Adsorption and Immobilization of Cadmium by an Iron-Coated Montmorillonite Composite
<p>Schematic illustration of the preparation process of FMC.</p> "> Figure 2
<p>X-ray diffraction pattern of Fe-coated montmorillonite composites (FMCs) with different Fe content.</p> "> Figure 3
<p>Fourier transform infrared spectroscopy pattern of FMCs with different Fe contents.</p> "> Figure 4
<p>Scanning electron microscopy images of (<b>A</b>,<b>B</b>) montmorillonite (Mont) and (<b>C</b>,<b>D</b>) FMC.</p> "> Figure 4 Cont.
<p>Scanning electron microscopy images of (<b>A</b>,<b>B</b>) montmorillonite (Mont) and (<b>C</b>,<b>D</b>) FMC.</p> "> Figure 5
<p>Adsorption of Cd on FMCs with different Fe content. pH 6.0, m/v = 0.5 g/20 mL, I = 0.01 M NaNO<sub>3</sub>, and time = 24 h.</p> "> Figure 6
<p>(<b>A</b>) Effect of contact time on Cd adsorption. (<b>B</b>) Pseudo-second order kinetics of Cd adsorption. C<sub>0</sub> = 200 mg L<sup>−1</sup>, pH 6.0, m/v = 0.3 g/20 mL, ionic strength (I) = 0.01 M NaNO<sub>3</sub>, and temperature (T) = 298.15 K.</p> "> Figure 7
<p>Adsorption rate of Cd at different temperatures. C<sub>0</sub> = 200 mg L<sup>−1</sup>, pH 6.0, m/v = 0.5 g/20 mL, I = 0.01 M NaNO<sub>3</sub>, and time = 24 h.</p> "> Figure 8
<p>Effect of pH and ionic strength on Cd adsorption. C<sub>0</sub> = 200 mg L<sup>−1</sup>, m/v = 0.5 g/20 mL, and time = 24 h.</p> "> Figure 9
<p>Effect of competitive ions on Cd adsorption. C<sub>0</sub> = 200 mg L<sup>−1</sup>, pH 6.0, m/v = 0.5 g/20 mL, and time = 24 h.</p> "> Figure 10
<p>Total Fe (TFe) concentration under microorganism action.</p> "> Figure 11
<p>Cd concentration under microorganism action.</p> "> Figure 12
<p>The relationship between Fe dissolution and Cd release in FMC samples inoculated with soil microorganisms.</p> "> Figure 13
<p>Effects of the FMC and Mont on the (<b>A</b>) bioavailability and (<b>B</b>) toxic dissolution of Cd and (<b>C</b>) pH in soil.</p> "> Figure 14
<p>Effect of FMC and Mont on fraction distribution of Cd in soil.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Preparation of Materials
2.2. Experimental Procedures
2.2.1. Adsorption Experiment
2.2.2. Cd Release under Microbial Action
2.2.3. Bioavailability, Toxicity Characteristics, and Fractional Distribution
Cd Bioavailability Measurements
Toxicity Leaching Characteristics
Sequential Extraction
2.3. Experimental Data Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties of Materials
3.1.1. X-Ray Diffraction Analysis
3.1.2. FTIR Spectroscopy
3.1.3. SEM
3.1.4. Specific Surface Area
3.2. Effect of Fe Content in the FMC on Cd Adsorption
3.3. Effect of Contact Time on Cd Adsorption
3.4. Effect of Temperature on Cd Adsorption
3.5. Effect of pH and Ionic Strength on Cd Adsorption
3.6. Effect of Competitive Ions on Cd Adsorption
3.7. Fe Dissolution and Cd Release of the FMC with Soil Microorganisms
3.8. The Effect of the FMC on the Bioavailability and Leaching Toxicity of Cd
3.9. The Effect of the FMC on the Fraction Distribution of Cd in Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agency for Toxic Substance and Disease Registry USA. Profle for Cadmium; Department of Health and Human Services, Public Health Service, Centers for Disease Control: Atlanta, GA, USA, 2017. [Google Scholar]
