Nothing Special   »   [go: up one dir, main page]

skip to main content
article

E-Commerce Live Streaming Danmaku Classification Through LDA-Enhanced BERT-TextCNN Model

Published: 17 September 2024 Publication History

Abstract

With the increasing popularity of e-commerce live streaming, comprehensive analysis of live barrage text has become increasingly crucial. This study presents a thematic analysis method for categorizing e-commerce live streaming barrage text using latent Dirichlet allocation (LDA) topic modeling, combined with the advantages of the Bidirectional Encoder Representations from Transformers (BERT) and TextCNN models. The LDA algorithm is initially used to extract topics from the barrage text, and then a dataset comprising six designated categories is assembled. Subsequently, a BERT-TextCNN hybrid model is trained, merging BERT's profound semantic comprehension with TextCNN's ability to extract local features. Empirical evidence shows that the proposed model notably improves classification accuracy and efficiency, providing valuable theoretical and practical insights for crafting strategies and optimizing user experience on e-commerce live streaming platforms.

References

[1]
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
[2]
Cao, Y., Sun, Z., Li, L., & Mo, W. (2022). A study of sentiment analysis algorithms for agricultural product reviews based on improved BERT model. Symmetry, 14(8), 1604.
[3]
Celardo, L., & Everett, M. G. (2020). Network text analysis: A two-way classification approach. International Journal of Information Management, 51, 102009.
[4]
Chanmama. (2020). https://www.chanmama.com/authorDetail/TTvZsgg7Rs1Cl7JHMYK-TA
[5]
Chen, G., & Zhou, S. (2020). Loneliness assuaged: Eye-tracking an audience watching barrage videos. Journal of Visualized Experiments, 159(159), e61089. 32538905.
[6]
Deng, L., Yin, T., Li, Z., & Ge, Q. (2023). Sentiment analysis of comment data based on BERT-ETextCNN-ELSTM. Electronics, 12(13), page numbers. 2910.10.3390/electronics12132910
[7]
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[8]
Dhar, A., Mukherjee, H., Dash, N., & Roy, K. (2020). Text categorization: Past and present. Artificial Intelligence Review, 54(4), 3007–3054.
[9]
Guan, L. (2023). Weight prediction boosts the convergence of AdamW. arXiv preprint arXiv:2302.00195./arxiv.2302.0019510.1007/978-3-031-33374-3_26
[10]
HakamiN. A. (2023). Identification of customers satisfaction with popular online shopping apps in Saudi Arabia using sentiment analysis and topic modelling. In Proceedings of the 2023 7th International Conference on E-Commerce, E-Business and E-Government (ICEEG ’23). Association for Computing Machinery. 10.1145/3599609.3599610
[11]
Huang, K., Hussain, A., Wang, Q. F., & Zhang, R. (2019). Deep learning: Fundamentals, theory and applications. Springer.
[12]
Iezzi, D., & Celardo, L. (2020). Text analytics: Present, past and future. In Studies in classification, data analysis, and knowledge organization (pp. 3–15). Springer.
[13]
Jain, P. K., Quamer, W., Saravanan, V., & Pamula, R. (2022). Employing BERT-DCNN with sentic knowledge base for social media sentiment analysis. Journal of Ambient Intelligence and Humanized Computing, 14(8), page numbers. 10417-10429.10.1007/s12652-022-03698-z
[14]
KimY. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Publisher. 10.3115/v1/D14-1181
[15]
Liu, X. (2022). Live electrical dealer market scale will exceed 3.4 trillion yuan [N]. International Business, 2022-08-12(005).
[16]
López-Ramírez, P., Molina-Villegas, A., & Siordia, O. S. (2019). Geographical aggregation of microblog posts for LDA topic modeling. Journal of Intelligent & Fuzzy Systems, 36(5), 4901–4908.
[17]
