Nothing Special   »   [go: up one dir, main page]

Skip to main content

Federated RDF Query Processing

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Big Data Technologies

Synonyms

Federation of SPARQL endpoints; SPARQL federation

Definitions

Federated RDF query processing is concerned with querying a federation of RDF data sources where the queries are expressed using a declarative query language (typically, the RDF query language SPARQL), and the data sources are autonomous and heterogeneous. The current literature in this context assumes that the data and the data sources are semantically homogeneous, while heterogeneity occurs at the level of data formats and access protocols.

Overview

In its initial version , the SPARQL query language did not have features to explicitly express queries over a federation of RDF data sources. To support querying such a federation without requiring the usage of specific language features, the following assumption has been made throughout the literature: The result of executing any given SPARQL query over the federation should be the same as if the query was executed over the union of all the RDF data available in all...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acosta M, Vidal M, Lampo T, Castillo J, Ruckhaus E (2011) ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: The semantic web – ISWC 2011 – Proceedings of the 10th international semantic web conference, part I, Bonn, 23–27 Oct 2011, pp 18–34. https//doi.org/10.1007/978-3-642-25073-6_2

    Google Scholar 

  • Akar Z, Halaç TG, Ekinci EE, Dikenelli O (2012) Querying the web of interlinked datasets using VOID descriptions. In: WWW2012 workshop on linked data on the web, Lyon, 16 Apr 2012. http://ceur-ws.org/Vol-937/ldow2012-paper-06.pdf

  • Aranda CB, Arenas M, Corcho Ó, Polleres A (2013) Federating queries in SPARQL 1.1: syntax, semantics and evaluation. J Web Sem 18(1):1–17. https://doi.org/10.1016/j.websem.2012.10.001

    Article  Google Scholar 

  • Charalambidis A, Troumpoukis A, Konstantopoulos S (2015) Semagrow: optimizing federated SPARQL queries. In: Proceedings of the 11th international conference on semantic systems, SEMANTICS 2015, Vienna, 15–17 Sept 2015, pp 121–128. https://doi.org/10.1145/2814864.2814886

  • Deshpande A, Ives ZG, Raman V (2007) Adaptive query processing. Found Trends Databases 1(1):1–140. https://doi.org/10.1561/1900000001

    Article  MATH  Google Scholar 

  • Feigenbaum L, Williams GT, Clark KG, Torres E (2013) SPARQL 1.1 protocol. W3C recommendation. Online at https://www.w3.org/TR/sparql11-protocol/

  • Glimm B, Ogbuji C (2013) SPARQL 1.1 entailment regimes. W3C recommendation. Online at https://www.w3.org/TR/sparql11-entailment/

  • Görlitz O, Staab S (2011a) Federated data management and query optimization for linked open data. In: New directions in web data management 1. Springer, pp 109–137. https://doi.org/10.1007/978-3-642-17551-0_5

  • Görlitz O, Staab S (2011b) SPLENDID: SPARQL endpoint federation exploiting VOID descriptions. In: Proceedings of the second international workshop on consuming linked data (COLD2011), Bonn, 23 Oct 2011. http://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf

  • Harris S, Seaborne A, Prud’hommeaux E (2013) SPARQL 1.1 query language. W3C recommendation. Online at http://www.w3.org/TR/sparql11-query/

  • Hartig O (2012) SPARQL for a web of linked data: semantics and computability. In: The semantic web: research and applications – Proceedings of the 9th extended semantic web conference, ESWC 2012, Heraklion, Crete, 27–31 May 2012, pp 8–23. https://doi.org/10.1007/978-3-642-30284-8_8

  • Hartig O (2013) An overview on execution strategies for linked data queries. Datenbank-Spektrum 13(2):89–99. https://doi.org/10.1007/s13222-013-0122-1

    Article  Google Scholar 

  • Joshi AK, Jain P, Hitzler P, Yeh PZ, Verma K, Sheth AP, Damova M (2012) Alignment-based querying of linked open data. In: On the Move to Meaningful Internet Systems: OTM 2012, Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, September 10–14, 2012. Proceedings, Part II, pp 807–824. https://doi.org/10.1007/978-3-642-33615-7_25

    Google Scholar 

  • Lynden SJ, Kojima I, Matono A, Tanimura Y (2010) Adaptive integration of distributed semantic web data. In: Databases in networked information systems, proceedings 6th international workshop, DNIS 2010, Aizu-Wakamatsu, 29–31 Mar 2010. pp 174–193. https://doi.org/10.1007/978-3-642-12038-1_12

  • Lynden SJ, Kojima I, Matono A, Tanimura Y (2011) ADERIS: an adaptive query processor for joining federated SPARQL endpoints. In: On the move to meaningful internet systems: OTM 2011 – Proceedings of the confederated international conferences: CoopIS, DOA-SVI, and ODBASE 2011, part II, Hersonissos, Crete, 17–21 Oct 2011, pp 808–817. https://doi.org/10.1007/978-3-642-25106-1_28

