Impacts of Drought Severity and Frequency on Natural Vegetation Across Iran
<p>Study area (Iran). Map showing (<b>a</b>) location of the study area(background Image is from Google Earth 2024 and the boundary data is from the Global Administrative Areas (GADM), <a href="http://www.gadm.org" target="_blank">http://www.gadm.org</a>, accessed on 12 May 2024), (<b>b</b>) topographic elevation of the study area (30 m digital elevation model data from United States Geological Survey (USGS)) [<a href="#B40-water-16-03334" class="html-bibr">40</a>], (<b>c</b>) mean annual precipitation between 2001 and 2022 based on precipitation data from Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) [<a href="#B41-water-16-03334" class="html-bibr">41</a>], and (<b>d</b>) land cover map of the study area for the year 2021 adopted from the European Space Agency (ESA) [<a href="#B42-water-16-03334" class="html-bibr">42</a>].</p> "> Figure 2
<p>Workflow of methodology for evaluating drought characteristics and impact on natural vegetation. SPEI was used during the growing season (October to April).</p> "> Figure 3
<p>Spatial distribution of drought severity and frequency from 2001 to 2022 in Iran: (<b>a</b>) severity of drought events for all months; (<b>b</b>) severity of drought events in the growing season; (<b>c</b>) frequency of drought events for all months; and (<b>d</b>) frequency of drought events in the growing season.</p> "> Figure 4
<p>Trends in drought severity per year in Iran from 2001 to 2022 based on the 1-month SPEI during the growing season (October to April). Panel (<b>a</b>) shows the magnitude and direction of the drought severity trend per year and panel (<b>b</b>) shows drought severity classes based on the direction of change (i.e., increasing, decreasing, or stable). Statistically insignificant (<span class="html-italic">p</span> > 0.05) changes (stable areas) are shaded in gray.</p> "> Figure 5
<p>Spatial distribution of drought vegetation relationships across Iran. Panel (<b>a</b>) shows the correlation coefficient between NDVI anomaly and SPEI for five time scales (1, 3, 6, 9, and 12 months) without time lag (red: negative correlation, green: positive correlation), panel (<b>b</b>) shows a 1-month lag, and panel (<b>c</b>) shows a 2-month lag. Significant correlations (<span class="html-italic">p</span> < 0.05) during the growing season (October to April) across these time scales and lags are displayed, while non-significant correlations are masked. The dash vertical line shows the mean value.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. SPEI Data
2.2.2. In Situ Rainfall Data
2.2.3. NDVI Data
2.2.4. Land Cover Data
2.3. Methods
2.3.1. Drought Identification and Characterization
2.3.2. NDVI Anomaly
2.3.3. Correlation Between NDVI Anomaly and SPEI
3. Results
3.1. Spatial Distribution of Drought Severity and Frequency
3.2. Trends in Drought Severity in Iran
3.3. Trends in Drought Severity in Natural Vegetation Classes
3.4. Drought Vegetation Relationships Across Iran
3.5. Response of Each Vegetation Class to Drought Events
4. Discussion
4.1. Spatial Distribution of Drought Characteristics
4.2. Vegetation Response to Drought
4.3. Implications for Ecosystem Management and Drought Mitigation
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate Change Vulnerability, Water Resources and Social Implications in North Africa. Reg. Environ. Chang. 2020, 20, 15. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Debele, S.E.; Kumar, P.; Sahani, J.; Marti-Cardona, B.; Mickovski, S.B.; Leo, L.S.; Porcù, F.; Bertini, F.; Montesi, D.; Vojinovic, Z.; et al. Nature-Based Solutions for Hydro-Meteorological Hazards: Revised Concepts, Classification Schemes and Databases. Environ. Res. 2019, 179, 108799. [Google Scholar] [CrossRef] [PubMed]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Abou Zaki, N.; Torabi Haghighi, A.; Rossi, P.M.; Tourian, M.J.; Bakhshaee, A.; Kløve, B. Evaluating Impacts of Irrigation and Drought on River, Groundwater and a Terminal Wetland in the Zayanderud Basin, Iran. Water 2020, 12, 1302. [Google Scholar] [CrossRef]
