Multi-Index Approach to Assess and Monitor Meteorological and Agricultural Drought in the Mediterranean Region: Case of the Upper Oum Er Rabia Watershed, Morocco
<p>Location of study area.</p> "> Figure 2
<p>Average annual precipitation (1979-2022).</p> "> Figure 3
<p>Average monthly temperatures and potential evapotranspiration.</p> "> Figure 4
<p>Flowchart of the adopted methodology.</p> "> Figure 5
<p>Correlation graphs between observed temperatures and ERA5 product temperatures: (<b>a</b>–<b>d</b>) Ahmed El Hansali station and (<b>e</b>,<b>f</b>) Tarhat station.</p> "> Figure 6
<p>Graph of monthly SPEI (3 months) and CWSI.</p> "> Figure 7
<p>Graph of SPEI (3 months) and CWSI in the spring season.</p> "> Figure 8
<p>(<b>a</b>) Annual precipitation, SPEI, RDI and SPI, (<b>b</b>) annual, (<b>c</b>) 12 months, (<b>d</b>) 6 months, (<b>e</b>) 3 months, and (<b>f</b>) 1 month.</p> ">
Abstract
:1. Introduction
- -
- -
- -
- -
- -
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Precipitation Data
2.2.2. Temperature Data
2.3. Methodology
2.3.1. Meteorological Drought Indices
- Standardized Precipitation Index (SPI)
- Standardized Precipitation and Evapotranspiration Index (SPEI)
- Reconnaissance Drought Index (RDI)
2.3.2. Classification Criteria
2.3.3. Agricultural Remote Sensing Drought Indices
- Normalized Difference Vegetation Index and Enhanced Vegetation Index
- Crop Water Stress Index
2.3.4. Google Earth Engine (GEE)
2.3.5. Trend Tests
- Mann–Kendall test
- Sen’s Slope method
3. Results and Discussion
3.1. Drought Characteristics Analysis
3.1.1. Drought Duration
3.1.2. Drought Intensity
3.2. Multivariate Analysis of Precipitation, Drought Indices, and Remote-Sensing Indices
3.2.1. Correlation Analysis at Sub-Basins Level
3.2.2. Correlation Analysis at Watershed Level
3.3. Trend Analysis
3.3.1. Trend Analysis at Sub-Basins Level
- For the period between 1979 and 2022
- For the period between 2010 and 2022
3.3.2. Trend Analysis at Upper OER Watershed Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ndayiragije, J.M.; Li, F. Monitoring and Analysis of Drought Characteristics Based on Climate Change in Burundi Using Standardized Precipitation Evapotranspiration Index. Water 2022, 14, 2511. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR). Special Report on Drought 2021. 2021. Available online: https://www.undrr.org/publication/gar-special-report-drought-2021 (accessed on 12 March 2023).
- Bageshree, K.; Abhishek; Kinouchi, T. A Multivariate Drought Index for Seasonal Agriculture Drought Classification in Semiarid Regions. Remote Sens. 2022, 14, 3891. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. The Impracticality of a Universal Drought Definition. Theor. Appl. Climatol. 2014, 117, 607–611. [Google Scholar] [CrossRef]
- Tate, E.L.; Gustard, A. Drought Definition: A Hydrological Perspective. In Drought and Drought Mitigation in Europe; Springer: Dordrecht, The Netherlands, 2000; pp. 23–48. [Google Scholar] [CrossRef]
- World Meteorological Organization. Drought. Available online: https://wmo.int/about-us/world-meteorological-day/wmd-2020/drought (accessed on 3 February 2023).
- Cao, S.; Zhang, L.; He, Y.; Zhang, Y.; Chen, Y.; Yao, S.; Yang, W.; Sun, Q. Effects and Contributions of Meteorological Drought on Agricultural Drought under Different Climatic Zones and Vegetation Types in Northwest China. Sci. Total Environ. 2022, 821, 153270. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in Drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Benzougagh, B.; Meshram, S.G.; Baamar, B.; Dridri, A.; Boudad, L.; Sadkaoui, D.; Mimich, K. Relationship between Landslide and Morpho-Structural Analysis: A Case Study in Northeast of Morocco. Appl. Water Sci. 2020, 10, 175. [Google Scholar] [CrossRef]
- Benzougagh, B.; Meshram, S.G.; El Fellah, B.; Mastere, M.; Dridri, A.; Sadkaoui, D.; Mimich, K.; Khedher, K.M. Combined Use of Sentinel-2 and Landsat-8 to Monitor Water Surface Area and Evaluated Drought Risk Severity Using Google Earth Engine. Earth Sci. Inform. 2022, 15, 929–940. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought and Climatic Change Impact on Streamflow in Small Watersheds. Sci. Total Environ. 2012, 440, 33–41. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, H.; Fu, Q.; Ding, Y.; Li, T.; Wang, Y.; Liu, S. Characteristics of Propagation from Meteorological Drought to Hydrological Drought in the Pearl River Basin. J. Geophys. Res. Atmos. 2021, 126, e2020JD033959. [Google Scholar] [CrossRef]
- Angelidis, P.; Maris, F.; Kotsovinos, N.; Hrissanthou, V. Computation of Drought Index SPI with Alternative Distribution Functions. Water Resour. Manag. 2012, 26, 2453–2473. [Google Scholar] [CrossRef]
- WMO. Available online: https://wmo.int/media/news/droughts-threaten-sustainable-development (accessed on 3 February 2023).
- NDMC. 2022. Available online: https://drought.unl.edu/Education/DroughtforKids/DroughtEffects.aspx (accessed on 3 February 2023).