- Zhu, N.M.; Li, Q.; Guo, X.J.; Zhang, H.; Deng, Y. Sequential extraction of an aerobic digestate sludge for the determination of partitioning of heavy metals. Ecotoxicol. Environ. Saf. 2014, 102, 18–24. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Scientific Opinion. Cadmium in food. Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2009, 980, 1–139. [Google Scholar]
- WHO. Air Quality Guidelines, 2nd ed.; World Health Organization(WHO), Regional Ofce for Europe: Geneva, Switzerland, 2000. [Google Scholar]
- Janoš, P.; Vávrová, J.; Herzogová, L.; Pilařová, V. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma 2010, 159, 335–341. [Google Scholar] [CrossRef]
- Li, P.; Lin, C.; Cheng, H. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Guo, Z.H.; Xiao, X.Y.; Wang, S.; Jiang, Z.C.; Zeng, P. Phytostabilisation potential of giant reed for metals contaminated soil modified with complex organic fertiliser and fly ash: A field experiment. Sci. Total Environ. 2017, 576, 292–302. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Xiao, T.F.; Perkins, R.B. Geogenic cadmium pollution and potential health risks, with emphasis on black shale. J. Geochem. Explor. 2017, 176, 42–49. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Young, R.N. Natural attenuation of contaminated soil. Environ. Int. 2004, 30, 587–601. [Google Scholar] [CrossRef]
- Acharya, R.; Lenka, A.; Parida, K. Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): A review. J. Mol. Liq. 2021, 337, 116487. [Google Scholar] [CrossRef]
- Degryse, F.; Smolders, E.; Parker, D.R. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: Concepts, methodologies, prediction and applications—A review. Eur.J. Soil. Sci. 2009, 60, 590–612. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Zhao, D.L.; Li, Y.; Chen, Z.S.; Niu, H.H.; Xu, J.Z. Solution chemistry effects on sorption behavior of 109Cd(II) on Ca-montmorillonite. J Radioanal Nucl. Chem. 2011, 288, 829–837. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Cadmium sorption and desorption in soils: A review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 489–533. [Google Scholar] [CrossRef]
- Mao, Y.J.; Fan, W.G.; Yan, Y.X.; Xiang, W.; Hu, S.H. Cd Adsorption by Iron–Organic Associations: Implications for Cd Mobility and Fate in Natural and Contaminated Environments. Bull. Environ. Contam. Toxicol. 2021, 106, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Gui, L.L.; Chun, H.Z.; Saverio, F.; Wei, H.Y. Interactions between microorganisms and clay minerals:New insights and broader applications. Appl. Clay Sci. 2019, 177, 91–113. [Google Scholar]
- Shi, M.Q.; Min, X.B.; Ke, Y.; Lin, Z.; Yang, Z.H. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Sci. Total Environ. 2021, 752, 141930. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.J.; Wang, H.B.; Shi, M.M.; Jiang, Y.G.; Dong, Y.R.; Shi, L. Biosurfactant rhamnolipid affacts the desorption of sorbed As(III),As(V),Cr(VI),Cd(II) and Pb(II) on iron (oxyhydr)oxides and clay minerals. Int. Biodeterior. Biodegrad. 2020, 153, 105019. [Google Scholar] [CrossRef]
- Ren, B.; Wu, Y.; Deng, D.P.; Tang, X.F.; Li, H.T. Effect of multiple factors on the adsorption of Cd in an alluvial soil from Xiba, China. J. Contam. Hydrol. 2020, 232, 103605. [Google Scholar] [CrossRef]
- Acharya, R.; Naik, A. Adsorption of aqueous Cr (VI) onto UiO66NH2 MOF:Isotherm, thermodynamics and mechanism studies. Mater. Today Proc. 2024, 2214–7853. [Google Scholar] [CrossRef]
