Recent Advances in Ball-Milled Materials and Their Applications for Adsorptive Removal of Aqueous Pollutants
<p>Horizontal section of a grinding container and powder mixture [<a href="#B70-water-16-01639" class="html-bibr">70</a>]. Reprinted from Current Research Green and Sustainable Chemistry, 5, Thambiliyagodage C., Wijesekera R., Ball milling—A green and sustainable technique for the preparation of titanium based materials from ilmenite, 100236, Copyright (2022), with permission from Elsevier.</p> "> Figure 2
<p>The classification of ball mills: (<b>a</b>) a stirred ball mill, (<b>b</b>) a vibration ball mill, (<b>c</b>) a tumbler ball mill, and (<b>d</b>) a planetary ball mill [<a href="#B39-water-16-01639" class="html-bibr">39</a>,<a href="#B71-water-16-01639" class="html-bibr">71</a>]. Reprinted from Science of The Total Environment, 825, Yin Z., Zhang Q., Li S.; Cagnetta G., Huang J., Deng S., Yu G., Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective, 153992, Copyright (2022), with permission from Elsevier. Reprinted from LET Electric Power Applications, 16, Xu Y., Zhang B., Feng G., Electromagnetic design and thermal analysis of module combined permanent magnet motor with wrapped type for mine ball mill, 139–157, Copyright (2021), with permission from Wiley.</p> "> Figure 3
<p>Schematic representation of (<b>a</b>) carboxylic groups-modified ACs (AC-COOH) [<a href="#B77-water-16-01639" class="html-bibr">77</a>], (<b>b</b>) ball-milled iron–biochar composites [<a href="#B79-water-16-01639" class="html-bibr">79</a>], (<b>c</b>) nanobiochars [<a href="#B80-water-16-01639" class="html-bibr">80</a>], (<b>d</b>) thiol-modified biochars [<a href="#B55-water-16-01639" class="html-bibr">55</a>], (<b>e</b>) BM-FeS@NBCs [<a href="#B10-water-16-01639" class="html-bibr">10</a>] preparation. (<b>a</b>) Reprinted from Journal of Molecular Liquids, 346, Sh. Gohr M., Abd-Elhamid A.I., El-Shanshory A.A., Soliman H.M.A., Adsorption of cationic dyes onto chemically modified activated carbon: Kinetics and thermodynamic study, 118227, Copyright (2022), with permission from Elsevier. (<b>b</b>) Reprinted from Environmental Science And Pollution Research, 30, Chen C., Yang F., Beesley L., Trakal L., Ma Y., Sun Y., Zhang Z., Ding Y., Removal of cadmium in aqueous solutions using a ball milling-assisted one-pot pyrolyzed iron-biochar composite derived from cotton husk, 12571–12583, Copyright (2023), with permission from Springer Nature. (<b>c</b>) Reprinted from Journal of Cleaner Production, 164, Naghdi M., Taheran M., Brar S.K., Rouissi T., Verma M., Surampalli R.Y., Valero J.R., A green method for production of nanobiochar by ball milling-optimization and characterization, 1394–1405, Copyright (2017), with permission from Elsevier. (<b>d</b>) Reprinted from Chemosphere, 294, Zhao L., Zhang Y., Wang L., Lyu H., Xia S., Tang J., Effective removal of Hg(ΙΙ) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: Effect of different pyrolysis temperatures, 133820., Copyright (2022), with permission from Elsevier. (<b>e</b>) Reprinted from Environmental Pollution, 306, Qu J., Zhang W., Bi F., Yan S., Miao X., Zhang B., Wang Y., Ge C., Zhang Y., Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(VI) and tetracycline from water, 119398, Copyright (2022), with permission from Elsevier.</p> "> Figure 4
<p>Schematic diagram of (<b>a</b>) FeOx@CNTs [<a href="#B66-water-16-01639" class="html-bibr">66</a>] and (<b>b</b>) PGO preparation [<a href="#B121-water-16-01639" class="html-bibr">121</a>]. (<b>a</b>) Reprinted from Chemosphere, 288, Cheng Z., Lyu H., Shen B., Tian J., Sun Y., Wu C., Removal of antimonite (Sb(III)) from aqueous solution using a magnetic iron-modified carbon nanotubes (CNTs) composite: Experimental observations and governing mechanisms, 132581, Copyright (2022), with permission from Elsevier. (<b>b</b>) Reprinted from Nanomaterials, 9, Olszewski R., Nadolska M., Lapinski M., Przesniak-Welenc M., Cieslik B.M., Zelechowska K., Solvent-free synthesis of phosphonic graphene derivative and its application in mercury ions adsorption, 485, Copyright (2019), with permission from MDPI.</p> "> Figure 5
<p>Mechanochemical synthesis of ZVIs [<a href="#B144-water-16-01639" class="html-bibr">144</a>]. Reprinted from Journal of Environment Management, 181, Ambika S., Devasena M., Nambi I.M., Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction, 847–855, Copyright (2016), with permission from Elsevier.</p> "> Figure 6