- Ionita, M.; Scholz, P.; Chelcea, S. Assessment of Droughts in Romania Using the Standardized Precipitation Index. Nat. Hazards 2016, 81, 1483–1498. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, L.; Mo, X.; Zhou, H.; Zhang, J.; Jia, R. Drought Monitoring and Analysis in China Based on the Integrated Surface Drought Index (ISDI). Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 23–33. [Google Scholar] [CrossRef]
- Nkunzimana, A.; Shuoben, B.; Guojie, W.; Alriah, M.A.A.; Sarfo, I.; Zhihui, X.; Vuguziga, F.; Ayugi, B.O. Assessment of Drought Events, Their Trend and Teleconnection Factors over Burundi, East Africa. Theor. Appl. Climatol. 2021, 145, 1293–1316. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought Monitoring Using High Resolution Soil Moisture through Multi-Sensor Satellite Data Fusion over the Korean Peninsula. Agric. For. Meteorol. 2017, 237–238, 257–269. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of Widespread Tree Mortality Triggered by Drought and Temperature Stress. Nat. Clim. Chang. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Tohver, I.M.; Ray, D.; Moutinho, P.; Ecology, S.; Sep, N.; Nepstad, C. Mortality of Large Trees and Lianas Following Experimental Drought in an Amazon Forest. Ecology 2015, 88, 2259–2269. [Google Scholar] [CrossRef]
- da Silva, S.S.; Fearnside, P.M.; de Alencastro Graça, P.M.L.; Brown, I.F.; Alencar, A.; de Melo, A.W.F. Dynamics of Forest Fires in the Southwestern Amazon. For. Ecol. Manag. 2018, 424, 312–322. [Google Scholar] [CrossRef]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal Drought Analysis by the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Zribi, M.; Dridi, G.; Amri, R.; Lili-Chabaane, Z. Analysis of the Effects of Drought on Vegetation Cover in a Mediterranean Region through the Use of SPOT-VGT and TERRA-MODIS Long Time Series. Remote Sens. 2016, 8, 992. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization of the United Nations. The Impact of Disasters and Crises on Agriculture and Food Security: 2021; FAO: Rome, Italy, 2021; ISBN 978-92-5-134071-4. [Google Scholar]
- Wu, B.; Ma, Z.; Yan, N. Agricultural Drought Mitigating Indices Derived from the Changes in Drought Characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Winkler, K.; Gessner, U.; Hochschild, V. Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000-2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO. Remote Sens. 2017, 9, 831. [Google Scholar] [CrossRef]
- West, H.; Quinn, N.; Horswell, M. Remote Sensing for Drought Monitoring & Impact Assessment: Progress, Past Challenges and Future Opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Crausbay, S.D.; Ramirez, A.R.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining Ecological Drought for the Twenty-First Century. Bull. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- Bradford, J.B.; Schlaepfer, D.R.; Palmquist, K.A.; Lauenroth, W.K. Robust Ecological Drought Projections for Drylands in the 21st Century. Glob. Chang. Biol. 2020, 26, 3906–3919. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Otkin, J.A.; Hunt, E.D.; Wakefield, R.A.; Flanagan, P.X.; Xiao, X. A Methodology for Flash Drought Identification: Application of Flash Drought Frequency across the United States. J. Hydrometeorol. 2019, 20, 833–846. [Google Scholar] [CrossRef]
- Hu, C.; Xia, J.; She, D.; Li, L.; Song, Z.; Hong, S. A New Framework for the Identification of Flash Drought: Multivariable and Probabilistic Statistic Perspectives: Identification of Flash Drought. Int. J. Climatol. 2021, 41, 5862–5878. [Google Scholar] [CrossRef]
- Son, B.; Park, S.; Im, J.; Park, S.; Ke, Y.; Quackenbush, L.J. Remote Sensing of Environment A New Drought Monitoring Approach: Vector Projection Analysis (VPA). Remote Sens. Environ. 2021, 252, 112145. [Google Scholar] [CrossRef]
- Ha, T.V.; Huth, J.; Bachofer, F.; Kuenzer, C. A Review of Earth Observation-Based Drought Studies in Southeast Asia. Remote Sens 2022, 14, 3763. [Google Scholar] [CrossRef]
- McKee, T.B.; Nolan, J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Bhalme, H.N.; Mooley, D.A. Large-Scale Droughts/ Floods and Monsoon Circulation. Mon. Weather Rev. 1980, 108, 1197–1211. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a Drought Index Incorporating Evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Palmer, W.C. Meteorological Drought; Research Papper No. 45; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Narasimhan, B.; Srinivasan, R. Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for Agricultural Drought Monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- British Columbia|Ministry of Agriculture. Soil Water Storage Capacity and Available Soil Moisture. Water Conserv. Factsheet 2015, 1, 1–4. [Google Scholar]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Staudinger, M.; Stahl, K.; Seibert, J. A Drought Index Accounting for Snow. Water Resour. Res. 2014, 50, 7861–7872. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bull.-Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global Vegetation Indices from the NOAA-7 Meteorological Satellite. J. Clim. Appl. Meteorol. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation. GIsci Remote Sens. 2008, 45, 16–46. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global Integrated Drought Monitoring and Prediction System. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef] [PubMed]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975; ISBN 0852641990; 9780852641996. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water 2018, 10, 1043. [Google Scholar] [CrossRef]
- Bijaber, N.; El Hadani, D.; Saidi, M.; Svoboda, M.D.; Wardlow, B.D.; Hain, C.R.; Poulsen, C.C.; Yessef, M.; Rochdi, A. Developing a Remotely Sensed Drought Monitoring Indicator for Morocco. Geosciences 2018, 8, 55. [Google Scholar] [CrossRef]
- Bouras, E.; Jarlan, L.; Er-raki, S. Linkages between Rainfed Cereal Production and Agricultural Drought through Remote Sensing Indices and a Land Data Assimilation System: A Case Study in Morocco. Remote Sens. 2020, 12, 4018. [Google Scholar] [CrossRef]
- Hachem, A.; Mili, E.; Benbella, B.; El Ouardi, H.; Mehdaoui, R. Characterization of Climatic Drought Sequences in the Upper Moulouya Watershed, Morocco. Ecol. Eng. Environ. Technol. 2023, 24, 162–179. [Google Scholar] [CrossRef]
- Ayad, N.A.; Ayad, A.A.; El Khalidi, K.; Habib, A.; Charif, A. Remote Sensing and Meteorological Indexes of Drought Using Open Short Time-Series Data in Doukkala Region, Morocco. Ecol. Eng. Environ. Technol. 2023, 24, 1–10. [Google Scholar] [CrossRef]
- Bounoua, I.; Saidi, Y.; Yaagoubi, R.; Bouziani, M. Deep Learning Approaches for Water Stress Forecasting in Arboriculture Using Time Series of Remote Sensing Images: Comparative Study between ConvLSTM and CNN-LSTM Models. Technologies 2024, 12, 77. [Google Scholar] [CrossRef]
- Najmi, A.; Igmoullan, B.; Namous, M.; El Bouazzaoui, I.; Brahim, Y.A.; El Khalki, E.M.; Saidi, M.E.M. Evaluation of PERSIANN-CCS-CDR, ERA5, and SM2RAIN-ASCAT Rainfall Products for Rainfall and Drought Assessment in a Semi-Arid Watershed, Morocco. J. Water Clim. Chang. 2023, 14, 1569–1584. [Google Scholar] [CrossRef]
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M. Trend Analysis of Rainfall and Drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 128. [Google Scholar] [CrossRef]
- Kessabi, R.; Hanchane, M.; Krakauer, N.Y.; Aboubi, I.; El Kassioui, J.; El Khazzan, B. Annual, Seasonal, and Monthly Rainfall Trend Analysis through Non-Parametric Tests in the Sebou River Basin (SRB), Northern Morocco. Climate 2022, 10, 170. [Google Scholar] [CrossRef]
- Kessabi, R.; Hanchane, M.; Guijarro, J.A.; Krakauer, N.Y.; Addou, R.; Sadiki, A.; Belmahi, M. Homogenization and Trends Analysis of Monthly Precipitation Series in the Fez-Meknes Region, Morocco. Climate 2022, 10, 64. [Google Scholar] [CrossRef]
- Hadri, A.; El, M.; Saidi, M.; Boudhar, A. Multiscale Drought Monitoring and Comparison Using Remote Sensing in a Mediterranean Arid Region: A Case Study from West-Central Morocco. Arab. J. Geosci. 2021, 14, 118. [Google Scholar] [CrossRef]
- Kessabi, R.; Hanchane, M.; Caloiero, T.; Pellicone, G.; Addou, R.; Krakauer, N.Y. Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco. Hydrology 2023, 10, 37. [Google Scholar] [CrossRef]
- Hakam, O.; Baali, A.; Ait Brahim, Y.; El Kamel, T.; Azennoud, K. Regional and Global Teleconnections Patterns Governing Rainfall in the Western Mediterranean: Case of the Lower Sebou Basin, North-West Morocco. Model. Earth Syst. Environ. 2022, 8, 5107–5128. [Google Scholar] [CrossRef]
- Khalil, N.; Rouane, S.E.; Mania, J.; Murdry, J. Sur Les Eaux Du Haut Bassin (Moyen Atlas, Maroc) Hydrochimical Balance Assessment in the High Basin of the Oum Er Rbia. Rev. Fr. Geotech. 2004, 75–85. [Google Scholar] [CrossRef]
- El Jihad, M. Les Difficultés de Gestion Des Ressources «naturelles» et de Développement Rural Dans Un Milieu Anthropisé: L’expérience Du Projet Oued Srou (Maroc Central). Norois 2010, 3, 25–45. [Google Scholar] [CrossRef]
- Rhoujjati, N.; Ait Brahim, Y.; Hanich, L.; Rhoujjati, A.; Rafik, A.; Ouatiki, H.; Chehbouni, A.; Bouchaou, L. Snowpack and Groundwater Recharge in the Atlas Mountains: New Evidence and Key Drivers. J. Hydrol. Reg. Stud. 2023, 49, 101520. [Google Scholar] [CrossRef]
- OERHBA Agency. Oum Er Rbia Water Basin. OERHBA Oum Er Rbia Hydraulic Basin Agency. Available online: http://www.abhoer.ma/ (accessed on 30 March 2023).