- Zhang, Y.; Keenan, T.F.; Zhou, S. Exacerbated Drought Impacts on Global Ecosystems Due to Structural Overshoot. Nat. Ecol. Evol. 2021, 5, 1490–1498. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, H.; Liu, G.; Hao, Q.; Wang, H. Vegetation Responses to Mid-Holocene Extreme Drought Events and Subsequent Long-Term Drought on the Southeastern Inner Mongolian Plateau, China. Agric. For. Meteorol. 2013, 178–179, 3–9. [Google Scholar] [CrossRef]
- Mohamed, M.A.E.-H.; Moursy, F.I.; Darrag, M.H.; El-Mahdy, M.E.-S. Assessment of Long-Term Trends and Mapping of Drought Events in Tunisia. Sci. Afr. 2023, 21, e01766. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6. [Google Scholar]
- Chen, Q.; Timmermans, J.; Wen, W.; Van Bodegom, P.M. A Multi-Metric Assessment of Drought Vulnerability across Different Vegetation Types Using High Resolution Remote Sensing. Sci. Total Environ. 2022, 832, 154970. [Google Scholar] [CrossRef]
- Rad, A.M.; Ghahraman, B.; Khalili, D.; Ghahremani, Z.; Ardakani, S.A. Integrated Meteorological and Hydrological Drought Model: A Management Tool for Proactive Water Resources Planning of Semi-Arid Regions. Adv. Water Resour. 2017, 107, 336–353. [Google Scholar] [CrossRef]
- Balsamo, G.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Blyth, E.; Bousserez, N.; Boussetta, S.; Brown, A.; et al. Correction: Balsamo, G.; et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing 2018, 10, 2038. Remote Sens. 2019, 11, 941. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Villadangos, S. Cheap, Cost-Effective, and Quick Stress Biomarkers for Drought Stress Detection and Monitoring in Plants. Trends Plant Sci. 2023, 28, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Rad, A.M.; AghaKouchak, A.; Navari, M.; Sadegh, M. Progress, Challenges, and Opportunities in Remote Sensing of Drought. In Global Drought and Flood; Wu, H., Lettenmaier, D.P., Tang, Q., Ward, P.J., Eds.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Qin, J.; Yang, L.; Zhang, Z.; Deng, Y.; Hu, Y.; Su, B. Monitoring Long-term Vegetation Dynamics over the Yangtze River Basin, China, Using Multi-temporal Remote Sensing Data. Ecosphere 2024, 15, e4809. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-Sensor Remote Sensing for Drought Characterization: Current Status, Opportunities and a Roadmap for the Future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- Ambadkar, A.; Kathe, P.; Pande, C.B.; Diwate, P. Assessment of Spatial and Temporal Changes in Strength of Vegetation Using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI): A Case Study from Akola District, Central India. In Geospatial Technology to Support Communities and Policy; Ghosh, S., Kumari, M., Mishra, V.N., Eds.; Geotechnologies and the Environment; Springer Nature: Cham, Switzerland, 2024; Volume 26. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Huete, A.; Park, H.-J. Spatial Based Drought Assessment: Where Are We Heading? A Review on the Current Status and Future. Sci. Total Environ. 2022, 844, 157239. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of Vegetation to Drought Time-Scales across Global Land Biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Lewińska, K.; Ivits, E.; Schardt, M.; Zebisch, M. Drought Impact on Phenology and Green Biomass Production of Alpine Mountain Forest—Case Study of South Tyrol 2001–2012 Inspected with MODIS Time Series. Forests 2018, 9, 91. [Google Scholar] [CrossRef]
- Chen, Y.; Taylor, P.; Cuddy, S.; Wahid, S.; Penton, D.; Karim, F. Inferring Vegetation Response to Drought at Multiscale from Long-Term Satellite Imagery and Meteorological Data in Afghanistan. Ecol. Indic. 2024, 158, 111567. [Google Scholar] [CrossRef]