<p>Mechanism diagrams of governing mechanisms of (<b>a</b>) Ni(II) adsorption onto unmilled and milled biochars [<a href="#B86-water-16-01639" class="html-bibr">86</a>]; (<b>b</b>) Cd(II), Cu(II), and Pb(II) adsorption on BM-NBBCs [<a href="#B169-water-16-01639" class="html-bibr">169</a>]; (<b>c</b>) U(VI) uptake on PFBCs [<a href="#B89-water-16-01639" class="html-bibr">89</a>]. (<b>a</b>) Reprinted from Environmental Pollution, 233, Lyu H., Gao B., He F.; Zimmerman A.R., Ding C., Huang H., Tang J., Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms, 54–63, Copyright (2018), with permission from Elsevier. (<b>b</b>) Reprinted from Journal of Hazardous Materials, 387, Xiao J.; Hu R.; Chen G., Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II), 121980, Copyright (2020), with permission from Elsevier. (<b>c</b>) Reprinted from Journal of Molecular Liquids, 303, Zhou Y., Xiao J., Hu R., Wang T., Shao X., Chen G., Chen L., Tian X., Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium, 112659, Copyright (2020), with permission from Elsevier.</p> "> Figure 7
<p>Mechanism diagrams of governing mechanisms of MB adsorption onto unmilled and milled biochars [<a href="#B181-water-16-01639" class="html-bibr">181</a>]. Reprinted from Chemical Engineering Journal, 335, Lyu H., Gao B., He F., Zimmerman A.R., Ding C., Tang J., Crittenden J.C. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue, 110–119, Copyright (2018), with permission from Elsevier.</p> ">
Abstract
:1. Introduction
2. Principles and Mechanisms of Ball Milling
3. Ball-Milled Materials
3.1. Ball-Milled Commercial Activated Carbons
3.2. Ball-Milled Biochar-Based Materials
3.3. Ball-Milled CNTs-Based Materials
3.4. Ball-Milled Graphene-Based Materials
3.5. Ball-Milled ZVIs-Based Materials
3.6. Ball-Milled ZVAIs-Based Materials
4. Application of Ball-Milled Adsorbents for Water Purification
4.1. Removal of Inorganic Pollutants
Materials | Ball Milling Treatment | Material Characterization | Pollutants | Adsorption Experiment | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Experimental Condition | Isotherm Model | Adsorption Capacity | Kinetic Model | Equilibrium Time | Adsorption Mechanism | |||||
Ball-milled ACs-based materials | ||||||||||
ZVIs-ACs | P, BM: ACs (300 mg) +ZVIs (5.6 mg), ZrO2 balls (Φ = 6 and 10 mm, MR = 4:1), RS = 300 rpm, MT = 30 min, air atmosphere | S = 16.9 m2/g, Fe = 69.4%, C = 27.3%, O = 2.9%, P = 0.4% | Cr(VI) | T = 25 ± 2 °C, pH = 3.93 | Langmuir model | 14.35 mg/g a | PSO | 2 h | Pore filling | [8] |
HSACs | P, BM: ACs (10 g), steel balls (Φ = 5 mm), RS = 300 rpm, MT = 60 min | S = 929 m2/g, APS = 4 μm, D = 15.3 Å, AFGs = 1.84 mmol/g, carboxyl = 0.97 mmol/g, phenolic, hydroxyl, and lactols = 0.87 mmol/g, C = 91.24%, N = 0.93%, O = 6.86%, S = 0.97%, zeta potential pH = 2–10≈−22.5~−37.5 mV ACs: S = 846 m2/g, APS = 20 μm, D = 19.0 Å, AFGs = 1.31 mmol/g, carboxyl = 0.31 mmol/g, phenolic, hydroxyl, lactols = 1.00 mmol/g, zeta potential (pH = 2–10) ≈−15~−23 mV | Cr(VI) | T = 295–313 K, pH = 6 | Freundlich model | 3.843–5.523 (mg/g)/(mg/L)1/n b ACs: 0.002–0.441 (mg/g)/(mg/L)1/n b | PSO | 2 h | Complexation | [9] |
Ball-milled biochar-based materials | ||||||||||
BM-BCs | P, BM: biochars (1.8 g), agate balls (Φ = 6 mm, 180 g), RS = 300 rpm; MT = 3–24, TA = 0.5 h, air atmosphere | S = 364 m2/g, V = 0.125 cm3/g, D = 3.4 nm, hydrodynamic radius = 140 nm, TAG = 2.5 mmol/g, carboxyl = 1.1 mmol/g, lactols groups = 0.5 mmol/g; phenolic hydroxyl = 0.9 mmol/g, pHpzc < 1.6 Biochars: S = 359 m2/g, V = 0.009 cm3/g, D = 3.6 nm, grain size = 0.5–1 mm; TAG = 0.8 mmol/g, carboxyl = 0.5 mmol/g, lactols groups = 0 mmol/g, phenolic hydroxyl = 0.3 mmol/g, pHpzc ≈ 4.0 | Ni(II) | T = 20 ± 2 °C, pH = 6.0 | Redlich–Peterson model | 1949 mmol/kg a Biochars: 211 mmol/kg a | Elovich mode | 24 h Biochars: 30 h | Physical adsorption, electrostatic interaction, complexation | [86] |
BM-BCs | BM: biochars (10 g), ZrO2 balls, RS = 1600 rpm, MT = 60 s, T = 30 | S = 74.39 m2/g, V = 0.1540 cm3/g, D = 8.3741 nm, C = 54.36%, N = 2.80%, O = 30.65%, pHpzc = 2.3 Biochars: S = 46.20 m2/g, V = 0.1274 cm3/g, D = 10.9337 nm, C = 63.22%, N = 3.19%, O = 23.94% | Pb(II) | T = 298–308 K | Langmuir model | 163.63–170.09 mg/g a | PSO | 60 min | - | [167] |