- C3S Copernicus Climate Change Service, Climate Data Store: ERA5 Hourly Data on Pressure Levels from 1940 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (accessed on 18 February 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Uppala, S.M.; KÅllberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 Re-Analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Gibson, J.K.; Kållberg, P.; Uppala, S.; Hernandez, A.; Nomura, A.; Serrano, E. ERA-15 Description. ECMWF Re-Analysis Project Report Series, No. 1, Version 2. 1999. Available online: https://www.ecmwf.int/sites/default/files/elibrary/1997/9584-era-description.pdf (accessed on 30 March 2023).
- Bengtsson, L.; Kanamitsu, M.; Kållberg, P.; Uppala, S. FGGE Research Activities at ECMWF. Bull. Am. Meteorol. Soc. 1982, 63, 277–303. [Google Scholar] [CrossRef]
- Li, L.; She, D.; Zheng, H.; Lin, P.; Yang, Z.-L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- Capra, A.; Scicolone, B. Spatiotemporal Variability of Drought on a Short-Medium Time Scale in the Calabria Region (Southern Italy). Theor. Appl. Climatol. 2012, 110, 471–488. [Google Scholar] [CrossRef]
- Svoboda, M.D.; Fuchs, B.A. Handbook of Drought Indicators and Indices; World Meteorological Organization: Geneva, Switzerland, 2016; Volume 1173. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. An Enhanced Effective Reconnaissance Drought Index for the Characterisation of Agricultural Drought. Environ. Process. 2017, 4, S137–S148. [Google Scholar] [CrossRef]
- An, S.; Park, G.; Jung, H.; Jang, D. Assessment of Future Drought Index Using SSP Scenario in Rep. of Korea. Sustainability 2022, 14, 4252. [Google Scholar] [CrossRef]
- Mohammed, Y.; Yimam, A. Analysis of Meteorological Droughts in the Lake’s Region of Ethiopian Rift Valley Using Reconnaissance Drought Index (RDI). Geoenviron. Disasters 2021, 8, 13. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Shalamzari, M.J.; Arshad, A.; Liu, S.; Liu, T.; Tao, H. Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water 2022, 14, 861. [Google Scholar] [CrossRef]
- Ogunrinde, A.T.; Oguntunde, P.G.; Akinwumiju, A.S.; Fasinmirin, J.T.; Adawa, I.S.; Ajayi, T.A. Effects of Climate Change and Drought Attributes in Nigeria Based on RCP 8.5 Climate Scenario. Phys. Chem. Earth 2023, 129, 103339. [Google Scholar] [CrossRef]
- Guttman, N.B. On the Sensitivity of Sample L Moments to Sample Size. J. Clim. 1994, 7, 1026–1029. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A Software for Drought Analysis Based on Drought Indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Aiguo, D.; Kevin, E.T.; Taotao, Q. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar]
- Zarei, A.R.; Moghimi, M.M.; Bahrami, M. Comparison of Reconnaissance Drought Index (RDI) and Effective Reconnaissance Drought Index (ERDI) to Evaluate Drought Severity. Sustain. Water Resour. Manag. 2019, 5, 1345–1356. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of Vegetation Water Content Using Hyperspectral Vegetation Indices: A Comparison of Crop Water Indicators in Response to Water Stress Treatments for Summer Maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Q.; Zheng, C. Best Hyperspectral Indices for Tracing Leaf Water Status as Determined from Leaf Dehydration Experiments. Ecol. Indic. 2015, 54, 96–107. [Google Scholar] [CrossRef]
- Mirzaie, M.; Darvishzadeh, R.; Shakiba, A.; Matkan, A.A.; Atzberger, C.; Skidmore, A. Comparative Analysis of Different Uni-and Multi-Variate Methods for Estimation of Vegetation Water Content Using Hyper-Spectral Measurements. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 1–11. [Google Scholar] [CrossRef]
- Yi, Q.; Wang, F.; Bao, A.; Jiapaer, G. Leaf and Canopy Water Content Estimation in Cotton Using Hyperspectral Indices and Radiative Transfer Models. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 67–75. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Z.; Zhang, G.; Meng, Y.; Chen, B.; Wang, Y. Monitoring the Leaf Water Content and Specific Leaf Weight of Cotton (Gossypium hirsutum L.) in Saline Soil Using Leaf Spectral Reflectance. Eur. J. Agron. 2012, 41, 103–117. [Google Scholar] [CrossRef]
- Roy, B. Optimum Machine Learning Algorithm Selection for Forecasting Vegetation Indices: MODIS NDVI & EVI. Remote Sens. Appl. 2021, 23, 100582. [Google Scholar] [CrossRef]
- Qiu, R.; Li, X.; Han, G.; Xiao, J.; Ma, X.; Gong, W. Monitoring Drought Impacts on Crop Productivity of the U.S. Midwest with Solar-Induced Fluorescence: GOSIF Outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agric. For. Meteorol. 2022, 323, 109038. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.; Yang, J.; Zhang, W.; Wang, Y.; Wei, J.; Cheng, W. Drought in Shanxi Province Based on Remote Sensing Drought Index Analysis of Spatial and Temporal Variation Characteristics. Atmosphere 2023, 14, 799. [Google Scholar] [CrossRef]
