Nothing Special   »   [go: up one dir, main page]

Skip to main content

Text Analytics: Present, Past and Future

  • Conference paper
  • First Online:
Text Analytics (JADT 2018)

Abstract

Text analytics is a large umbrella under which it is possible to report countless techniques, models, methods for automatic and quantitative analysis of textual data. Its development can be traced back the introduction of the computer, but the prodromes date back, the importance of text analysis has grown over time and has been greatly enriched with the spread of the Internet and social media, which constitute an important flow of information also in support of official statistics. This paper aims to describe, through a timeline the past, the present and the possible future scenario of text analysis. Moreover, the main macro-steps for a practical study are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See the website https://wearesocial.com/it/blog/2020/01/report-digital-2020-i-dati-global.

  2. 2.

    Stephens-Davidowitz, in an article published in the New York Times (April 5, 2020), suggested that this methodology could be adopted to search for places where dissemination has escaped the reporting of official data as in the case of the state of Ecuador.

  3. 3.

    See the website: https://unstats.un.org/bigdata/.

  4. 4.

    See the website https://www.istat.it/it/archivio/219585.

References

  1. Giovannini E (2014) Scegliere il futuro, il Mulino., Bologna

    Google Scholar 

  2. United Nations (2014) Independent expert advisory group on a data revolution for sustainable development . A world that counts: mobilising the data revolution for sustainable development. Independent Advisory Group Secretariat. Available from http://www.undatarevolution.org/report/

  3. Forrester Research (1995) Coping with complex data. The Forrest Report, April

    Google Scholar 

  4. Stephens-Davidowitz S, Pinker S (2017) Everybody lies : big data, new data, and what the Internet can tell us about who we really are, New York, NY

    Google Scholar 

  5. Bourdon B (1892) L’espression des émotions et des tendence dans le language. Alcan, Paris

    Google Scholar 

  6. Estoup JB (1916) Gammes sténografiques. Institut sténografiques de France, Paris

    Google Scholar 

  7. Busemann (1925) Die Sprache der Jugend als Ausdruck des Entwicklungsbrbythmuds. Fischer, Jena

    Google Scholar 

  8. The adjective-verb quotient: a contribution to the psychology of language. Psychol Rec 3:310–343

    Google Scholar 

  9. Zipf GK (1929) Relative frequency as a determinant of phonetic change. Harvard Stud Classical Philology 40: l–95

    Google Scholar 

  10. Zipf GK (1935) The psycho-biology of language. Houghton Mifflin, Boston, MA

    Google Scholar 

  11. Mandelbrot B (1954) Structure formelle des textes et communication. Word lO:l-27

    Google Scholar 

  12. Bakkalbasi N, Bauer K, Glover J, Wang L (2006) Three options for citation tracking: Google Scholar, Scopus and Web of science. Biomed Digital Libraries 3(1):7

    Article  Google Scholar 

  13. Boyle F, Sherman D (2006) Scopus: the product and its development. The Serials Librarian 49(3)

    Google Scholar 

  14. Celardo L, Everett MG (2020) Network text analysis: a two-way classification approach. Int J Inf Manage 51:102009

    Google Scholar 

  15. Malagas ME, Pitsouni EI, Malietzis GA, Pappas G (2008) Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J 22(2):338–342

    Article  Google Scholar 

  16. Harzing AW, Alakangas S (2016) Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics 106(2):787–804

    Article  Google Scholar 

  17. Iezzi DF (2012) Centrality measures for text clustering. Commun Statistics-Theor Methods 41(16–17):3179–3197

    Article  MathSciNet  Google Scholar 

  18. Liu X, Bollen J, Nelson ML, Van de Sompel H (2005) Co-authorship networks in the digital library research community. Information Process Manage 41(6):1462–1480

    Article  Google Scholar 

  19. Mongeon P, Paul-Hus A (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 106(1):213–228

    Article  Google Scholar 

  20. Vieira ES, Gomes JANF (2009) A comparison of Scopus and Web of Science for a typical university. Scientometrics 81(2):587–600

    Google Scholar 

  21. Bolasco S (2013) L’analisi automatica dei testi: fare ricerca con il text mining. Carocci, Roma

    Google Scholar 

  22. Celardo L, Iezzi DF (2020) Combining words, emoticons and emojis to measure sentiment in Italian tweet speeches. In: JADT 2020 : 15th international conference on statistical analysis of textual data, 16–19 Jun 2020, TOULOUSE (France)

    Google Scholar 

  23. Bolasco S, Iezzi DF (2012) Advances in textual data analysis and text mining-special issue Statistica Applicata Italian. J Appl Statistics 21(1):9–21

    Google Scholar 

  24. Aria M, Misuraca M, Spano M (2020) Mapping the evolution of social research and data science on 30 years of social indicators research

    Google Scholar 

  25. Bing L (2012) Sentiment analysis and opinion mining. Synthesis Lect Human Language Technol 5(1):1–167

    Article  Google Scholar 

  26. Witten IH, Bell TC (1991) The zero-frequency problem: estimating the probabilities of novel events in adaptive text compression. IEEE Trans Information Theor 37:1085–1094

    Article  Google Scholar 

  27. Lebart L, Salem A (1988) Analyse statistique des données textuelle. Dunod, Paris

    Google Scholar 

  28. Herdan G (1964) Quantitative linguistics or generative grammar? Linguistics 4:56–65

    Google Scholar 

  29. Guiraud P (1954) Les caractheres statistiques du vocabulaire, Paris, P.U.F

    Google Scholar 

  30. Aghaei Chadegani A, Salehi H, Yunus M, Farhadi H, Fooladi M, Farhadi M, Ale Ebrahim N (2013) A comparison between two main academic literature collections: web of science and Scopus databases. Asian Soc Sci 9(5):18–26

    Google Scholar 

  31. Krippendorff K (2012) Content analysis: an introduction to its methodology, 3rd edn. Sage, Thousand Oaks, CA, p 441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenica Fioredistella Iezzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iezzi, D.F., Celardo, L. (2020). Text Analytics: Present, Past and Future. In: Iezzi, D.F., Mayaffre, D., Misuraca, M. (eds) Text Analytics. JADT 2018. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-030-52680-1_1

Download citation

Publish with us

Policies and ethics