BM-BCs | V, BM: biochars (150 g), ZrO2 balls (Φ = 6–10 mm, 1500 g), MT = 20 min | S = 53.82 ± 5.82–217.03 ± 4.36 m2/g, V = 0.030 ± 0.006–0.113 ± 0.005 cm3/g, Vmicro = 0.013 ± 0.002–0.027 ± 0.005 cm3/g, D = 7.882 ± 1.797–13.04 ± 3.427 nm, carboxyl = 0.34 ± 0.01–0.36 ± 0.02 mmol/g, lactones = 0.16 ± 0.02–0.23 ± 0.02 mmol/g, phenolic hydroxyl = 0.12 ± 0.02–0.26 ± 0.03 mmol/g, OFGs = 0.62 ± 0.05–0.84 ± 0.03, CEC = 6.44 ± 0.92–15.07 ± 0.89 cmol/kg, pH = 9.31 ± 0.10–9.67 ± 0.11 Biochars: S = 14.37 ± 0.75–198.11 ± 2.61 m2/g, V = 0.010 ± 0.001–0.094 ± 0.002 cm3/g, Vmicro = 0.009 ± 0.001–0.009 ± 0.002 cm3/g, D = 4.708 ± 0.252–6.072 ± 0.535 nm, carboxyl = 0.20 ± 0.03–0.24 ± 0.02 mmol/g, lactones = 0.09 ± 0.02–0.15 ± 0.01 mmol/g, phenolic hydroxyl = 0.04 ± 0.01–0.18 ± 0.03 mmol/g, OFGs = 0.33 ± 0.01–0.57 ± 0.02 mmol/g, CEC = 6.27 ± 0.87–14.60 ± 1.21 cmol/kg, pH = 10.03 ± 0.14–10.28 ± 0.16 | Pb(II) | T = 25 °C, pH = 5 ± 0.05 | Langmuir model | 103.99–210.90 mg/g a Biochars: 73.50–164.23 mg/g a | PSO | Equilibrium time shortened Biochars: 8–16 h | Co-precipitation, π electronic interactions, and complexation | [168] |
BM-BCs | V, BM: biochars (8 g), ZrO2 balls (Φ = 6–10 mm, 800 g), MT = 5 min | S = 130.14 ± 3.48 m2/g, V = (22.49 ± 4.12) × 10−3 cm3/g, PS10 = 1.30 ± 0.02 μm, PS50 = 4.32 ± 0.06 μm, PS90 = 14.20 ± 0.99 μm, H/C = 0.22 ± 0.00, O/C = 0.06 ± 0.00, CEC = 3.25 ± 0.05 mmol/g, AFGs = 0.57 ± 0.02 mmol/g, pHpzc = 9.77 ± 0.02. Biochars: S = 6.89 ± 1.28 m2/g; V = (7.04 ± 2.25) × 10−3 cm3/g; PS10 = 14.65 ± 0.92 μm, PS50 = 71.20 ± 4.38 μm, PS90 = 256.00 ± 36.77 μm, H/C = 0.19 ± 0.00, O/C = 0.04 ± 0.00, CEC = 3.31 ± 0.06 mmol/g, AFGs = 0.36 ± 0.01 mmol/g, pHpzc = 9.87 ± 0.01 | Pb(II) | T = 25 °C, pH = 5.0 | - | 100.00 ± 0.00–134.68 ± 0.95 mg/g c Biochars: 99.45 ± 0.49–119.55 ± 0.64 mg/g c | - | - | Ion exchange, precipitation, and complexation | [178] |
BM-NBBCs | BM: biochars (3.30 g) + DW(60 g), agate spheres, RS = 300 rpm, MT= 12 h, TA = 3 h | S = 35.49–313.09 m2/g, Smicro = 0–193.89 m2/g, Sexternal = 35.49–119.20 m2/g, V = 0.1635–0.4538 cm3/g, D = 6.46–11.74 nm, pHpzc = −2.0–3.1 Biochars: S = 2.76–52.78 m2/g, Smicro = 0–24.32 m2/g, Sexternal = 2.76–28.46 m2/g, V = 0.0175–0.0975 cm3/g, D = 8.22–14.48 nm | Cd(II) | T = 298 K, pH = 5.0 | Langmuir model | 66.33–165.77 mg/g a Biochars: 31.12–75.15 mg/g a | PSO | 200 min | Surface complexation, cation exchange, precipitation, electrostatic attraction, and cation–π interaction | [169] |
Cu(II) | 159.27–287.58 mg/g a Biochars: 86.35–163.80 mg/g a | 200 min | ||||||||
Pb(II) | 339.34–558.88 mg/g a Biochars: 209.35–389.51 mg/g a | 90 min | ||||||||
BM-MBC | P, BM: MBC (1 g), agate balls (Φ = 5 mm, 100 g), MT = 12 h, TA = 20 min, RP = 10 min | S = 296.3 m2/g, V = 0.091 cm3/g, C = 47.98%, H = 0.88%, O = 27.89%, N = 0.53%, Fe = 12.32%, Na = 0.13%, Mg = 0.61%, Si = 0.13%, Ca = 2.13%, P = 0.12%, K = 0.88%, pHzpc = 4.43, MS = 15.39 emu/g Magnetic biochars: S = 198.6 m2/g, V = 0.006 cm3/g, C = 57.82%, H = 2.48%, O = 21.98%, N = 0.87%, Fe = 1.25%, Na = 0.12%, Mg = 0.58%, Si = 0.11%, Ca = 2.10%, P = 0.11%, K = 0.81%, MS = 10.76 emu/g | Hg(II) | T = 24 ± 2 °C | Langmuir model | 127.4 mg/g a | PSO | 12 h | Electrostatic interactions, Hg–π interaction, and surface complexation | [170] |
BM-PBCs | P, BM: potassium ferrate-activated biochars, agate balls (MR of large, medium, and small = 2:18:15), RS = 300 rpm, MT = 12 h | S = 284.17–282.47 m2/g, D = 11.62–12.10 nm, pHpzc = 3.2–4.9, MS = 18.94–20.33 emu/g | Cr(VI) | T = 15, 25, 35 °C, pH = 2 | Langmuir model | 75.65–117.49 mg/g a | PSO | 80–150 min | Ion exchange, pore filling, electrostatic attraction, precipitation, and surface complexation | [171] |
BM-Fe-BCs | P, BM: biochar/iron oxide composites, RS = 500 rpm, MT = 4 h | S = 241 m2/g. Biochar/iron oxide composites: S = 199 m2/g | Cr(VI) | T = 22 ± 0.5 °C, pH = 5 | Langmuir model | 48.1 mg/g a | Elovich mode | 200 min | Electrostatic interaction | [85] |
CaO-biochars | BM: eggshell and rice straw powder (MR = 1:4–2:1), ZrO2 balls (Φ = 0.8 cm, 60 g), MT = 30 min, pyrolysis (800 °C for 2 h) | S = 8.30–25.8 m2/g, V = 0.0273–0.0467 cm3/g; D = 6.70–13.1 nm, Ca = 19.5–42.2%, C = 4.32–16.7%, O = 15.8–25.4%, H = 1.68–2.42% Biochars: S = 7.87 m2/g, V = 0.0126 cm3/g, D = 6.40 nm, Ca = 1.00%, C = 46.6%, O = 7.59%, H = 1.90% | Phosphate | T = 298 K, pH = 7 | Langmuir model | 96.4–231 mg/g a Biochars: 5.58 mg/g a | PSO Biochars: PFO. | 6 h Biochars: 6 h | Precipitate | [81] |