- Khalis, H.; Sadiki, A.; Jawhari, F.; Mesrar, H.; Azab, E.; Gobouri, A.A.; Adnan, M.; Bourhia, M. Effects of Climate Change on Vegetation Cover in the Oued Lahdar Watershed. Northeastern Morocco. Plants 2021, 10, 1624. [Google Scholar] [CrossRef]
- Belmahi, M.; Hanchane, M.; Krakauer, N.Y.; Kessabi, R.; Bouayad, H.; Mahjoub, A.; Zouhri, D. Analysis of Relationship between Grain Yield and NDVI from MODIS in the Fez-Meknes Region, Morocco. Remote Sens. 2023, 15, 2707. [Google Scholar] [CrossRef]
- Irik, H.A.; Kaymaz, E.; Saban Polu, P.; Beyzi, E.; Varol, İ.S.; Unlukara, A.; Kirnak, H. Potential Use of Crop Water Stress Index (CWSI) and Spectral Vegetation Indices for Black Cumin under Deficit Irrigation. Environ. Sci. Eur. 2024, 36, 93. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the Stress-Degree-Day Parameter for Environmental Variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Jackson, R.D. Canopy Temperature and Crop Water Stress. In Advances in Irrigation; Elsevier: Amsterdam, The Netherlands, 1981; Volume 1, pp. 43–85. ISBN 0275-7915. [Google Scholar]
- Çolak, Y.B.; Yazar, A.; Çolak, İ.; Akça, H.; Duraktekin, G. Evaluation of Crop Water Stress Index (CWSI) for Eggplant under Varying Irrigation Regimes Using Surface and Subsurface Drip Systems. Agric. Agric. Sci. Procedia 2015, 4, 372–382. [Google Scholar] [CrossRef]
- Chen, J.; Lin, L.; Lü, G. An Index of Soil Drought Intensity and Degree: An Application on Corn and a Comparison with CWSI. Agric. Water Manag. 2010, 97, 865–871. [Google Scholar] [CrossRef]
- Tong, X.; Mu, Y.; Zhang, J.; Meng, P.; Li, J. Water Stress Controls on Carbon Flux and Water Use Efficiency in a Warm-Temperate Mixed Plantation. J. Hydrol. 2019, 571, 669–678. [Google Scholar] [CrossRef]
- Egea, G.; Padilla-Díaz, C.M.; Martinez-Guanter, J.; Fernández, J.E.; Pérez-Ruiz, M. Assessing a Crop Water Stress Index Derived from Aerial Thermal Imaging and Infrared Thermometry in Super-High Density Olive Orchards. Agric. Water Manag. 2017, 187, 210–221. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Tabari, H.; Abghari, H.; Hosseinzadeh Talaee, P. Temporal Trends and Spatial Characteristics of Drought and Rainfall in Arid and Semiarid Regions of Iran. Hydrol. Process. 2012, 26, 3351–3361. [Google Scholar] [CrossRef]
- Wang, S.; Xing, X.; Wu, Y.; Guo, J.; Li, M.; Fu, B. Seasonal Response of the NDVI to the SPEI at Different Time Scales in Yinshanbeilu, Inner Mongolia, China. Land 2024, 13, 523. [Google Scholar] [CrossRef]
- Fines, R.W.; Stone, M.; Webster, K.L.; Leach, J.A.; Buttle, J.M.; Emelko, M.B.; Collins, A.L. Evaluation of Legacy Forest Harvesting Impacts on Dominant Stream Water Sources and Implications for Water Quality Using End Member Mixing Analysis. Water 2023, 15, 2825. [Google Scholar] [CrossRef]
- Langhammer, J.; Su, Y.; Bernsteinová, J. Runoff Response to Climate Warming and Forest Disturbance in a Mid-Mountain Basin. Water 2015, 7, 3320–3342. [Google Scholar] [CrossRef]
- Aryal, Y.; Zhu, J. Effect of Watershed Disturbance on Seasonal Hydrological Drought: An Improved Double Mass Curve (IDMC) Technique. J. Hydrol. 2020, 585, 124746. [Google Scholar] [CrossRef]
SPI/SPEI/RDI | Category |
---|---|
−0.99 to 0.99 | Near normal |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2 and less | Extremely dry |
Time Step | Ahmed El Hansali | Taghzoute | Chacha N Amellah | Aval El Heri | Tarhat | Tamchachate | Upper OER |
---|---|---|---|---|---|---|---|
1 month | 75 | 81 | 59 | 82 | 72 | 96 | 76 |
3 months | 109 | 145 | 116 | 123 | 136 | 143 | 132 |
6 months | 131 | 147 | 144 | 159 | 149 | 147 | 151 |
12 months | 160 | 153 | 122 | 155 | 125 | 128 | 147 |
Ahmed El Hansali | SPI1 | SPEI1 | RDI1 | SPI3 | SPEI3 | RDI3 | SPI6 | SPEI6 | RDI6 | SPI 12 | SPEI 12 | RDI 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal Drought | 9.3 | 6.2 | 8.5 | 9.9 | 8.4 | 9.7 | 10.6 | 11.0 | 11.0 | 48.8 | 53.8 | 48.8 |
Moderate Drought | 2.3 | 6.2 | 3.5 | 5.4 | 6.8 | 4.9 | 9.0 | 8.8 | 8.6 | 30.6 | 26.9 | 27.5 |
Severe Drought | 1.6 | 1.7 | 2.1 | 2.7 | 4.9 | 4.7 | 3.1 | 4.5 | 3.1 | 16.3 | 15.6 | 18.8 |
Extreme Drought | 1.4 | 0.4 | 0.2 | 3.1 | 1.2 | 1.4 | 2.5 | 1.4 | 2.7 | 4.4 | 3.8 | 5.0 |
Taghzoute | SPI1 | SPEI1 | RDI1 | SPI3 | SPEI3 | RDI3 | SPI6 | SPEI6 | RDI6 | SPI 12 | SPEI 12 | RDI 12 |
Normal Drought | 10.7 | 8.1 | 10.1 | 13.8 | 13.4 | 13.6 | 11.4 | 11.7 | 10.4 | 12.3 | 12.3 | 10.3 |
Moderate Drought | 2.5 | 5.8 | 4.7 | 8.2 | 8.6 | 9.1 | 10.8 | 12.1 | 12.1 | 13.5 | 12.3 | 14.3 |
Severe Drought | 1.6 | 1.6 | 1.0 | 3.7 | 5.3 | 3.9 | 4.5 | 4.3 | 4.3 | 3.4 | 4.8 | 4.4 |
Extreme Drought | 1.0 | 0.2 | 0.0 | 2.5 | 1.0 | 1.6 | 2.2 | 0.6 | 2.0 | 1.2 | 1.0 | 1.4 |
Chacha N Amellah | SPI1 | SPEI1 | RDI1 | SPI3 | SPEI3 | RDI3 | SPI6 | SPEI6 | RDI6 | SPI 12 | SPEI 12 | RDI 12 |
Normal Drought | 6.4 | 4.8 | 7.2 | 10.7 | 8.4 | 12.5 | 12.9 | 10.8 | 17.6 | 5.1 | 5.7 | 13.7 |