- Liu, L.; Peng, J.; Li, G.; Guan, J.; Han, W.; Ju, X.; Zheng, J. Effects of Drought and Climate Factors on Vegetation Dynamics in Central Asia from 1982 to 2020. J. Environ. Manage. 2023, 328, 116997. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.R.L.; Klein, T.; Bartlett, M.; Sack, L.; Pellegrini, A.F.A.; Choat, B.; Jansen, S. Meta-Analysis Reveals That Hydraulic Traits Explain Cross-Species Patterns of Drought-Induced Tree Mortality across the Globe. Proc. Natl. Acad. Sci. USA 2016, 113, 5024–5029. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of Seven Meteorological Indices for Drought Monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Madani, K.; AghaKouchak, A.; Mirchi, A. Iran’s Socio-Economic Drought: Challenges of a Water-Bankrupt Nation. Iran. Stud. 2016, 49, 997–1016. [Google Scholar] [CrossRef]
- Davtalab, R.; Madani, K.; Massah, A.; Farajzadeh, M. Evaluating the Effects of Climate Change on Water Reliability in Iran’s Karkheh River Basin. In Proceedings of the World Environmental and Water Resources Congress 2014, Portland, OR, USA, 29 May 2014. [Google Scholar] [CrossRef]
- Gohari, A.; Madani, K.; Mirchi, A.; Bavani, A.M. System-Dynamics Approach to Evaluate Climate Change Adaptation Strategies for Iran’s Zayandeh-Rud Water System. In Proceedings of the World Environmental and Water Resources Congress 2014, Portland, OR, USA, 29 May 2014. [Google Scholar] [CrossRef]
- Ali, S.; Basit, A.; Umair, M.; Makanda, T.A.; Shaik, M.R.; Ibrahim, M.; Ni, J. The Role of Climate Change and Its Sensitivity on Long-Term Standardized Precipitation Evapotranspiration Index, Vegetation and Drought Changing Trends over East Asia. Plants 2024, 13, 399. [Google Scholar] [CrossRef]
- Gohari, A.; Eslamian, S.; Abedi-Koupaei, J.; Massah Bavani, A.; Wang, D.; Madani, K. Climate Change Impacts on Crop Production in Iran’s Zayandeh-Rud River Basin. Sci. Total Environ. 2013, 442, 405–419. [Google Scholar] [CrossRef]
- Fathi-Taperasht, A.; Shafizadeh-Moghadam, H.; Kouchakzadeh, M. MODIS-Based Evaluation of Agricultural Drought, Water Use Efficiency and Post-Drought in Iran; Considering the Influence of Heterogeneous Climatic Regions. J. Clean. Prod. 2022, 374, 133836. [Google Scholar] [CrossRef]
- Khanmohammadi, N.; Rezaie, H.; Behmanesh, J. Investigation of Drought Trend on the Basis of the Best Obtained Drought Index. Water Resour. Manag. 2022, 36, 1355–1375. [Google Scholar] [CrossRef]
- Moradi, H.R.; Rajabi, M.; Faragzadeh, M. Investigation of Meteorological Drought Characteristics in Fars Province, Iran. CATENA 2011, 84, 35–46. [Google Scholar] [CrossRef]
- Tabari, H.; Abghari, H.; Hosseinzadeh Talaee, P. Temporal Trends and Spatial Characteristics of Drought and Rainfall in Arid and Semiarid Regions of Iran. Hydrol. Process. 2012, 26, 3351–3361. [Google Scholar] [CrossRef]
- Jafarpour, M.; Adib, A.; Lotfirad, M.; Kisi, Ö. Spatial Evaluation of Climate Change-Induced Drought Characteristics in Different Climates Based on De Martonne Aridity Index in Iran. Appl. Water Sci. 2023, 13, 133. [Google Scholar] [CrossRef]
- Zarei, A.R.; Shabani, A.; Moghimi, M.M. Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions. Pure Appl. Geophys. 2021, 178, 1387–1403. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of Satellite Rainfall Climatology Using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2005RG000183. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 V200. 2022. Available online: https://zenodo.org/records/7254221 (accessed on 18 September 2024).
- Gebrechorkos, S.H.; Peng, J.; Dyer, E.; Miralles, D.G.; Vicente-Serrano, S.M.; Funk, C.; Beck, H.E.; Asfaw, D.T.; Singer, M.B.; Dadson, S.J. Global High-Resolution Drought Indices for 1981–2022. Earth Syst. Sci. Data 2023, 15, 5449–5466. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center. Available online: https://lpdaac.usgs.gov/products/mod13q1v006/ (accessed on 16 March 2024).