MgO-biochars | BM: biochars (1.0 g) + MgO (0.5 g), agate balls (Φ = 6 and 8 mm, 75 g), RS = 500 rpm, MT = 12 h | S = 10.141–49.324 m2/g, V = 3.809–3.820 cm3/g, D = 0.033–0.091 nm, C = 33.72–34.43%, H = 1.71–2.37%, O = 11.33–14.05, N = 1.30–1.89, H/C = 0.05–0.07, O/C = 0.34–0.41, (O + N)/C = 0.38–0.45, pHpzc = 2.14–2.19 Biochars: S = 2.088–2.458 m2/g, V = 3.820–3.836 cm3/g, D = 0.001–0.002 nm, C = 42.58–59.79%, H = 0.88–2.97%, O = 1.63–10.82%, N = 1.82–2.16%, H/C = 0.01–0.05, O/C = 0.03–0.19, (O + N)/C = 0.06–0.23 | Ni(II) | T = 298, 308, 318 K, pH = 6.0 | Freundlich model | 99.3 ± 5.4–239.6 ± 3.7 (mg/g)/(mg/L)1/n b | PSO | 5–20 h | Van der Waals force, metal ion exchange, metal–π interaction, surface functional group complexation | [172] |
MgO-biochars | BM: biochars (1.8 g) + MgO (10–50% wt/wt), RS = 500 rpm, MT = 12 h, TA = 3 h | S = 140 m2/g, V = 0.100 cm3/g, C = 47.71%, O = 29.77%, Mg = 21.8%, Si = 0.72% Biochars: S = 249.7 m2/g, V = 0.112 m3/g BM-BC: S = 310.7 m2/g, V = 0.140 m3/g | Phosphate | T = 25 ± 2 °C | - | 2–12 mg/g c Biochars and BM-BCs < 0 | - | - | Electrostatic action and surface precipitation | [95] |
SiO2@C | BM: biochars+ SiO2 | S = 262.39 m2/g, V = 0.1480 cm3/g D = 2.2527 nm, SiO2 = 27.02%, C = 72.98%, zeta potential = −71 mV | Cu(II) | pH = 6 | - | 34.60 mg/g d | PSO | 60 min | Electrostatic interaction | [173] |
Pb(II) | 23.47 mg/g d | |||||||||
Zn (II) | 27.55 mg/g d | |||||||||
Ball-milled biochar–vermiculite nanocomposites | P, BM: biochars (1.8 g)+ expanded vermiculite (MR = 1:9, 1:4, 3:7 and 2:3), beads (Φ = 6 mm, 180 g), RS = 300 rpm, MT = 12 h, TA = 0.5 h | S = 16.078 m2/g, V = 0.047 cm3/g, D = 12.929 nm Biochars: S = 214.622 m2/g, V = 0.009 cm3/g, D = 1.140 nm | As(V) | T = 25 ± 0.5 °C, pH = 6 | Langmuir model | 20.1 mg/g a | PSO | 36 h | Ion exchange and electrostatic attraction | [99] |
Biochar–attapulgite nanocomposites | P, BM: biochars (1 g)+ attapulgite (0.5–2 g), agate balls (Φ = 2–5 mm, 150–300 g), RS = 550 rpm, MT = 5 h, TA = 0.5 h | S = 16.1–17.12 m2/g, V = 0.0536–0.0613 cm3/g, D = 13.32–14.32 nm, C = 24.58–45.79%, N = 0.30–0.41%, H = 2.32–3.22%. Biochars: S = 4.46 m2/g, V = 0.0056 cm3/g, D = 5.04 nm, C = 65.54%, N = 0.88%, H = 4.79%, C/O = 2.88 | Cd(II) | T = 25 °C | Freundlich model | 5.9916–17.8571 L/g b Biochars: 2.1513 L/g b | PSO | 4 h | Silicate precipitate, acid-oxygenated groups complexation, and electrostatic interaction | [98] |
FeS2-BCs | P, BM: biochars (0.6 g) + FeS2 (2 g), ZrO2 balls (Φ = 3, 5, 15 mm, 200 g, MR = 3:5:2), RS = 400 rpm, MT = 24 h, AT = 6 h, purged with N2 ( > 99%) for 30 min | S = 82.9 m2/g, V = 0.021 cm3/g, D = 3.53 nm, C = 13.7%, H = 1.74%, O = 38.1%, N = 0.06%, S = 24.7%, Fe = 21.7%, H/C = 0.13, O/C = 2.78, (N + O)/C = 2.79, pHpzc = 6.4 Biochars: S = 455 m2/g, V = 0.015 cm3/g, D = 1.65 nm, C = 85.7%, H = 1.90%, O = 12.2%, N = 0.20%, H/C = 0.022, O/C = 0.14, (N + O)/C = 0.15 BM-BCs: S = 568 m2/g, V = 0.141 cm3/g, D = 2.33 nm, C = 78.3%, H = 2.41%, O = 19.1%, N = 0.19%, H/C = 0.031, O/C = 0.24, (N + O)/C = 0.25 | Cr(VI) | pH = 4.7 | Langmuir model | 134 ± 1.32 mg/g a | PSO | - | Electrostatic attraction and surface complexation | [100] |
ZVIs-BCs | BM: cotton husk + ZVIs, pyrolysis (800 °C for 1 h), stainless balls (Φ = 5 mm, 40 g), RS = 350 rpm, MT = 2.5 h, TA = 10 min | S = 378.66 m2/g, V = 0.1704 cm3/g, D = 1.7996 nm, H/C = 0.01, O/C = 0.09; (O + N)/C = 0.11, Fe = 8.99% Biochars: S = 4.32 m2/g, V = 0.008217 cm3/g, D = 7.6157 nm, H/C = 0.01, O/C = 0.07, (O + N)/C = 0.08, Fe =0.04% | Cd(II) | T = 298 K | Langmuir model | 96.40 mg/g a Biochars: 84.19 mg/g a | PSO | 4 h | Physical adsorption, electrostatic attraction, and complexation | [79] |
BM-Fe3O4-BC | P, BM: biochars + Fe3O4 (MS = 1:100), agate balls (Φ = 6, 10, and 15 mm), MM =1:2, RS= 500 rpm, MT = 12 h, TA = 3 h | S = 10.1178 m2/g, V = 0.0015 cm3/g, pHpzc = 5.3, MS = 5.29 emu/g. Biochars: S = 82.10 m2/g | Pb(II) | T = 10–50 °C | Langmuir model | 183.99–339.39 mg/g a | Avrami fractional-order model | 20 min | Electrostatic attraction, precipitation, complexation, cation exchange, and co-precipitation. | [174] |