- Anna, B.; Kleopas, M.; Constantine, S.; Anestis, F.; Maria, B. Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: Study in mono- and multi-metal systems. Environ. Earth Sci. 2015, 73, 5435–5444. [Google Scholar] [CrossRef]
- Chen, Y.G.; Ye, W.M.; Yang, X.M.; Deng, F.Y.; He, Y. Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environ. Earth Sci. 2011, 64, 329–336. [Google Scholar] [CrossRef]
- Güven, N. Smectites. In Hydrous Phyllosilicates. Reviews in Mineralogy; Bailey, S.W., Ed.; Mineralogical Society of America: Washington, DC, USA, 1988; pp. 497–559. [Google Scholar]
- Grim, R.E. Clay Mineralogy; McGraw-Hill Book Company: New York, NY, USA, 1953; pp. 37–38. [Google Scholar]
- Tanabe, K. Solid acid and base catalysis. In Catalysis Science and Technology; Anderson, J.R., Boudart, M., Eds.; Springer: New York, NY, USA, 1981; p. 231. [Google Scholar]
- Barbier, F.; Duc, G.; Petit-Ramel, M. Adsorption of lead and cadmium ions from aqueous solution on the montmorillonite/water interface. Colloids Surf. A 2000, 166, 153–159. [Google Scholar] [CrossRef]
- Zachara, J.M.; Smith, S.C. Edge complexation reactions of cadmium on specimen and soil-derived smectite. Soil Sci. Soc. Am.J. 1994, 58, 762–769. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Immobilization of Pb(II),Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J. Environ. Manag. 2008, 87, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Evans, L.J.; Barabash, S.J. Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochim. Et Cosmochim. Acta 2010, 74, 5718–5728. [Google Scholar] [CrossRef]
- Hendershot, W.H.; Lavkulich, L.M. Effect of sesquioxide coatings on surface charge of standard mineral and soil samples. Soil Sci. Soc. Am. J. 1983, 47, 1251–1260. [Google Scholar] [CrossRef]
- Zhuang, J.; Yu, G.R. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere 2002, 49, 619–628. [Google Scholar] [CrossRef]
- Jackson, M.L.; Lim, C.H.; Zelazny, L.W. Oxides, hydroxides, and aluminosilicates. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods; Wiley: Hoboken, NJ, USA, 1986; pp. 101–150. [Google Scholar]
- Ahmedzeki, N.S. Adsorption filtration technology using ironcoated sand for the removal of lead and cadmium ions from aquatic solutions. Desalination Water Treat. 2013, 51, 5559–5565. [Google Scholar] [CrossRef]
- Eren, E.; Takbas, A.; Eren, B. Performance of magnesium oxide-coated bentonite in removal process of copper ions from aqueous solution. Desalination 2010, 257, 163–169. [Google Scholar] [CrossRef]
- Pawar, R.R.; Lalhmunsiama, K.M. Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads. Appl. Clay Sci. 2018, 162, 339–350. [Google Scholar] [CrossRef]
- Khan, T.A.; Khan, E.A.; Shahjahan. Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: Non-linear isotherm and kinetics modeling. Appl. Clay Sci. 2015, 107, 70–77. [Google Scholar] [CrossRef]
- Eisazadeh, A.; Eisazadeh, H.; Kassim, K.A. Removal of Pb(II) using polyaniline composites and iron oxide coated natural sand and clay from aqueous solution. Synth. Met. 2013, 171, 56–61. [Google Scholar] [CrossRef]
- Kpak, L.; Akn, C. Cadmium removal from aqueous solution by iron oxide coated sepiolite:Preparation, characterization and batch adsorption studies. Desalination Water Treat. 2019, 146, 245–256. [Google Scholar]
- Sizirici, B.Y.I. Adsorption capacity of iron oxide-coated gravel for landfill leachate: Simultaneous study. Int. J. Environ. Sci. Technol. 2017, 14, 1027–1036. [Google Scholar] [CrossRef]