Moderate Drought | 2.5 | 5.0 | 2.7 | 6.6 | 9.7 | 5.4 | 10.4 | 11.7 | 5.1 | 13.3 | 11.1 | 4.8 |
Severe Drought | 1.2 | 0.8 | 1.6 | 3.1 | 3.5 | 3.1 | 3.9 | 4.7 | 3.7 | 5.1 | 7.3 | 4.4 |
Extreme Drought | 1.4 | 0.8 | 0.0 | 2.1 | 1.0 | 1.6 | 1.0 | 1.0 | 1.8 | 0.6 | 0.0 | 1.4 |
Aval El Heri | SPI1 | SPEI1 | RDI1 | SPI3 | SPEI3 | RDI3 | SPI6 | SPEI6 | RDI6 | SPI 12 | SPEI 12 | RDI 12 |
Normal Drought | 9.9 | 8.5 | 11.2 | 10.7 | 10.1 | 10.9 | 16.4 | 15.3 | 15.7 | 16.0 | 12.1 | 14.1 |
Moderate Drought | 3.3 | 5.0 | 2.7 | 8.0 | 8.8 | 8.6 | 10.0 | 9.8 | 10.2 | 8.9 | 12.3 | 10.3 |
Severe Drought | 1.6 | 1.6 | 1.9 | 3.1 | 4.1 | 2.3 | 3.1 | 5.1 | 3.5 | 5.5 | 5.1 | 6.1 |
Extreme Drought | 1.2 | 0.8 | 0.0 | 2.1 | 1.0 | 2.1 | 1.6 | 1.0 | 1.8 | 0.2 | 1.2 | 0.2 |
Tarhat | SPI1 | SPEI1 | RDI1 | SPI3 | SPEI3 | RDI3 | SPI6 | SPEI6 | RDI6 | SPI 12 | SPEI 12 | RDI 12 |
Normal Drought | 8.3 | 8.1 | 10.3 | 14.2 | 10.5 | 16.0 | 14.5 | 11.7 | 18.2 | 5.9 | 5.9 | 12.9 |
Moderate Drought | 3.1 | 4.1 | 2.9 | 6.8 | 11.5 | 5.4 | 10.0 | 11.7 | 5.5 | 13.1 | 11.5 | 6.9 |
Severe Drought | 1.9 | 1.2 | 0.8 | 3.3 | 3.5 | 2.3 | 3.7 | 4.7 | 4.3 | 5.1 | 7.3 | 4.6 |
Extreme Drought | 0.6 | 0.6 | 0.0 | 2.1 | 1.0 | 2.7 | 1.0 | 1.0 | 1.2 | 0.6 | 0.0 | 0.4 |
Tamchachate | SPI1 | SPEI1 | RDI1 | SPI3 | SPEI3 | RDI3 | SPI6 | SPEI6 | RDI6 | SPI 12 | SPEI 12 | RDI 12 |
Normal Drought | 12.6 | 8.9 | 13.2 | 14.4 | 11.9 | 13.8 | 13.3 | 11.5 | 11.7 | 5.9 | 6.3 | 5.5 |
Moderate Drought | 2.5 | 6.6 | 4.7 | 7.8 | 11.5 | 8.8 | 10.6 | 11.5 | 12.3 | 13.7 | 11.7 | 11.5 |
Severe Drought | 2.7 | 2.3 | 0.8 | 3.5 | 3.5 | 4.1 | 3.9 | 4.7 | 3.5 | 5.1 | 7.3 | 7.3 |
Extreme Drought | 0.8 | 0.8 | 0.0 | 2.1 | 1.0 | 1.2 | 1.0 | 1.0 | 1.2 | 0.6 | 0.0 | 1.0 |
Correlation | (a) | 1 | 3 | 6 | 12 | Annual | (b) | 1 | 3 | 6 | 12 | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPEI/SPI | 1979–2022 | 0.767 *** | 0.858 *** | 0.906 *** | 0.942 *** | 0.931 *** | 1979–2022 | 0.782 *** | 0.868 *** | 0.934 *** | 0.945 *** | 0.940 *** |
RDI/SPI | 0.871 *** | 0.962 *** | 0.990 *** | 0.995 *** | 0.995 *** | 0.845 *** | 0.956 *** | 0.991 *** | 0.995 *** | 0.996 *** | ||
RDI/SPEI | 0.870 *** | 0.902 *** | 0.938 *** | 0.966 *** | 0.960 *** | 0.858 *** | 0.907 *** | 0.958 *** | 0.969 *** | 0.967 *** | ||
PRCP/SPI | 0.680 *** | 0.460 *** | 0.363 *** | 0.271 *** | 0.990 *** | 0.682 *** | 0.458 *** | 0.364 *** | 0.237 *** | 0.992 *** | ||
PRCP/SPEI | 0.685 *** | 0.457 *** | 0.352 *** | 0.239 *** | 0.915 *** | 0.681 *** | 0.450 *** | 0.341 *** | 0.202 *** | 0.925 *** | ||
PRCP/RDI | 0.685 *** | 0.470 *** | 0.361 *** | 0.262 *** | 0.984 *** | 0.637 *** | 0.462 *** | 0.362 *** | 0.228 *** | 0.987 *** | ||
NDVI/SPI | 2000–2022 | 0.04 | 0.255 *** | 0.351 *** | 0.289 *** | 0.610 ** | 2000–2022 | 0.013 | 0.111 | 0.198 ** | 0.263 *** | 0.265 |
NDVI/SPEI | 0.194 ** | 0.358 *** | 0.437 *** | 0.294 *** | 0.573 ** | 0.062 | 0.153 * | 0.226 *** | 0.260 *** | 0.193 | ||
NDVI/RDI | 0.085 | 0.280 *** | 0.364 *** | 0.287 *** | 0.600 ** | −0.098 | 0.085 | 0.193 ** | 0.267 *** | 0.242 | ||
NDVI/PRCP | 0.392 *** | 0.586 ** | 0.321 *** | 0.27 | ||||||||
EVI/SPI | 0.016 | 0.187 ** | 0.305 *** | 0.262 *** | 0.634 ** | 0.049 | 0.088 | 0.134 * | 0.249 *** | 0.367 | ||
EVI/SPEI | 0.12 | 0.271 *** | 0.389 *** | 0.261 *** | 0.609 ** | −0.017 | 0.056 | 0.152 * | 0.254 *** | 0.317 | ||
EVI/RDI | 0.064 | 0.208 *** | 0.317 *** | 0.261 *** | 0.627 ** | −0.025 | 0.048 | 0.12 | 0.254 *** | 0.346 | ||
EVI/PRCP | 0.222 *** | 0.602 ** | −0.008 | 0.365 | ||||||||
EVI/NDVI | 0.911 *** | 0.987 *** | 0.680 *** | 0.884 *** | ||||||||
CWSI/SPI | 0.301 *** | 0.384 *** | 0.356 *** | 0.193 ** | 0.702 *** | 0.356 *** | 0.383 *** | 0.383 *** | 0.217 *** | 0.692 *** | ||
CWSI/SPEI | 0.482 *** | 0.504 *** | 0.427 *** | 0.191 ** | 0.719 *** | 0.464 *** | 0.477 *** | 0.428 *** | 0.199 ** | 0.721 *** | ||
CWSI/RDI | 0.336 *** | 0.416 *** | 0.369 *** | 0.187 ** | 0.718 *** | 0.265 *** | 0.396 *** | 0.394 *** | 0.215 *** | 0.708 *** | ||
CWSI/PRCP | 0.737 *** | 0.697 *** | 0.755 *** | 0.715 *** | ||||||||
CWSI/NDVI | 0.732 *** | 0.562 ** | 0.491 *** | 0.208 | ||||||||
CWSI/EVI | 0.538 *** | 0.584 ** | 0.055 | 0.32 | ||||||||
Correlation | (c) | 1 | 3 | 6 | 12 | Annual | (d) | 1 | 3 | 6 | 12 | Annual |
SPEI/SPI | 1979–2022 | 0.781 *** | 0.912 *** | 0.964 *** | 0.976 *** | 0.976 *** | 1979–2022 | 0.812 *** | 0.913 *** | 0.953 *** | 0.960 *** | 0.960 *** |
RDI/SPI | 0.889 *** | 0.664 *** | 0.722 *** | 0.764 *** | 0.767 *** | 0.872 *** | 0.978 *** | 0.997 *** | 0.996 *** | 0.996 *** | ||
RDI/SPEI | 0.871 *** | 0.678 *** | 0.706 *** | 0.736 *** | 0.739 *** | 0.909 *** | 0.930 *** | 0.968 *** | 0.979 *** | 0.979 *** | ||
PRCP/SPI | 0.675 *** | 0.359 *** | 0.304 *** | 0.194 *** | 0.749 *** | 0.686 *** | 0.483 *** | 0.404 *** | 0.297 *** | 0.982 *** | ||
