstract concepts, etc. The integration of multi-agent systems with such hypermedia environments now provides a means to distribute autonomous behavior in worldwide pervasive systems. A central problem then is to enable autonomous agents to discover heterogeneous resources in worldwide and dynamic hypermedia environments. This is a problem in particular in WoT environments that rely on open standards and evolve rapidly—thus requiring agents to adapt their behavior at run time in pursuit of their design objectives. To this end, we developed a hypermedia search engine for the WoT that allows autonomous agents to perform approximate search queries in order to retrieve relevant resources in their environment in (weak) real time. The search engine crawls dynamic WoT environments to discover and index device metadata described with the W3C WoT Thing Description, and exposes a SPARQL endpoint that agents can use for approximate search. To demonstrate the feasibility of our approach, we implemented a prototype application for the maintenance of industrial robots in worldwide manufacturing systems. The prototype demonstrates that our semantic hypermedia search engine enhances the flexibility and agility of autonomous agents in a social and ubiquitous Web.

References

[1]
Acosta M, Hartig O, and Sequeda JFederated RDF query processing2018ChamSpringer International Publishing1-810.1007/978-3-319-63962-8_228-1
[2]
Bienz S, Ciortea A, Mayer S, Gandon F., Corby O (2019) Escaping the streetlight effect: semantic hypermedia search enhances autonomous behavior in the Web of Things. In: 9th International conference on the internet of things. https://www.alexandria.unisg.ch/257439/
[3]
Boissier O, Bordini RH, Hübner JF, Ricci A, and Santi A Multi-agent oriented programming with jacamo Sci Comput Program 2013 78 6 747-761
[4]
Bordini RH, Hübner JF, Wooldridge M (2007) Programming multi-agent systems in AgentSpeak using Jason, vol 8. Wiley
[5]
Brin S and Page L The anatomy of a large-scale hypertextual Web search engine Comput Netw ISDN Syst 1998 30 1 107-117 http://www.sciencedirect.com/science/article/pii/S016975529800110X. Proceedings of the Seventh International World Wide Web Conference
[6]
Ciortea A, Boissier O, Ricci A (2017) Beyond physical mashups: autonomous systems for the Web of Things. In: Proceedings of the eighth international workshop on the Web of things, WoT 2017. http://doi.acm.org/10.1145/3199919.3199924. ACM, New York, pp 16–20
[7]
Ciortea A, Boissier O, Ricci A Weyns D, Mascardi V, Ricci A (eds) (2019) Engineering world-wide multi-agent systems with hypermedia. Springer International Publishing, Cham
[8]
Ciortea A, Mayer S, Gandon F, Boissier O, Ricci A, Zimmermann A (2019) A decade in hindsight: the missing bridge between multi-agent systems and the World Wide Web. In: Proceedings of the 18th international conference on autonomous agents and multiagent systems, AAMAS 2019, Montreal, Canada, May 13-17, 2019. International foundation for autonomous agents and multiagent systems
[9]
Ciortea A, Mayer S, Michahelles F (2018) Repurposing manufacturing lines on the fly with multi-agent systems for the Web of Things. In: Proceedings of the 17th international conference on autonomous agents and multiagent systems (AAMAS), pp 813–822. https://www.alexandria.unisg.ch/255802/
[10]
Ciortea A, Zimmermann A, Boissier O, Florea AM (2015) Towards a social and ubiquitous Web: a model for socio-technical networks. In: 2015 IEEE/WIC/ACM international conference on Web intelligence and intelligent agent technology (WI-IAT)., vol 1, pp 461–468
[11]
Ciortea A, Zimmermann A, Boissier O, Florea AM (2016) Hypermedia-driven socio-technical networks for goal-driven discovery in the Web of Things. In: Proceedings of the seventh international workshop on the Web of Things, WoT ’16. http://doi.acm.org/10.1145/3017995.3018001. ACM, New York, pp 25–30
[12]
Corby O, Dieng-Kuntz R, Gandon F, and Faron-Zucker C Searching the semantic Web: approximate query processing based on ontologies IEEE Intell Syst 2006 21 1 20-27
[13]
Corby O, Gaignard A, Faron-Zucker C, Montagnat J (2012) KGRAM versatile inference and query engine for the Web of linked data. In: IEEE/WIC/ACM International conference on Web intelligence. https://hal.archives-ouvertes.fr/hal-00746772, Macao, pp 1–8
[14]
Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and abstract syntax, W3C recommendation 25 February 2014. W3C Recommendation World Wide Web Consortium (W3C). http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
[15]
Duerst M, Suignard M (2005) Internationalized resource identifiers (IRIs) RFC 3987 (proposed standard). http://www.ietf.org/rfc/rfc3987.txt
[16]
Fielding RT and Taylor RNPrincipled design of the modern Web architectureACM Trans Internet Technol200222115-150http://doi.acm.org/10.1145/514183.514185
[17]
Gandon F (2018) A survey of the first 20 years of research on semantic Web and linked data. Revue des Sciences et Technologies de l’Information - Série IS. Ingénierie des Systèmes d’Information., https://hal.inria.fr/hal-01935898
[18]
Genestoux J, Parecki A (2018) WebSub, W3C Recommendation 23 January 2018. W3C Recommendation World Wide Web Consortium (W3C). https://www.w3.org/TR/2018/REC-Websub-20180123/
[19]
Georgeff MP, Lansky AL (1987) Reactive reasoning and planning. In: AAAI, vol 87, pp 677–682
[20]
Guinard D, Trifa V, Pham T, Liechti O (2009) Towards physical mashups in the Web of things. In: 2009 Sixth international conference on networked sensing systems (INSS). IEEE, pp 1–4
[21]
Han S, Brodowsky B, Gajda P, Novikov S, Bendersky M, Najork M, Dua R, Popescul A (2019) Predictive crawling for commercial Web content. In: Proceedings of the 2019 World Wide Web conference, pp 627–637
[22]
Huang H, Gandon F (2019) Learning URI selection criteria to improve the crawling of linked open data. In: ESWC2019 - The 16th extended semantic Web conference. https://hal.inria.fr/hal-02073854, Portoroz
[23]
Hübner JF, Sichman JS, and Boissier O Developing organised multiagent systems using the MOISE+ model: programming issues at the system and agent levels Int J Agent-Oriented Softw Eng 2007 1 3/4 370-395
[24]
Jennings NR and Wooldridge MApplications of intelligent agents1998BerlinSpringer3-2810.1007/978-3-662-03678-5_1
[25]
Kaebisch S, Kamiya T, McCool M, Charpenay V, Kovatsch M (2020) Web of Things (WoT) thing description, W3C Recommendation 9 April 2020. W3C Recommendation World Wide Web Consortium (W3C). https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
[26]
Kamilaris A, Yumusak S, Ali MI (2016) Wots2e: a search engine for a semantic Web of Things. In: 2016 IEEE 3rd World forum on internet of things (WF-IoT), pp 436–441, DOI, (to appear in print)
[27]
Kansal A, Nath S, Liu J, and Zhao F SenseWeb: an infrastructure for shared sensing IEEE MultiMedia 2007 14 4 8-13
[28]
Kovatsch M, Matsukura R, Lagally M, Kawaguchi T, Toumura K, Kajimoto K (2020) Web of Things (WoT) architecture, W3C recommendation 9 April 2020. W3C Recommendation World Wide Web Consortium (W3C). https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
[29]
Lanthaler M, Gütl C (2013) Hydra: a vocabulary for hypermedia-driven Web APIs. In: Proceedings of the WWW2013 workshop on linked data on the Web, CEUR WS. http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf, vol 996
[30]
Mayer S, Ciortea A, Ricci A, Robles MI, Kovatsch M, and Croatti AHypermedia to connect them all: autonomous hypermedia agents and socio-technical interactionsInternet Technol Lett201814e50https://onlinelibrary.wiley.com/doi/abs/10.1002/itl2.50
[31]
Mayer S, Guinard D (2011) An extensible discovery service for smart things. In: Proceedings of the second international workshop on Web of things, WoT ’11. http://doi.acm.org/10.1145/1993966.1993976. ACM, New York, pp 7:1–7:6
[32]
Mayer S, Guinard D, Trifa V (2012) Searching in a Web-based infrastructure for smart things. In: 2012 3rd IEEE international conference on the internet of things, pp 119–126, DOI, (to appear in print)
[33]
Mayer S, Verborgh R, Kovatsch M, and Mattern F Smart configuration of smart environments IEEE Trans Autom Sci Eng 2016 13 3 1247-1255 https://www.alexandria.unisg.ch/255762/
[34]
Michel F, Faron-Zucker C, Corby O, Gandon F (2019) Enabling automatic discovery and querying of Web APIs at Web scale using linked data standards. In: WWW 2019 - LDOW/LDDL workshop of the world wide Web conference. https://hal.archives-ouvertes.fr/hal-02060966, San Francisco, DOI, (to appear in print)
[35]
Ostermaier B, Römer K, Mattern F, Fahrmair M, Kellerer W (2010) A real-time search engine for the Web of Things. In: 2010 internet of things (IOT), pp 1–8, DOI, (to appear in print)
[36]