BM-NaOH-BC | BM: NaOH-modified biochars (2 g) + Fe3O4 (2 g), agate balls (Φ = 6 mm, 200 g), RS = 500 rpm, MT = 12 h, TA = 3 h | S = 148.41 m2/g, V = 0.178 cm3/g, D = 1.985 nm, pHpzc = 10.52, MS = 37.09 emu/g NaOH-modified biochars: S = 288.91 m2/g, V = 0.315 cm3/g, D = 3.061 nm | Cd(II) | T = 25 °C, pH = 7.0 | Freundlich model | 183.59 mg/g a NaOH-modified biochars: 101.51 mg/g a | PSO | 60 min NaOH-modified biochars: 120 min | Pore adsorption, precipitation, ion exchange, complexation, and Cd–π interaction | [179] |
BM-SnZVI@BC | P, BM: biochars (3 g) + S (1 g) + Fe (1 g), ZrO2 balls (Φ = 5, 10, 15 mm, 150 g, MR = 1:1:1), RS = 400 rpm, MT = 12 h, TA = 30 min, N2 purging for 20 min | pHpzc = 9.49, MS = 11.91 emu/g | Phosphorus | T = 298, 308, 318 K, pH ≈ 6 | Langmuir model | 25.00–39.72 mg/g a | PFO | 240 min | Electrostatic attraction, surface precipitation, hydrogen bonding, and ligand effects | [106] |
BM-FeS@NBCs | BM: biochars (1 g) + NH3·H2O (15 g), agate balls (Φ = 15, 10, 6 mm, 45 g, MR = 2:20:22), RS = 300 rpm, MT = 12 h, AT = 3 h, N2 purging for 30 min BM: N-biochars (1 g) + FeS (0.5 g), agate balls (Φ = 15, 10, 6 mm, 27 g, MR = 1:10:11), RS = 300 rpm, MT = 12 h, AT = 3 h, N2 purging for 30 min | pHpzc = 3.9 | Cr(VI) | T = 15–25 °C | Langmuir model | 149.38–194.69 mg/g a | Avrami fractional-order model | 250 min | Electrostatic attraction, ion exchange, and complexation | [10] |
BM-LDH-BCs | P, BM: biochars + LDHs + water (MR = 10:1:1), agate balls, RS = 500 rpm, MT = 4 h, TA = 5 min | S = 226 m2/g, V = 0.140 cm3/g, D = 3.51 nm, zeta potential (pH = 5.5) = −17.5 mV Biochars: S = 122 m2/g, V = 0.108 cm3/g, D = 3.86 nm, zeta potential (pH = 5.5) = −15.7 mV BM-BCs S = 246 m2/g, V = 0.101 cm3/g, D = 3.52 nm, zeta potential (pH = 5.5) = −26.3 mV | Cd(II) | T = 25 °C, pH = 5.5 | Freundlich model | 41.0 (mg/g)/(mg/L)1/n b Biochars: 7.82 (mg/g)/(mg/L)1/n b BM-BCs 26.9 (mg/g)/(mg/L)1/n b | PFO | 8 h | Surface complexation, chelation, precipitation, and physical adsorption | [108] |
Mg/Al-BCs | BM: biochars (1.5 g) + Mg(OH)2 (0.897 g) + Al(OH)3 (0.603 g), agate balls (300 g), RS = 300 rpm, MT = 8 h, TA = 0.5 h | S = 17.577 m2/g, V = 0.0885 cm3/g, D = 12.56 nm, C = 12.51%, H = 2.79%, N = 1.54%, pHpzc = 4.56 Biochars: S = 14.108 m2/g, V = 0.0383 cm3/g, D = 14.26 nm, C = 25.87%, H = 1.23%, N = 3.51%, pHpzc = 3.42 BM-BCs S = 16.199 m2/g, V = 0.0749 cm3/g, D = 12.74 nm, C = 24.17%, H = 1.69%, N = 3.27%, pHpzc = 3.66 | As(V) | T = 25–35 °C, pH = 7.0 | Freundlich model | TM: 24.49 mg/g c Biochars: 0.48 mg/g c BM-BCs 6.73 mg/g c | PSO | 20 h | Precipitation, ion exchange, surface complexation, and electrostatic interaction. | [107] |
Fe/Mn-BCs | P, BM: biochars, agate balls, MM = 1:100, RS = 300 rpm, MT = 6 h | S = 226.50–331.5 m2/g, Vmeso = 0.32–0.36 cm3/g, D = 4.16–5.21 nm, pHpzc = 1.73–3.06 Biochars: S = 14.02–30.35 m2/g, Vmicro = 0.003–0.006 cm3/g, Vmeso = 0.006–0.03 cm3/g, D = 6.49–7.49 nm | Cd(II) | T = 298 K, pH = 5 | Langmuir model | 65.3–100.9 mg/g a Biochars: 12.9–20.9 mg/g a | PSO Before: PFO | 3 h Biochar: 4 h | Surface complexation, cation exchange, Cd–π interaction, precipitation, and electrostatic attraction. | [175] |
BM-PBCs | P, BM: biochars (3.3 g) and phytic acid (0–50% wt% solution), agate balls (Φ = 6 mm, 330 g), RS = 12 h, MT = 12 h, TA = 3 h, RP = 30 min | S = 66–285 m2/g, Smicro = 36–205 m2/g; V = 0.089–0.273 cm3/g, Vmicro = 0.017–0.092 cm3/g, APS = 307–615 nm, C = 73.5–80.0%, O = 15.9–21.8%, N = 2.7–2.9%, P = 0.9–1.9%, pHpzc ≈ 2.00–2.61 Biochars: S = 7 m2/g, V = 0.026 cm3/g, APS = 1353 nm, C = 85.3%, O = 12.2%, N = 2.5%, pHpzc = 3.14 BM-BCs: S = 433 m2/g, Smicro = 356 m2/g, V = 0.379 cm3/g, Vmicro = 0.158 cm3/g, APS = 414 nm, C = 78.3%, O = 18.0%, N = 3.7%, pHpzc < 2.0 | U(VI) | T = 298.15–338.15 K, pH = 4.0 | Langmuir model | 78.6–114.9 mg/g a Biochars: 23.2–43.3 mg/g a BM-BCs: 73.4–100.5 mg/g a | PSO | 60 min | Complexation, electrostatic attraction, cation–π bonding, and coordination | [89] |
Thiol-modified biochars | BM: biochars (2 g) + 3-trimethoxysilylpropanethiol (1.6 mL with strong nitrogen purging) + DW (2.4 mL) + ethanol (76 mL) + NH4OH, agate balls (Φ = 3, 5, 15 mm, 200 g, MR = 3:5:2), RS = 400 rpm, MT = 30 h, TA= 6 h | S = 56.05—458.94 m2/g, V = 0.271–0.635 cm3/g; D = 5.53–19.34 nm, C = 59.15–71.24%, O = 18.45–27.95%, N = 0–2.25%, S = 2.98–5.63%, Si = 7.03–10.77%, O/C = 0.259–0.473, pHpzc < 2. BM-BC: S = 3.78–385.80 m2/g, V = 0.0163–0.182 cm3/g, D = 2.59–17.22 nm, C = 73.12–87.49%, O = 12.51–25.88%, Si = 1–1.00%, O/C = 0.143–0.354, pHpzc < 2 | Hg(II) | T = 25± 0.2 °C, pH = 7.0 ± 0.2 | Langmuir model | 270.60 ± 2.67–401.8 ± 2.27 mg/g a BM-BC:163.70 ± 8.45–386.34 ± 23.45 mg/g a | PSO | 4 h Ball-milled biochar: 1 h | Surface adsorption, electrostatic attraction, surface complexation, and ligand exchange. | [55] |