- Degryse, F.; Broos, K.; Smolders, E.; Merckx, R. Soil solution concentration of Cd and Zn can predicted with a CaCl2 soil extract. Eur. J. Soil. Sci. 2003, 54, 149–157. [Google Scholar] [CrossRef]
- Houba, V.J.G.; Lexmond, T.M.; Novozamsky, I.; Vanderlee, J.J. State of the art and further developments in soil analysis forbioavailability assessment. Sci. Total Environ. 1996, 178, 21–28. [Google Scholar] [CrossRef]
- USEPA. EPA. EPA Method 1311. TCLP-toxicity characteristic leaching procedure. In Test Methods for Evaluating Solid Waste, 3rd ed.; Environmental Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace-metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Chen, C.L.; Wang, X.K. Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 2006, 45, 9144–9149. [Google Scholar] [CrossRef]
- Jambor, J.L.; Dutrizac, J.E. Occurrence and Constitution of Natural and Synthetic Ferrihydrite, a Widespread Iron Oxyhydroxide. Chem. Rev. 2010, 98, 2549–2586. [Google Scholar] [CrossRef]
- Abu-Eishah, S.I. Removal of Zn, Cd, and Pb Ions from water by Sarooj clay. Appl. Clay Sci. 2008, 42, 201–205. [Google Scholar] [CrossRef]
- Nachtegaal, M.; Sparks, D.L. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface. J. Colloid Interface Sci. 2004, 276, 13–23. [Google Scholar] [CrossRef]
- Statillan, M.J.; Jurinak, J.J. The chemistry of lead and cadmium in soil: Solid phase formation. Soil. Sci. Soc. Am. J. 1975, 39, 851–856. [Google Scholar]
- Wang, J.J.; He, B.H.; Wei, X.Y.; Li, P.; Liang, J.J.; Qiang, S.R.; Fan, Q.H.; Wu, W.S. Sorption of uranyl ions on TiO2: Effects of pH, contact time, ionic strength, temperature and HA. J. Environ. Sci. 2019, 75, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Jain, S.C.; Banerjee, U.C. Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res. 2003, 7, 311–319. [Google Scholar] [CrossRef]
- Fan, Q.H.; Tan, X.L.; Li, J.X. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Technol. 2009, 43, 5776–5782. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.S.; Park, J.M. The past, present, and future trends of biosorption, Biotechnol. Bioprocess. Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, W.; Xiong, L.; Xu, N.; Ni, J.R. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem. Eng.J. 2013, 215, 366–374. [Google Scholar] [CrossRef]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modifed zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013, 15, 252–253. [Google Scholar]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater:A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Jiang, W.; Lv, J.T.; Luo, L.; Yang, K. Arsenate and cadmium co-adsorption and co-precipitation on goethite. J. Hazard. Mater. 2013, 262, 55–63. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.Z.; Jiang, W.; Shan, X.G. Effect of phosphate on the adsorption of Cu and Cd on natural hematite. Chemosphere. 2006, 63, 1235–1241. [Google Scholar] [CrossRef]
- Liu, G.J.; Zhang, X.G.; McWilliams, L.; Tallry, J.W.; Neal, C.R. Influence of ionic strength, electrolyte type, and NOM on As(V) adsorption onto TiO2. J. Environ. Sci. Health Part A 2008, 43, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.G.; Fan, Q.H.; Li, P.; Liu, S.P.; Wu, W.S. Sorption of Th(IV) on Na-bentonite: Effects of pH, ionic strength, humic substances and temperature. Chem. Eng. J. 2011, 172, 898–905. [Google Scholar] [CrossRef]
- Zong, L.G.; Xu, X.Y. Advance in studies of cadmium sorption and desorption in soils. Ecol. Environ 2003, 12, 331–335. (In Chinese) [Google Scholar]