  • Mansour E, Abdelaziz I, Ouzzani M, Aboulnaga A, Kalnis P (2017) A demonstration of lusail: querying linked data at scale. In: Proceedings of the 2017 ACM international conference on management of data, SIGMOD conference 2017, Chicago, 14–19 May 2017, pp 1603–1606. https://doi.org/10.1145/3035918.3058731

  • Oguz D, Ergenc B, Yin S, Dikenelli O, Hameurlain A (2015) Federated query processing on linked data: a qualitative survey and open challenges. Knowl Eng Rev 30(5):545–563. https://doi.org/10.1017/S0269888915000107

    Article  Google Scholar 

  • Pérez J, Arenas M, Gutierrez C (2009) Semantics and complexity of SPARQL. ACM Trans Database Syst 34(3):16:1–16:45. https://doi.org/10.1145/1567274.1567278

  • Prasser F, Kemper A, Kuhn KA (2012) Efficient distributed query processing for autonomous RDF databases. In: Proceedings of the 15th international conference on extending database technology, EDBT’12, Berlin, 27–30 Mar 2012, pp 372–383. https://doi.org/10.1145/2247596.2247640

  • Prud’hommeaux E, Buil-Aranda C (2013) SPARQL 1.1 federated query. W3C recommendation. Online at https://www.w3.org/TR/sparql11-federated-query/

  • Quilitz B, Leser U (2008) Querying distributed RDF data sources with SPARQL. In: The semantic web: research and applications, proceedings of the 5th European semantic web conference, ESWC 2008, Tenerife, Canary Islands, 1–5 June 2008, pp 524–538. https://doi.org/10.1007/978-3-540-68234-9_39

  • Saleem M, Ngomo AN (2014) Hibiscus: hypergraph-based source selection for SPARQL endpoint federation. In: The semantic web: trends and challenges – proceedings of the 11th international conference, ESWC 2014, Anissaras, Crete, 25–29 May 2014, pp 176–191. https://doi.org/10.1007/978-3-319-07443-6_13

  • Saleem M, Ngomo AN, Parreira JX, Deus HF, Hauswirth M (2013) DAW: duplicate-aware federated query processing over the web of data. In: The semantic web – ISWC 2013 – proceedings of the 12th international semantic web conference, part I, Sydney, 21–25 Oct 2013, pp 574–590. https://doi.org/10.1007/978-3-642-41335-3_36

  • Schwarte A, Haase P, Hose K, Schenkel R, Schmidt M (2011) Fedx: optimization techniques for federated query processing on linked data. In: The semantic web – ISWC 2011 – proceedings of the 10th international semantic web conference, part I, Bonn, 23–27 Oct 2011, pp 601–616. https://doi.org/10.1007/978-3-642-25073-6_38

  • Stolpe A (2015) A logical characterisation of SPARQL federation. Semantic Web 6(6):565–584. https://doi.org/10.3233/SW-140160

    Article  Google Scholar 

  • Verborgh R, Sande MV, Hartig O, Herwegen JV, Vocht LD, Meester BD, Haesendonck G, Colpaert P (2016) Triple pattern fragments: a low-cost knowledge graph interface for the web. J Web Sem 37–38:184–206. https://doi.org/10.1016/j.websem.2016.03.003

    Article  Google Scholar 

  • Vidal M, Ruckhaus E, Lampo T, Martínez A, Sierra J, Polleres A (2010) Efficiently joining group patterns in SPARQL queries. In: The semantic web: research and applications, proceedings of the 7th extended semantic web conference, part I, ESWC 2010, Heraklion, Crete, 30 May–3 June, 2010, pp 228–242. https://doi.org/10.1007/978-3-642-13486-9_16

  • Vidal M, Castillo S, Acosta M, Montoya G, Palma G (2016) On the selection of SPARQL endpoints to efficiently execute federated SPARQL queries. Trans Large-Scale Data- Knowl Cent Syst 25:109–149. https://doi.org/10.1007/978-3-662-49534-6_4

    Article  Google Scholar 

  • Wang X, Tiropanis T, Davis HC (2013) LHD: optimising linked data query processing using parallelisation. In: Proceedings of the WWW2013 workshop on linked data on the web, Rio de Janeiro, 14 May 2013. http://ceur-ws.org/Vol-996/papers/ldow2013-paper-06.pdf

  • Wang X, Tiropanis T, Davis HC (2014) Optimising linked data queries in the presence of co-reference. In: The semantic web: trends and challenges – proceedings of the 11th international conference, ESWC 2014, Anissaras, Crete, 25–29 May 2014, pp 442–456. https://doi.org/10.1007/978-3-319-07443-6_30

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maribel Acosta , Olaf Hartig or Juan Sequeda .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Acosta, M., Hartig, O., Sequeda, J. (2018). Federated RDF Query Processing. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_228-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_228-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Federated RDF Query Processing
    Published:
    21 February 2018

    DOI: https://doi.org/10.1007/978-3-319-63962-8_228-1

  2. Original

    Federated RDF Query Processing
    Published:
    24 February 2012

    DOI: https://doi.org/10.1007/978-3-319-63962-8_228-2