Ball-milled CNTs-based materials | ||||||||||
HA-MWCNTs | V, BM: CNTs (0.01 g) + HA (1.0 g), stainless steel ball (Φ = 30.0 mm, 112.0 g), RS = ~ 617 rpm, MT = 15 min | C = 74.2%, O = 20.2%, Si = 3.1%, Al = 2.5%, Zeta potential (DW) = −42.5 ± 1.0 mV | Cu(II) | Reconstituted water (Daphnia magna medium), pH = 7.0 | - | 68.5 ± 3.5 mg/g a | - | 3 h | Chemical complexation | [116] |
CeO2-CNTs | BM: CNTs | — | Cr(VI) | T = 25 °C, pH = 3–11 | Langmuir model | 23.26–31.55 mg/g a | - | - | Specific affinity between hydrous oxides of Ce and Cr(VI) | [176] |
FeOx@CNTs | P, BM: CNTs (0.2 g) + FeCl3·6H2O (0.6 g) + KOH (1.25 g), a spherical planetary ball mill, agate ball (Φ = 5 mm, 200 g), RS = 300 rpm, MT = 12 h, TA = 3 h | S = 242 m2/g, V = 0.523 cm3/g, D = 3.42 nm, pHpzc = 4.3 CNTs: S = 228 m2/g, V = 1.86 cm3/g, D = 30.5 nm, pHpzc = 5.7 | Sb(III) | T = 298 K, pH = 6.35 | Redlich–Peterson model | 172 mg/g a CNTs: 4.01 mg/g a | PSO | 12 h | Complexation and surface pore adsorption | [66] |
Ball-milled graphenes-based materials | ||||||||||
Ball-milled graphene sheets | BM: graphene sheets + N-methylpyrrolidone, stainless steel ball, RS = 300 rpm, MT = 50 h | - | U(VI) | T = 298 K pH = 4.5 | Langmuir model | 71.93 mg/g a | PSO | 2 h | Chemical oxidation | [32] |
HGO | P, BM: jaggery + graphite + DW, hydrothermal treatment, and further calcination, MR = 100:1, stainless steel balls (Φ = 1 cm and 2 cm), RS = 70 rpm, MT = 30 h | - | Cr(VI) | pH = 1 | - | 5.48 mg/g c | - | 1 h | C–O–C and –OH functionalities, aromatic π network | [127] |
PGO | P, BM: graphene (2 g) + dry ice (40 g), modification by PCl3, ZrO2 balls, RS = 350 rpm, MT = 48 h, RP = 10 min | S = 25 m2/g, C = 85.4%, O = 14.2% and P = 0.4% | Hg(II) | Room temperature, pH = 7 | Langmuir model | 82.2 mg/g a | PSO | - | Complexation | [121] |
Ball-milled metal-based materials | ||||||||||
FeS2-ZVIs | BM: ZVIs + FeS2 (total amount = 5.0 g, MR = 1:0, 4:1, 1:1, 1:4 and 0:1), steel balls (4.0 g), RS = 300 rpm, MT = 30 min | S = 0.912 m2/g, O = 5.87%, S = 27.12%, Fe = 67.00%. Ball-milled FeS2: S = 1.190 m2/g, O = 13.99%, S = 43.48%, Fe = 42.53%. Ball-milled ZVIs: S = 0.800 m2/g, O = 11.77%, S = 0.70%, Fe = 87.52% | As(III) | T = 25 °C, pH = 6.8 | - | 78.3–97% c Ball-milled FeS2: 18.1% c Ball-milled ZVIs: 19.3% c | - | 90 min | - | [151] |
Sulfidated ZVIs | P, BM: ZVIs + S (MR = 0.1–0.2), ZrO2 balls, RS = 400 rpm, MT = 20 h, N2 atmosphere | S = 1.46–2.08 m2/g Ball-milled ZVIs: S = 0.21 m2/g | Cr(VI) | T = 25 ± 0.5 °C, pH = 6 | - | 3.831mg/g b | PSO | 180 min | - | [177] |
LS-ZVIs | P, BM: ZVIs (2.5 g) + lignosulfonate (0.025–0.25 g), ZrO2 balls (Φ = 6 mm), RS = 400 rpm, MT = 2–20 h, Ar headspace | S = 2.59 m2/g, Fe(0) = 10.5%, Fe(II) = 59.7%, Fe(III) = 19.8% ZVIs: S = 0.76 m2/g, Fe(0) = 3.4%, Fe(II) = 76.9%, Fe(III) = 19.7% | Cr(VI) | T = 25 °C, pH = 5.5 | - | 4.0–100% c ZVIs: ≈0% c | PSO | 60 min | Chemical adsorption | [157] |
Sulfidated ZVIs | P, BM: ZVIs + S (MR = 0.01–0.2), ZrO2 balls (Φ = 6 mm), RS = 400 rpm, MT = 20 h, Ar headspace | S = 1.5 m2/g Ball-milled mZVIs: S = 0.21 m2/g | As(III) | T = 25 ± 5 °C, pH = 7, oxic condition | - | 174.91–275.10 mg/g d Ball-milled ZVIs: 353.27 mg/g d | PSO | 24 h Ball-milled ZVIs: 72 h | Chemical adsorption | [156] |
Coffee grounds-modified ZVIs | P, BM: ZVIs + coffee grounds (MR = 2–8%), ZrO2 balls (Φ = 6 and 9 mm, 100 g, MR = 3:2), RS = 550 rpm, MT = 2 h | S = 1.48–1.85 m2/g, APS = 80 μm, Fe = 84.20–95.70%, C = 0.75–3.60%, O = 3.55–12.20% Ball-milled ZVIs: S = 1.45 m2/g, APS = 71 μm, Fe = 98.20%, C = 0.55%, O = 1.25% | Cr(VI) | T = 25 °C, pH = 6.5 | - | 80–100% c Ball-milled ZVIs: <10% c | PFO | 120 min | Complexation | [160] |
ZVAls/Fe3O4 | P, BM: ZVAls (2 g) + Fe3O4 (1.0 g), ZrO2 balls (3.0g), RS = 300 r/min, MT = 1.5 h | S = 6.5154 ± 0.1963 m2/g, pHpzc = 9.2, SM = 10.03 emu/g ZVAls: S = 4.0427± 0.7390 m2/g | Cr(VI) | T = 25 ± 2 °C, pH = 7 | Langmuir model | 8.10 mg/g a | PFO | 30 min ZVAls: 50 min | Surface adsorption | [34] |