- Qiu, X.; Shi, L. Electrical Interplay between Microorganisms and Iron-bearing Minerals. Acta Chim. Sin.-Chin. Ed. 2017, 75, 583–593. [Google Scholar] [CrossRef]
- Vepraskas, M.J.; Richardson, J.L.; Tandarich, J.P. Dynamics of redoximorphic feature formation under controlled ponding in a created riverine wetland. Wetlands 2006, 26, 486–496. [Google Scholar] [CrossRef]
- Kostka, J.E.; Dalton, D.D.; Skelton, H. Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms. Appl. Environ. Microbiol. 2002, 68, 6256–6262. [Google Scholar] [CrossRef]
- Cui, H.; Yi, Q.; Yang, X. Effects of Hydroxyapatite on Leaching of Cadmium and Phosphorus and Their Availability under Simulated Acid Rain. J. Environ. Chem. Eng. 2017, 5, 3773–3779. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils e to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Jiang, S.; Huang, L.; Nguyen, T.A.H.; Ok, Y.S.; Rudolph, V.; Yang, H.; Zhang, D. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 2016, 142, 64–71. [Google Scholar] [CrossRef]
- Zinati, G.M.; Li, Y.; Bryan, H.H.; Mylavarapu, R.S.; Codallo, M. Distribution and fractionation of phosphorus, cadmium, nickel, and lead in calcarous soils amended with composts. J. Environ. Sci. Health 2004, 1, 209–223. [Google Scholar] [CrossRef]
- Burt, R.; Hernandez, L.; Shaw, R.; Tunstead, R.; Ferguson, R.; Peaslee, S. Trace element concentration and speciation in selected urban soils in New York City. Environ. Monit. Assess. 2014, 186, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.L.; Zhou, Q.X.; Koval, P.V. Speciation distribution of Cd, Pb, Cu, and Zn in contaminated Phaeozem in north-east China using single and sequential extraction procedures. Aust. J. Soil. Res. 2006, 44, 135–142. [Google Scholar] [CrossRef]
- Kholoud, M.; Mohammed, S.; Mohammed, A.Q.; Yahya, A.D. Spatial distribution of cadmium concentrations in street dust in an arid environment. Arab. J. Geosci. 2015, 8, 3171–3182. [Google Scholar]
- He, Z.L.; Yanga, X.E.; Stoffellab, P.J. Trace elements in agroecosystems and impacts on the environment. Review. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef]
- You, M.; Huang, Y.E.; Lu, J.; Li, C.P. Fractionation characterizations and environmental implications of heavy metal in soil from coal mine in huainan, china. Environ. Earth Sci. 2016, 75, 78. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.R.; Liu, J. Fractions and Bioavailability Spatial Distribution of Soil Cd Under Long-term Sewage Irrigation. J. Agro-Environ. Sci. 2014, 33, 1322–1327. (In Chinese) [Google Scholar]
- Iu, K.L.; Pulford, I.D.; Duncan, H.J. Influence of waterlogging and lime or organic matter additions on the distribution of trace metals in an acid soil:I. Manganese and iron. Plant Soil. 1981, 59, 317–326. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, R.; Jin, J.X. Vertical distribution and speciation characteristics of heavy metals in wetlands soils of Ziyaxin River downstream. Environ. Chem. 2016, 35, 2044–2050. (In Chinese) [Google Scholar]
- Wu, Y.; Yang, H.; Wang, M.; Sun, L.; Xu, Y.; Sun, G.; Huang, Q.; Liang, X. Immobilization of soil cd by sulfhydryl grafted palygorskite in wheat-rice rotation mode: A field-scale investigation. Sci. Total Environ. 2022, 826, 154156. [Google Scholar] [CrossRef]