- Li, M.; Cao, S.; Zhu, Z.; Wang, Z.; Myneni, R.B.; Piao, S. Spatiotemporally Consistent Global Dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022. Earth Syst. Sci. Data 2023, 15, 4181–4203. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Chu, D.; Shen, H.; Guan, X.; Chen, J.M.; Li, X.; Li, J.; Zhang, L. Long Time-Series NDVI Reconstruction in Cloud-Prone Regions via Spatio-Temporal Tensor Completion. Remote Sens. Environ. 2021, 264, 112632. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteor Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- WMO (World Meteorological Organization). Standardized Precipitation Index User Guide. In Standardized Precipitation Index User Guide; Svoboda, M., Hayes, M., Wood, D., Eds.; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Panagoulia, D.; Dimou, G. Definitions and Effects of Droughts. In Proceedings of the Conference on Mediterranean Water Policy: Building on Existing Experience, Mediterranean Water Network, Valencia, Spain, 16–18 April 1998. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Abbasi, N.; Nouri, H.; Didan, K.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Opp, C.; Nagler, P.; Thenkabail, P.S.; Siebert, S. Mapping Vegetation Index-Derived Actual Evapotranspiration across Croplands Using the Google Earth Engine Platform. Remote Sens. 2023, 15, 1017. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J. Historical Perspective of AVHRR NDVI and Vegetation Drought Monitoring. Remote Sens. Drought Innov. Monit. Approaches 2012, 23, 20. [Google Scholar]
- Bhukya, S.; Tiwari, M.K.; Patel, G.R. Assessment of Spatiotemporal Variation of Agricultural and Meteorological Drought in Gujarat (India) Using Remote Sensing and GIS. J. Indian Soc. Remote Sens. 2023, 51, 1493–1510. [Google Scholar] [CrossRef]
- Khan, R.; Gilani, H. Global Drought Monitoring with Drought Severity Index (DSI) Using Google Earth Engine. Theor. Appl. Climatol. 2021, 146, 411–427. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI Anomaly for Drought Monitoring and Its Correlation with Climate Factors over Mongolia from 2000 to 2016. J. Arid Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J. J. NDVI Anomaly Patterns over Africa during the 1997/98 ENSO Warm Event. Int. J. Remote Sens. 2001, 22, 1847–1859. [Google Scholar] [CrossRef]
- Kaboli, S.; Hekmatzadeh, A.A.; Darabi, H.; Haghighi, A.T. Variation in Physical Characteristics of Rainfall in Iran, Determined Using Daily Rainfall Concentration Index and Monthly Rainfall Percentage Index. Theor. Appl. Climatol. 2021, 144, 507–520. [Google Scholar] [CrossRef]
- Najafi, M.S.; Alizadeh, O. Climate Zones in Iran. Meteorol. Appl. 2023, 30, e2147. [Google Scholar] [CrossRef]
- Wei, X.; He, W.; Zhou, Y.; Ju, W.; Xiao, J.; Li, X.; Liu, Y.; Xu, S.; Bi, W.; Zhang, X.; et al. Global Assessment of Lagged and Cumulative Effects of Drought on Grassland Gross Primary Production. Ecol. Indic. 2022, 136, 108646. [Google Scholar] [CrossRef]
- Noorisameleh, Z.; Gough, W.A.; Mirza, M.M.Q. Persistence and Spatial–Temporal Variability of Drought Severity in Iran. Environ. Sci. Pollut. Res. 2021, 28, 48808–48822. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhong, L.; Yeh, P.J.-F.; Gong, Z.; Lv, W.; Chen, B.; Zhou, J.; Li, J.; Wang, S. An Evaluation Framework for Quantifying Vegetation Loss and Recovery in Response to Meteorological Drought Based on SPEI and NDVI. Sci. Total Environ. 2024, 906, 167632. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Bao, Y.; Wurina; Terigele; Weilisi; Lianxiao. Spatial and Temporal Variations of Vegetation Cover and the Relationships with Climate Factors in Inner Mongolia Based on GIMMS NDVI3g Data. J. Arid Land 2017, 9, 394–407. [Google Scholar] [CrossRef]
- El Kenawy, A.; McCabe, M.; Vicente-Serrano, S.; Robaa, S.; Lopez-Moreno, J. Recent Changes in Continentality and Aridity Conditions over the Middle East and North Africa Region, and Their Association with Circulation Patterns. Clim. Res. 2016, 69, 25–43. [Google Scholar] [CrossRef]
- Ghadami, M.; Raziei, T.; Amini, M.; Modarres, R. Regionalization of Drought Severity–Duration Index across Iran. Nat. Hazards 2020, 103, 2813–2827. [Google Scholar] [CrossRef]