ZVAls/MFe2O4 (M = Mn, Zn, Ni) | BM: ZVAl (1.0 g) + MFe2O4 powders (0.5 g), ZrO2 balls (Φ = 8, 4, 2, 1 mm, 15 g, MR = 1: 2: 4: 8), RS = 300 rpm, MT = 2 h | S = 17.344–24.646 m2/g, V = 0.067–0.076 cm3/g; D = 5.136–7.443 nm, pHpzc ≈ 9.5, SM = 7.84–51.59 emu/g ZVAls: S = 1.826 m2/g, V = 0.007 cm3/g, D = 4.140 nm | Cr(VI) | T = 298 K, pH = 7 | - | 89.15–100% c ZVAls: 0% c | PSO | 30 min | Surface adsorption and ion exchange | [161] |
4.2. Removal of Organic Pollutants
Materials | Treatment | Material Characterization | Pollutants | Adsorption Experiment | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Experimental Condition | Isotherm Model | Adsorption Capacity | Kinetic Model | Equilibrium Time | Adsorption Mechanism | |||||
Ball-milled ACs-based materials | ||||||||||
BM-ACs | BM: ACs (1 g), milling balls (4 g), RS = 350 rpm, MT = 60 min | S = 496.32 m2/g, Vt = 0.278 cm3/g, Vmicro = 0.203 cm3/g, Vmeso = 0.075 cm3/g, D = 2.248 nm, APS = 1.57 μm, pHpzc = 6.46 ACs: S = 526.80 m2/g, Vt = 0.293 cm3/g, Vmicro = 0.182 cm3/g, Vmeso = 0.110 cm3/g, D = 2.225 nm, APS = 5.30 μm | MB | T = 25 °C, pH = 10 | Langmuir model | 505 mg/g a Biochars: 227.14 mg/g c | PSO | 420 min | Electrostatic interaction | [56] |
AC-COOH | P, BM: ACs (5 g) + NaOH (25 g) + DW (50 mL), RS = 400 rpm, MT = 6 h BM: obtained materials + chloroacetic acid (25 g), RS = 400 rpm, MT = 6 h | C = 79.00%, O = 21.00%, pHpzc = 6.20 | MB | T = 20 °C, pH = 7 | Langmuir model | 123.02 mg/g a | PSO | 15 min | Electrostatic interaction | [77] |
CV | 120.3 mg/g a | |||||||||
Magnetic ACs | P, BM: ACs (0.45 g) + Fe3O4 (1.35 g), agate balls (Φ = 6 mm, 180 g), RS = 500 rpm, MT = 12 h | S = 75.4 m2/g, V = 0.05 cm3/g, D = 2.6 nm, APS = 609 nm, C = 47.4%, H = 0.71%, O = 25.0%, N = 0.02%, Fe = 21.6%, pHpzc < 3, MS = 33.8 emu/g ACs: S = 743.7 m2/g, V = 0.39 cm3/g, D = 2.1 nm, APS = 0.5–1 mm, C = 70.8%, H = 2.97%, O = 18.7%, N = 0.05%, Fe = 0.04%, pHpzc < 3 BM-ACs: S = 544.9 m2/g, V = 0.31 cm3/g, D = 2.3 nm, APS = 479 nm, C = 72.7%, H = 2.63%, O = 17.4%, N = 0.09%, Fe = 0.03%, pHpzc < 3 | MB | T = 25 ± 2 °C | Langmuir model | 304.2 mg/g a BM-ACs: 298.7 mg/g a ACs: 111.9 mg/g a | PSO | 8 h | - | [104] |
Magnetic ACs | P, BM: ACs (2.25 g) + Fe3O4 (0.75 g), milling balls (Φ = 5.60 mm, 120 g), RS = 550 rpm, MT = 2 h, TA = 0.5 h | C = 66.3%, O = 17.4%, Si = 0.3%, Fe = 16.1%, APS ≈ 1 μm, pHpzc ≈ 6.46, MS = 24.2 emu/g ACs: C = 95.5%, O = 3.8%, Si = 0.7%, Fe = 0.0%, APS = 48 μm | Potassium perfluorooctane sulfonate | T = 28 °C | Langmuir model | 1.63 mmol/g a | PFO | <2 h | Hydrophobic interaction | [180] |
Perfluorooctanoic acid | 0.90 mmol/g a | |||||||||
Potassium perfluorohexane sulfonate | 0.33 mmol/g a | |||||||||
Potassium perfluorobutane sulfonate | 0.21 mmol/g a | |||||||||
Ball-milled biochar-based materials | ||||||||||
Graphite-like biochars | BM: aqueous mixture of biomass (newspaper or maize straw raw), oxidation and pyrolysis, agate balls (200 g), RS = 300 rpm, MT = 2 h | S = 871.5–1065 m2/g, V = 1.46–4.45 cm3/g, Vmacro = 0.031–0.145 cm3/g, Vmeso = 1.13–3.53 cm3/g, Vmicro = 0.304–0.768 cm3/g, D = 4.9–8.5 nm, C = 68.5 ± 0.16–84.9 ± 0.23%, H = 1.4 ± 0.06–1.5 ± 0.14%, O = 4.7 ± 0.17–6.4 ± 0.01%, N = 0.5 ± 0.07–0.7 ± 0.05%, (O + N)/C = 1.53–1.65, H/C = 0.20–0.26 Biochars derived from biomass: S = 144.8–545.8 m2/g, V = 1.52–1.89 cm3/g, Vmacro = 0.015–0.034 cm3/g, Vmeso = 1.25–1.52 cm3/g, Vmicro = 0.257–0.330 cm3/g, D = 7.8–11.4 nm, C = 72.0 ± 0.10–85.5 ± 0.17%, H = 1.8 ± 0.01–1.9 ± 0.10%, O = 2.6 ± 0.60–4.3 ± 0.35%, N = 0.7 ± 0.02–1.3 ± 0.07%, (O + N)/C = 1.66–1.68, H/C = 0.25–0.32 Biochars derived from ball-milled biomass: S = 277.0–407.5 m2/g, V = 0.78–1.11 cm3/g, Vmacro = 0.025–0.028 cm3/g, Vmeso = 0.57–0.89 cm3/g, Vmicro = 0.179–0.195 cm3/g, D = 7.0–9.6 nm, C = 71.8 ± 0.18–85.3 ± 0.25%, H = 1.8 ± 0.01–1.9 ± 0.03%, O = 2.6 ± 0.29–4.2 ± 0.61%, N = 0.7 ± 0.02–1.4 ± 0.08%, (O + N)/C = 1.68–1.69, H/C = 0.25–0.32 | IMI | T = 25 ± 1 °C, pH = 8.0–8.7 | Freundlich model | 67.8–181.1 (mg/g)/(mg/L)n b Biochars: 4.74–19.8 (mg/g)/(mg/L)n b Biochars derived from ball-milled biomass: 13.3–16.2 (mg/g)/(mg/L)n b | - | - | Pore filling, H-bonding, and cation/p/π–π EDA interactions | [33] |
SUL | 40.2–43.1 (mg/g)/(mg/L)n b Biochars derived from biomass: 8.41–12.6 (mg/g)/(mg/L)n b Biochars derived from ball-milled biomass: 10.8–16.0 (mg/g)/(mg/L)n b | Pore filling, H-bonding, cation/p/π–π EDA interactions, and electrostatic interactions | ||||||||