PRCP/SPEI | 0.680 *** | 0.354 *** | 0.281 *** | 0.173 *** | 0.700 *** | 0.695 *** | 0.473 *** | 0.375 *** | 0.269 *** | 0.926 *** | ||
PRCP/RDI | 0.694 *** | 0.454 *** | 0.357 *** | 0.247 *** | 0.987 *** | 0.708 *** | 0.486 *** | 0.399 *** | 0.291 *** | 0.976 *** | ||
NDVI/SPI | 2000–2022 | 0.01 | 0.186 ** | 0.246 *** | 0.217 *** | 0.299 | 2000–2022 | 0.006 | 0.172 ** | 0.249 *** | 0.246 *** | 0.247 |
NDVI/SPEI | 0.087 | 0.236 *** | 0.265 *** | 0.214 *** | 0.24 | 0.12 | 0.202 *** | 0.261 *** | 0.220 *** | 0.14 | ||
NDVI/RDI | −0.019 | 0.096 | 0.193 ** | 0.260 *** | 0.24 | 0.021 | 0.151 * | 0.243 *** | 0.246 *** | 0.217 | ||
NDVI/PRCP | 0.289 *** | 0.254 | 0.340 *** | 0.218 | ||||||||
EVI/SPI | 0.002 | 0.118 | 0.225 *** | 0.213 *** | 0.349 | −0.009 | 0.1 | 0.177 ** | 0.226 *** | 0.265 | ||
EVI/SPEI | −0.006 | 0.147 * | 0.254 *** | 0.218 *** | 0.314 | 0 | 0.097 | 0.207 *** | 0.220 *** | 0.203 | ||
EVI/RDI | −0.035 | 0.065 | 0.146 * | 0.256 *** | 0.342 | −0.011 | 0.087 | 0.173 ** | 0.235 *** | 0.247 | ||
EVI/PRCP | 0.018 | 0.333 | −0.013 | 0.235 | ||||||||
EVI/NDVI | 0.815 *** | 0.640 *** | 0.858 *** | |||||||||
CWSI/SPI | 0.307 *** | 0.417 *** | 0.388 *** | 0.116 | 0.704 *** | 0.303 *** | 0.402 *** | 0.410 *** | 0.240 *** | 0.733 *** | ||
CWSI/SPEI | 0.467 *** | 0.489 *** | 0.400 *** | 0.106 | 0.726 *** | 0.454 *** | 0.491 *** | 0.440 *** | 0.228 *** | 0.743*** | ||
CWSI/RDI | 0.325 *** | 0.359 *** | 0.354 *** | 0.071 | 0.661 *** | 0.322 *** | 0.411 *** | 0.414 *** | 0.237 *** | 0.743*** | ||
CWSI/PRCP | 0.740 *** | 0.671 *** | 0.706 *** | 0.745*** | ||||||||
CWSI/NDVI | 0.536 *** | 0.286 | 0.670 *** | 0.331 | ||||||||
CWSI/EVI | 0.182 ** | 0.364 | 0.246 *** | 0.411 | ||||||||
Correlation | (e) | 1 | 3 | 6 | 12 | Annual | (f) | 1 | 3 | 6 | 12 | Annual |
SPEI/SPI | 1979–2022 | 0.772 *** | 0.912 *** | 0.964 *** | 0.976 *** | 0.976 *** | 1979–2022 | 0.771 *** | 0.912 *** | 0.964 *** | 0.976 *** | 0.976 *** |
RDI/SPI | 0.032 | 0.696 *** | 0.772 *** | 0.822 *** | 0.836 *** | 0.844 *** | 0.958 *** | 0.996 *** | 0.995 *** | 0.996 *** | ||
RDI/SPEI | 0.022 | 0.733 *** | 0.781 *** | 0.829 *** | 0.840 *** | 0.914 *** | 0.960 *** | 0.979 *** | 0.990 *** | 0.991 *** | ||
PRCP/SPI | 0.014 | 0.469 *** | 0.389 *** | 0.265 *** | 0.989 *** | 0.522 *** | 0.363 *** | 0.297 *** | 0.184 *** | 0.743 *** | ||
PRCP/SPEI | 0.03 | 0.467 *** | 0.372 *** | 0.244 *** | 0.954 *** | 0.541 *** | 0.360 *** | 0.278 *** | 0.168 *** | 0.708 *** | ||
PRCP/RDI | 0.571 *** | 0.364 *** | 0.304 *** | 0.205 *** | 0.826 *** | 0.526 *** | 0.371 *** | 0.296 *** | 0.179 *** | 0.735 *** | ||
NDVI/SPI | 2000–2022 | 0.09 | 0.173 ** | 0.214 *** | 0.201 ** | 0.299 | 2000–2022 | −0.026 | −0.012 | −0.005 | 0.059 | 0.023 |
NDVI/SPEI | 0.155 * | 0.220 *** | 0.223 *** | 0.205 *** | 0.245 | −0.035 | −0.015 | −0.019 | 0.072 | −0.015 | ||
NDVI/RDI | −0.008 | 0.094 | 0.211 *** | 0.269 *** | 0.271 | −0.096 | −0.032 | −0.024 | 0.064 | 0.002 | ||
NDVI/PRCP | 0.311 *** | 0.337 | 0.004 | 0.001 | ||||||||
EVI/SPI | 0.079 | 0.109 | 0.202 *** | 0.197 ** | 0.347 | −0.048 | 0 | 0.049 | 0.101 | 0.174 | ||
EVI/SPEI | 0.144 * | 0.134 * | 0.225 *** | 0.209 *** | 0.323 | −0.075 | −0.007 | 0.047 | 0.117 | 0.149 | ||
EVI/RDI | −0.032 | 0.07 | 0.164 ** | 0.267 *** | 0.373 | −0.1 | −0.022 | 0.028 | 0.106 | 0.157 | ||
EVI/PRCP | 0.012 | 0.333 | −0.101 | 0.158 | ||||||||
EVI/NDVI | 0.783 *** | 0.928 *** | 0.917 *** | 0.936 *** | ||||||||
CWSI/SPI | 0.176 ** | 0.418 *** | 0.392 *** | 0.219 *** | 0.718 *** | 0.360 *** | 0.402 *** | 0.357 *** | 0.184 ** | 0.666 *** | ||
CWSI/SPEI | 0.242 *** | 0.493 *** | 0.406 *** | 0.213 *** | 0.743 *** | 0.472 *** | 0.472 *** | 0.365 *** | 0.176 ** | 0.696 *** | ||
CWSI/RDI | 0.328 *** | 0.371 *** | 0.392 *** | 0.229 *** | 0.806 *** | 0.360 *** | 0.432 *** | 0.364 *** | 0.184 ** | 0.681 *** | ||
CWSI/PRCP | 0.726 *** | 0.707 *** | 0.728 *** | 0.696 *** | ||||||||
CWSI/NDVI | 0.510 *** | 0.271 | −0.109 | −0.084 | ||||||||
CWSI/EVI | 0.163 ** | 0.354 | −0.245 *** | 0.066 |
Correlation | Fall | Spring | Summer | Autumn |
---|---|---|---|---|
SPEI6/NDVI | 0.572 ** | 0.739 *** | 0.582 ** | 0.577 ** |
SPEI6/EVI | 0.502 * | 0.746 *** | 0.556 ** | 0.447 * |
SPEI3/CWSI | 0.668 *** | 0.821 *** | 0.610 ** | 0.632 ** |
Correlation | 1 Month | 3 Months | 6 Months | 12 Months | Annual | |
---|---|---|---|---|---|---|
1979–2022 | SPEI/SPI | 0.828 *** | 0.900 *** | 0.943 *** | 0.949 *** | 0.947 *** |
RDI/SPI | 0.940 *** | 0.996 *** | 0.996 *** | 0.994 *** | 0.995 *** | |
RDI/SPEI | 0.875 *** | 0.920 *** | 0.964 *** | 0.974 *** | 0.974 *** | |
PRCP/SPI | 0.657 *** | 0.456 *** | 0.377 *** | 0.054 | 0.992 *** | |
PRCP/SPEI | 0.681 *** | 0.449 *** | 0.350 *** | 0.062 | 0.930 *** | |
PRCP/RDI | 0.681 *** | 0.459 *** | 0.371 *** | 0.056 | 0.985 *** | |