MataouiM.Bendali HacineT. E.TellacheI.BakhtouchiA.ZelmatiO. (2018). A new syntax-based aspect detection approach for sentiment analysis in Arabic reviews. In Proceedings of 2018 2nd International Conference on Natural Language and Speech Processing (ICNLSP). IEEE. 10.1109/ICNLSP.2018.8374373
[18]
Minaee, S., Kalchbrenner, N., Wang, X., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep learning-based text classification. ACM Computing Surveys, 54(3), 1–40.
[19]
Okpalaoka, C. (2023). Research on the digital economy: Developing trends and future directions. Technological Forecasting and Social Change, 193, 122635.
[20]
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. T., Chanan, G., . . . Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703.
[21]
QuaziS.MusaS. M. (2022). Text classification and categorization through deep learning. In Proceedings of the 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN). Publisher. 10.1109/CICN56167.2022.10008380
[22]
Rajput, L., & Gupta, S. (2023). Sentiment analysis using latent Dirichlet allocation for aspect term extraction. Journal of Computers . Mechanical and Management, 2(1), 8–13.
[23]
Sarasu, R., Thyagharajan, K. K., & Shanker, N. R. (2023). SF-CNN: Deep text classification and retrieval for text documents. Intelligent Automation & Soft Computing, 35(2), 1799–1813.
[24]
Song, X., Salcianu, A., Song, Y., Dopson, D., & Zhou, D. (2020). Fast WordPiece tokenization. arXiv preprint arXiv:2012.15524.
[25]
WahyudiE.KusumaningrumR. (2019). Aspect based sentiment analysis in e-commerce user reviews using latent Dirichlet allocation (LDA) and sentiment lexicon. In Proceedings of the 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). Publisher. 10.1109/ICICoS48119.2019.8982522
[26]
Wang, F.-D., Fu, X., & Sun, Z. (2021). A comparative analysis of the impact of barrage and comments on video popularity. IEEE Access : Practical Innovations, Open Solutions, 9, 164659–164667.
[27]
Wang, Z., Wang, L., Huang, C., Sun, S., & Luo, X. (2022). BERT-based Chinese text classification for emergency management with a novel loss function. Applied Intelligence, 53(9), 10417–10428.
[28]
Yang, L., Huang, X., Wang, J., Ding, L., Li, Z., & Li, J. (2022a). Identifying Subtypes of Clinical Trial Diseases with BERT-TextCNN. Data Analysis and Knowledge Discovery, 6(4), 69–81.
[29]
Yang, N., Jo, J., Jeon, M., Kim, W., & Kang, J. (2022b). Semantic and explainable research-related recommendation system based on semi-supervised methodology using BERT and LDA models. Expert Systems with Applications, 190, 116209.
[30]
Yu, S., Liu, D., Zhang, Y., Zhao, S., & Wang, W. (2021). DPTCN: A novel deep CNN model for short text classification. Journal of Intelligent & Fuzzy Systems, 41(6), 7093–7100.
[31]
Zhang, M., Wang, S., & Yuan, K. (2022a). Sentiment analysis of barrage text based on ALBERT and multi-channel capsule network. In lecture notes on Data Engineering and Communications Technologies. Springer.
[32]
Zhang, S., Huang, C., Li, X., & Ren, A. (2022b). Characteristics and roles of streamers in e-commerce live streaming. Service Industries Journal, 42(13-14), 1001–1029.
[33]
Zhang, Y. (2023). Steady growth of live streaming e-commerce transaction scale in the first half of 2023 [N]. China Economic Times, 2023-08-28(004).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Information Technologies and Systems Approach
International Journal of Information Technologies and Systems Approach  Volume 17, Issue 1
Jul 2024
843 pages

Publisher

IGI Global

United States

Publication History

Published: 17 September 2024

Author Tags

  1. BERT
  2. TextCNN
  3. Latent Dirichlet Allocation
  4. Text Classification
  5. E-Commerce Live Streaming

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media