- Raziei, T. A Precipitation Regionalization and Regime for Iran Based on Multivariate Analysis. Theor. Appl. Climatol. 2018, 131, 1429–1448. [Google Scholar] [CrossRef]
- Da Silva, E.C.; De Albuquerque, M.B.; Azevedo Neto, A.D.D.; Silva Junior, C.D.D. Drought and Its Consequences to Plants—From Individual to Ecosystem. In Responses of Organisms to Water Stress; Akinci, S., Ed.; InTech: London, UK, 2013. [Google Scholar] [CrossRef]
- Minucci, G. Definition(s) and Impacts of Drought. In Enabling Adaptive Water Management to Face Drought Risk in a Changing Climate; Springer Briefs in Applied Sciences and Technology; Springer: Cham, Switerland, 2021. [Google Scholar] [CrossRef]
- Sharafi, S.; Ghaleni, M.M. Spatial Assessment of Drought Features over Different Climates and Seasons across Iran. Theor. Appl. Climatol. 2022, 147, 941–957. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, Q.; Feng, L.; Zhang, A.; Pei, T. Evaluating the Cumulative and Time-Lag Effects of Drought on Grassland Vegetation: A Case Study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef]
- Avetisyan, D.; Borisova, D.; Velizarova, E. Integrated Evaluation of Vegetation Drought Stress through Satellite Remote Sensing. Forests 2021, 12, 974. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, F.; Mu, Q.; Sun, Y.; Cai, H.; Zhou, Z.; Xu, J.; Shi, H. Estimating Land Use/Land Cover Change Impacts on Vegetation Response to Drought under ‘Grain for Green’ in the Loess Plateau. Land Degrad. Dev. 2021, 32, 5083–5098. [Google Scholar] [CrossRef]
- Da Silva, B.F.; Dos Santos Rodrigues, R.Z.; Heiskanen, J.; Abera, T.A.; Gasparetto, S.C.; Biase, A.G.; Ballester, M.V.R.; De Moura, Y.M.; De Stefano Piedade, S.M.; De Oliveira Silva, A.K.; et al. Evaluating the Temporal Patterns of Land Use and Precipitation under Desertification in the Semi-Arid Region of Brazil. Ecol. Inform. 2023, 77, 102192. [Google Scholar] [CrossRef]
- Abera, T.A.; Heiskanen, J.; Pellikka, P.K.E.; Maeda, E.E. Impact of Rainfall Extremes on Energy Exchange and Surface Temperature Anomalies across Biomes in the Horn of Africa. Agric. For. Meteorol. 2020, 280, 107779. [Google Scholar] [CrossRef]
Vegetation Classes | % Affected by Increasing Trend | % Affected by Decreasing Trend | Net Change |
---|---|---|---|
Grasslands | 18% | 10% | 8% |
Shrublands | 17% | 9% | 8% |
Tree cover (Forest) | 17% | 8% | 11% |
Time Scales | 1 Month | 3 Months | 6 Months | 9 Months | 12 Months |
---|---|---|---|---|---|
No lag | 0.56 | 0.58 | 0.56 | 0.57 | 0.58 |
1-month lag | 0.72 | 0.74 | 0.71 | 0.69 | 0.68 |
2-month lag | 0.68 | 0.73 | 0.71 | 0.69 | 0.68 |
Time Scale | 1 Month | 3 Months | 6 Months | 9 Months | 12 Months | |
---|---|---|---|---|---|---|
Grassland | No lag | 0.52 | 0.54 | 0.53 | 0.52 | 0.54 |
1-month lag | 0.77 | 0.83 | 0.81 | 0.78 | 0.78 | |
2-month lag | 0.71 | 0.83 | 0.82 | 0.76 | 0.78 | |
Shrubland | No lag | 0.53 | 0.5 | 0.5 | 0.51 | 0.52 |
1-month lag | 0.74 | 0.79 | 0.77 | 0.75 | 0.79 | |
2-month lag | 0.7 | 0.79 | 0.79 | 0.75 | 0.79 | |
Tree cover | No lag | 0.51 | 0.51 | 0.52 | 0.52 | 0.51 |
1-month lag | 0.77 | 0.87 | 0.84 | 0.84 | 0.83 | |
2-month lag | 0.8 | 0.87 | 0.89 | 0.83 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torkaman Pary, A.; Rastgoo, P.; Opp, C.; Zeuss, D.; Abera, T.A. Impacts of Drought Severity and Frequency on Natural Vegetation Across Iran. Water 2024, 16, 3334. https://doi.org/10.3390/w16223334
Torkaman Pary A, Rastgoo P, Opp C, Zeuss D, Abera TA. Impacts of Drought Severity and Frequency on Natural Vegetation Across Iran. Water. 2024; 16(22):3334. https://doi.org/10.3390/w16223334
Chicago/Turabian StyleTorkaman Pary, Atefeh, Pejvak Rastgoo, Christian Opp, Dirk Zeuss, and Temesgen Alemayehu Abera. 2024. "Impacts of Drought Severity and Frequency on Natural Vegetation Across Iran" Water 16, no. 22: 3334. https://doi.org/10.3390/w16223334
APA StyleTorkaman Pary, A., Rastgoo, P., Opp, C., Zeuss, D., & Abera, T. A. (2024). Impacts of Drought Severity and Frequency on Natural Vegetation Across Iran. Water, 16(22), 3334. https://doi.org/10.3390/w16223334