- Ke, Y.X.; Si, S.C.; Zhang, Z.Y.; Geng, P.Y.; Shen, Y.H.; Wang, J.Q.; Zhu, X.L. Synergistic passivation performance of cadmium pollution by biochar combined with sulfate reducing bacteria. Environ. Technol. Innov. 2023, 32, 103356. [Google Scholar] [CrossRef]
- Fu, H.; He, H.; Zhu, R.; Ling, L.; Chen, Q. Phosphate modified magnetite@ferrihydrite as an magnetic adsorbent for Cd(Ⅱ) removal from water, soil, and sediment. Sci. Total Environ. 2020, 764, 142846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, S.; Jia, H.; Sun, T.; Zheng, S.; Wu, S.; Sun, Y. Passivation remediation of weakly alkaline cd-contaminated soils using combined treatments of biochar and sepiolite. Ecol. Process. 2024, 13, 3. [Google Scholar] [CrossRef]
- Ma, G.; Ren, J.; Tao, L.; Han, X.; Liao, C.; Zhou, Y.; Ding, J. Efectiveness and potential mechanism of hydrothermal modifcation of attapulgite for cadmium passivation in soil. Int. J. Environ. Sci. Technol. 2024, 21, 2953–2964. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, Q.; Bao, B.; Cao, Y.; Zhang, S.; Cui, H. Ferrihydrite reduces the bioavailability of copper and cadmium and phosphorus release risk in hydroxyapatite amended soil. J. Environ. Chem. Eng. 2021, 9, 106756. [Google Scholar] [CrossRef]
C0 (mg L−1) | Fe Content (g kg−1) | Adsorption Parameter | ||
---|---|---|---|---|
Adsorption (%) | Adsorption Capacity (mg kg−1) | Kd | ||
200 | 0 | 98.0 | 7840.6 | 1968.0 |
189.7 | 99.0 | 7925.1 | 4234.6 | |
276.8 | 99.7 | 7977.6 | 14,230.4 | |
285.2 | 99.9 | 7995.5 | 71,261.2 | |
500 | 0 | 84.0 | 16,809.0 | 210.7 |
189.7 | 99.7 | 19,907.8 | 12,026.0 | |
276.8 | 99.9 | 19,952.9 | 37,811.1 | |
285.2 | 99.9 | 19,960.8 | 60,304.4 |
Adsorbent Name | ΔH0 | ΔS0 | ΔG0(kJ·mol−1) | ||
---|---|---|---|---|---|
(kJ·mol−1) | (J·mol−1·k−1) | 288.15 | 303.15 | 318.15 | |
Mont | 14.45 | 117.02 | −19.26 | −21.02 | −22.77 |
FMC | −8.58 | 46.27 | −21.91 | −22.61 | −23.30 |
Temperature | 12 °C | 32 °C | |||||
---|---|---|---|---|---|---|---|
Sample | A | B | R2 | A | B | R2 | |
Gu/FMC | −4.2374 | 0.5112 | 0.0098 | 40.948 | −0.3659 | 0.7825 | |
Gu/FMC + Mic | 5.9732 | 0.5885 | 0.3800 | 53.189 | −0.7783 | 0.8474 |
Exchangeable | Carbonate Associated | Fe-Mn Oxide Associated | Organic Matter Associated | Residual | References | |
---|---|---|---|---|---|---|
Ⅰ | −36.91% | 15.50% | +35.44% | −35.44% | / | [76] |
Ⅱ | −31.60% | / | / | / | / | [77] |
Ⅲ | −14.10% | / | / | / | +5.10% | [78] |
Ⅳ | −28.97% | −23.53% | +10.71% | / | +294.2% | [79] |
Ⅴ | −38.06% | / | / | / | +68.96% | [80] |
Ⅵ | −66.10% | −68.30% | +66.70% | / | +38.60% | [81] |
Ⅶ | −39.04% | −41.09% | +52.05% | +47.43 | +18.56% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, B.; Shu, C.; Chen, Z.; Xiao, Q.; He, Y. Adsorption and Immobilization of Cadmium by an Iron-Coated Montmorillonite Composite. Water 2024, 16, 3105. https://doi.org/10.3390/w16213105
Ren B, Shu C, Chen Z, Xiao Q, He Y. Adsorption and Immobilization of Cadmium by an Iron-Coated Montmorillonite Composite. Water. 2024; 16(21):3105. https://doi.org/10.3390/w16213105
Chicago/Turabian StyleRen, Bangzheng, Chengqiang Shu, Zailin Chen, Qiang Xiao, and Yuli He. 2024. "Adsorption and Immobilization of Cadmium by an Iron-Coated Montmorillonite Composite" Water 16, no. 21: 3105. https://doi.org/10.3390/w16213105
APA StyleRen, B., Shu, C., Chen, Z., Xiao, Q., & He, Y. (2024). Adsorption and Immobilization of Cadmium by an Iron-Coated Montmorillonite Composite. Water, 16(21), 3105. https://doi.org/10.3390/w16213105