2000–2022 | NDVI/SPI | 0.055 | 0.202 *** | 0.294 *** | 0.295 *** | 0.421 * |
NDVI/SPEI | 0.137 * | 0.270 *** | 0.336 *** | 0.279 *** | 0.339 | |
NDVI/RDI | 0.067 | 0.198 ** | 0.290 *** | 0.298 *** | 0.395 | |
NDVI/PRCP | 0.367 *** | 0.481 * | ||||
EVI/SPI | 0.011 | 0.150 * | 0.253 *** | 0.293 *** | 0.419 * | |
EVI/SPEI | 0.038 | 0.188 ** | 0.302 *** | 0.283 *** | 0.462 * | |
EVI/RDI | −0.001 | 0.144 * | 0.249 *** | 0.297 *** | 0.454 * | |
EVI/PRCP | 0.095 | 0.602 ** | ||||
EVI/NDVI | 0.829 *** | 0.829 *** | 0.829 *** | 0.829 *** | 0.930 *** | |
CWSI/SPI | 0.201 ** | 0.255 *** | 0.251 *** | 0.117 | 0.763 *** | |
CWSI/SPEI | 0.328 *** | 0.335 *** | 0.276 *** | 0.103 | 0.764 *** | |
CWSI/RDI | 0.233 *** | 0.278 *** | 0.260 *** | 0.111 | 0.773 *** | |
CWSI/PRCP | 0.593 *** | 0.768 *** | ||||
CWSI/NDVI | 0.366 *** | 0.365 | ||||
CWSI/EVI | −0.029 | 0.428 * |
1979–2022 | Ahmed El Hansali | Taghzoute | Chacha N Amellah | Aval El Heri | Tarhat | Tamchachate | Upper OER | |
---|---|---|---|---|---|---|---|---|
Precipitation | Z Mann–Kendall | 1.452 | 0.942 | −0.188 | 0.544 | −0.649 | 0.942 | 0.230 |
Sen’s Slope | 3.458 | 1.650 | −0.529 | 1.456 | −1.567 | 1.650 | 0.547 | |
Temperature | Z Mann–Kendall | 4.812 *** | 4.730 *** | 5.400 *** | 5.274 *** | 5.358 *** | 5.086 *** | 5.253 *** |
Sen’s Slope | 0.041 *** | 0.040 *** | 0.047 *** | 0.045 *** | 0.045 *** | 0.044 *** | 0.044 *** | |
PET | Z Mann–Kendall | 4.357 *** | 3.747 *** | 4.877 *** | 4.395 *** | 4.919 *** | 4.899 *** | 4.625 *** |
Sen’s Slope | 3.936 *** | 2.905 *** | 3.866 *** | 3.532 *** | 4.083 *** | 3.537 *** | 3.626 *** | |
SPI | Z Mann–Kendall | 1.452 | 0.931 | −0.188 | −0.649 | −0.649 | −0.649 | 0.230 |
Sen’s Slope | 0.018 | 0.010 | −0.003 | −0.006 | −0.006 | −0.006 | 0.003 | |
SPEI | Z Mann–Kendall | 0.238 | −0.460 | −1.612 | −1.507 | −1.507 | −1.507 | −1.005 |
Sen’s Slope | 0.004 | −0.008 | −0.021 | −0.022 | −0.022 | −0.022 | −0.015 | |
RDI | Z Mann–Kendall | 0.954 | 0.544 | −0.754 | 0.293 | −0.105 | −0.963 | −0.126 |
Sen’s Slope | 0.019 | 0.007 | −0.009 | 0.005 | −0.002 | −0.013 | −0.003 |
2010–2022 | Ahmed El Hansali | Taghzoute | Chacha N Amellah | Aval El Heri | Tarhat | Tamchachate | Upper OER | |
---|---|---|---|---|---|---|---|---|
Precipitation | Z Mann–Kendall | −2.400 ** | −1.525 | −1.769 * | −1.769 * | 2.135 ** | −1.525 | −2.257 ** |
Sen’s Slope | −48.723 ** | −29.250 | −38.088 * | −34.125 * | −64.666 ** | −29.250 | −44.835 ** | |
Temperature | Z Mann–Kendall | 0.891 | 1.647 | 2.013 ** | 2.013 ** | 1.769 * | −1.525 | 1.891 * |
Sen’s Slope | 0.047 | 0.092 | 0.106 ** | 0.108 ** | 0.077 * | 0.080 | 0.078 * | |
PET | Z Mann–Kendall | 1.851 * | 1.647 | 1.891 * | 1.891 * | 2.013 ** | 1.891 * | 1.891 * |
Sen’s Slope | 10.245 * | 7.717 | 9.279 * | 9.133 * | 9.659 ** | 7.669 * | 8.457 * | |
SPI | Z Mann–Kendall | −2.400 ** | −1.525 | −1.769 * | −2.135 ** | −2.135 ** | −2.135 ** | −2.257 ** |
Sen’s Slope | −0.228 ** | −0.144 | −0.165 * | −0.225 ** | −0.225 ** | −0.225 ** | −0.224 ** | |
SPEI | Z Mann–Kendall | −2.537 ** | −1.891 * | −2.257 ** | −2.501 ** | −2.501 ** | −2.501 ** | −2.501 ** |
Sen’s Slope | −0.249 ** | −0.188 * | −0.200 ** | −0.205 ** | −0.205 ** | −0.205 ** | −0.246 ** | |
RDI | Z Mann–Kendall | −2.263 ** | −1.647 | −1.891 * | −2.013 ** | −2.135 ** | −2.257 ** | −2.379 ** |
Sen’s Slope | −0.245 ** | −0.152 | −0.169 * | −0.202 ** | −0.172 ** | −0.221 ** | −0.234 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mliyeh, M.M.; Ait Brahim, Y.; Koutsovili, E.-I.; Tzoraki, O.; Zian, A.; Aqnouy, M.; Benaabidate, L. Multi-Index Approach to Assess and Monitor Meteorological and Agricultural Drought in the Mediterranean Region: Case of the Upper Oum Er Rabia Watershed, Morocco. Water 2024, 16, 3104. https://doi.org/10.3390/w16213104
Mliyeh MM, Ait Brahim Y, Koutsovili E-I, Tzoraki O, Zian A, Aqnouy M, Benaabidate L. Multi-Index Approach to Assess and Monitor Meteorological and Agricultural Drought in the Mediterranean Region: Case of the Upper Oum Er Rabia Watershed, Morocco. Water. 2024; 16(21):3104. https://doi.org/10.3390/w16213104
Chicago/Turabian StyleMliyeh, Mohammed Mouad, Yassine Ait Brahim, Eleni-Ioanna Koutsovili, Ourania Tzoraki, Ahmed Zian, Mourad Aqnouy, and Lahcen Benaabidate. 2024. "Multi-Index Approach to Assess and Monitor Meteorological and Agricultural Drought in the Mediterranean Region: Case of the Upper Oum Er Rabia Watershed, Morocco" Water 16, no. 21: 3104. https://doi.org/10.3390/w16213104
APA StyleMliyeh, M. M., Ait Brahim, Y., Koutsovili, E. -I., Tzoraki, O., Zian, A., Aqnouy, M., & Benaabidate, L. (2024). Multi-Index Approach to Assess and Monitor Meteorological and Agricultural Drought in the Mediterranean Region: Case of the Upper Oum Er Rabia Watershed, Morocco. Water, 16(21), 3104. https://doi.org/10.3390/w16213104