Ostermaier B, Römer ., Mattern F, Fahrmair M, Kellerer W (2010) A real-time search engine for the Web of Things. In: Proceedings of Internet of Things 2010 international conference (IoT 2010), Tokyo
[37]
Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the Web. Technical Report 1999-66 Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/. Previous number = SIDL-WP-1999-0120
[38]
Pfisterer D, Romer K, Bimschas D, Kleine O, Mietz R, Truong C, Hasemann H, Kröller A, Pagel M, Hauswirth M, Karnstedt M, Leggieri M, Passant A, and Richardson R Spitfire: toward a semantic Web of Things IEEE Commun Mag 2011 49 11 40-48
[39]
Rao AS (1996) Agentspeak (l): Bdi agents speak out in a logical computable language. In: European Workshop on modelling autonomous agents in a multi-agent world. Springer, pp 42–55
[40]
Ricci A, Piunti M, and Viroli M Environment programming in multi-agent systems: an artifact-based perspective Auton Agent Multi-Agent Syst 2011 23 2 158-192
[41]
Römer K, Ostermaier B, Mattern F, Fahrmair M, and Kellerer W Real-time search for real-world entities: a survey Proc IEEE 2010 98 11 1887-1902
[42]
Shelby Z, Koster M, Bormann C, van der Stok P, Amusüss C (2020) CoRE resource directory. Internet Draft. Internet Engineering Task Force (IETF). https://tools.ietf.org/html/draft-ietf-core-resource-directory-24
[43]
Shoham Y Agent-oriented programming Artif Intell 1993 60 1 51-92
[44]
Singh MP (2011) Information-driven interaction-oriented programming: Bspl, the blindingly simple protocol language. In: The 10th International conference on autonomous agents and multiagent systems - volume 2, AAMAS ’11, pp 491–498. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC. http://dl.acm.org/citation.cfm?id=2031678.2031687
[45]
Singh MP, Huhns MN (2006) Service-oriented computing: semantics, processes, agents. Wiley.
[46]
Smith T and Guild J The c.i.e. colorimetric standards and their use Trans Opt Soc 1931 33 3 73-134
[47]
Tan CC, Sheng B, Wang H, and Li QMicrosearch: a search engine for embedded devices used in pervasive computingACM Trans Embed Comput Syst20109443,1-43,29http://doi.acm.org/10.1145/1721695.1721709
[48]
Villata S, Gandon F (2012) Licenses compatibility and composition in the Web of Data. In: Proceedings of the Third international conference on consuming linked data - volume 905, COLD’12. http://dl.acm.org/citation.cfm?id=2887367.2887378. CEUR-WS.org, Aachen, pp 124–135
[49]
Wang H, Tan CC, and Li Q Snoogle: a search engine for pervasive environments IEEE Trans Parallel Distrib Syst 2010 21 8 1188-1202
[50]
Weiss G (2000) Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press
[51]
Weyns D, Omicini A, and Odell J Environment as a first class abstraction in multiagent systems Autonom Agents Multi-Agent Syst 2007 14 1 5-30
[52]
Yap KK, Srinivasan V, Motani M (2005) Max: human-centric search of the physical world. In: Proceedings of the 3rd international conference on embedded networked sensor systems, SenSys ’05. http://doi.acm.org/10.1145/1098918.1098937. ACM, New York, pp 166–179
[53]
Zhou Y, De S, Wang W, and Moessner K Search techniques for the Web of Things: a taxonomy and survey Sensors 2016 16 5 600

Cited By

View all
  • (2024)Gaze-enabled activity recognition for augmented reality feedbackComputers and Graphics10.1016/j.cag.2024.103909119:COnline publication date: 1-Apr-2024
  • (2023)GEAR: Gaze-enabled augmented reality for human activity recognitionProceedings of the 2023 Symposium on Eye Tracking Research and Applications10.1145/3588015.3588402(1-9)Online publication date: 30-May-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Personal and Ubiquitous Computing
Personal and Ubiquitous Computing  Volume 28, Issue 1
Feb 2024
368 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 09 June 2020
Accepted: 08 May 2020
Received: 31 October 2019

Author Tags

  1. Autonomous agents
  2. Hypermedia search engines
  3. Web of Things
  4. Semantic Web

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Gaze-enabled activity recognition for augmented reality feedbackComputers and Graphics10.1016/j.cag.2024.103909119:COnline publication date: 1-Apr-2024
  • (2023)GEAR: Gaze-enabled augmented reality for human activity recognitionProceedings of the 2023 Symposium on Eye Tracking Research and Applications10.1145/3588015.3588402(1-9)Online publication date: 30-May-2023

View Options

View options

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media