BCs-CBM | P, BM: cellulose+ montmorillonite, pyrolysis, RS = 1000 r/min, MT = 4 h | S = 95.472 m2/g, V = 0.123 cm3/g, D = 2.2–4.2 nm | MB | T = 25 °C | Freundlich model | 11.489 ± 1.516 (mg/g)/(mg/L)n b | PSO | 8 h | Cation exchange | [82] |
Acidic ball-milled biochars | P, BM: hickory chips (1 g) + H₂SO₄ (20 mL, 9.2 mol/L, pH = 1.265) + DW (20 mL), agate balls (Φ = 6 mm, 100 g) RS = 300 rpm, MT = 12 h, RT = 3 h, ambient air | S = 5.619 m2/g, V = 0.012 cm3/g, APS = 0.3–4 μm | TY | T = 25 °C | Freundlich model | 182.3 mg/g a | PSO | 12 h | Ion exchange and electrostatic interaction | [109] |
Biosorbents derived from acidic and alkaline one-step ball milling of hickory wood | P, BM: hickory wood (1 g) + H₂SO₄ (20 mL, 9.2 mol/L)/NaOH (20 mL, 3.75 mol/L), agate balls (Φ = 6 mm, 100 g), RS = 300 rpm, MT = 24 h, RT = 3 h | S = 5.191–5.619 m2/g, V = 0.023–0.030 cm3/g | CR | T = 25 °C | Freundlich model | 0.68 ± 0.20–311.01 ± 2.13 (mg/g)/(mg/L)n b | PSO | >8 h | Surface complexation | [53] |
CV | 149.02 ± 4.62 (mg/g)/(mg/L)n b | >3 h | ||||||||
BM-BCs | BM: biochars (10 g), ZrO2 balls, RS = 1600 rpm, MT = 60 s, T = 30 | S = 74.39 m2/g, V = 0.1540 cm3/g, D = 8.3741 nm, C = 54.36%, N = 2.80%, O = 30.65%, pHpzc = 2.3 Biochars: S = 46.20 m2/g, V = 0.1274 cm3/g, D = 10.9337 nm, C = 63.22%, N = 3.19%, O = 23.94% | MB | T = 298–308 K | Langmuir model | 408.79–419.11 mg/g a | PSO | 120 min | - | [167] |
BM-BCs | P, BM: biochars (1.8 g), agate balls (Φ = 6 mm, 180 g), RS = 300 rpm, MT = 12 h, TA = 3 h | S = 331 m2/g, V = 0.099 cm3/g, APS = 170nm, AFGs = 1.35 mmol/g, -COOH = 0.45 mmol/g, lactonic groups = 0.05 mmol/g, –OH = 0.85 mmol/g, pHpzc = 2.7 Biochars: S = 51 m2/g, V = 0.008 cm3/g, APS = 0.5–1 nm, AFGs = 0.30 mmol/g, lactonic groups = 0.08 mmol/g, –OH = 0.23 mmol/g, pHpzc = 4.2 | MB | T = 20 ± 2 °C, pH = 4.5 and 7.5 | Dual Langmuir model | 213 ± 19–354 ± 20 mg/g a Biochars: 14.4 ± 1.3–17.2 ± 3.5 mg/g a | PSO | 8 h Biochars: 16 h | pH = 4.5: π–π interaction pH = 7.5: π–π interaction and electrostatic effect | [181] |
BM-BCs | P, BM: biochars (1.8 g), steel balls (Φ = 5 mm, 180 g), RS = 300 rpm, MT = 24 h, TA = 3 h, N2/vacuum environment | S = 300–452 m2/g, D = 140–223 nm, C = 77.3–82.8%, O = 15.2–19.9%, Si = 1.50–3.00%, O/C = 0.184–0.257, –C–O = 13.6–15.9%, –C=O = 1.61–4.09%, pHpzc < 2.2 Biochars: S = 2.60–343 m2/g, C = 86.5–92.8%, O = 6.70–12.5%, Si = 0.0–0.90%, O/C = 0.072–0.145, –C–O = 6.37–10.9%, –C=O = 1.33–1.56%, pHpzc ≈ 2.2 | RR | T = 25 ± 2 °C, pH = 6± 0.1 | Langmuir model | 9.2–34.8 mg/g a Before: 1.70–3.60 mg/g a | PSO | 120 min | Electrostatic adsorption | [87] |
PWNBCs | P, BM: biochars, stainless steel balls (Φ = 2.4 mm, 45 g), RS = 575 rpm. MT = 100 min, ambient conditions | S = 47.25 m2/g, APS = 60 ± 20 nm, C = 83.1%, H = 3.5%, N < 1%, CEF = 14.8 ± 1.2 meq/100, zeta potential (6.61) = −31.3 mV | CBZ | T = 25 ± 1 °C, pH = 6.0 | Freundlich model | 0.068 (ng/mg)(L/ng)1/n b | PSO | 2 d | Hydrogen bonding | [182] |
BM-BCs | P, BM: biochars, agate balls (Φ = 5 mm), MM = 1:100, RS = 300 rpm, MT = 24 h TA = 3 h | S = 10.8–401 m2/g, V = 0.043–0.076 cm3/g, D = 15.1–48.1 nm, C = 58.1–62.7%, H = 1.50–6.80%, O = 30.8–34.6%, N = <0.01–0.50%, O/C = 0.46–0.60, H/C = 0.02–0.12, (O + N)/C = 0.59–0.75, total organic carbon = 541–666 mg/g Biochars: S = 1.25–328 m2/g, V = 0.002–0.031 cm3/g, D = 3.42–23.0 nm, C = 61.0–70.0%, H = 0.64–4.61%, O = 29.4–33.9%, N = <0.01–0.52%, O/C = 0.42–0.56, H/C = 0.01–0.08, (O + N)/C = 0.42–0.56, total organic carbon = 553–565 mg/g | Galaxolide | T = 20 ± 2 °C | Freundlich model | 588 ± 31.2f 1955 ± 157 (mg/kg)/(mg/L)n b Biochars: 247 ± 3.78- 579 ± 43 (mg/kg)/(mg/L)n b | - | 48 h | Hydrophobic effect, π–π interaction, and micropore filling | [183] |
BM-BCs | P, BM: biochars, milling balls, MM = 1:100, RS = 300 rpm, MT = 24 h, TA = 3 h | S = 13.5–139.89 m2/g, V = 0.0706–0.3366 cm3/g, Vmeso = 0.0706–0.3366 cm3/g, D = 2.27–4.03 nm, AFGs = 0.48–1.62 mmol/g Biochars: S = 3.9–211.56 m2/g, V = 0.0174–0.1370 cm3/g, Vmeso = 0.0172–0.0473 cm3/g, D = 2.28–4.84 nm, AFGs = 0.01–1.48 mmol/g | TC | T = 25°C, pH = 7.0 | Langmuir model | 51.04–96.69 mg/g a Biochars: 17.19–21.29 mg/g a | PSO | 60 h | Surface adsorption and pore filling | [83] |
BM-BCs | P, BM: biochars, milling balls (Φ = 6 mm, 180 g), MM = 1:100, RS = 300 rpm, MT = 12 h, RT = 3 h | S = 309.0 m2/g, zeta potential (pH = 3.5–8.5) = −36–43 mV Biochars: S = 9.8 m2/g | SMX | T = 25 ± 0.5 °C, pH = 6.0 | Langmuir model | 100.30 mg/g a | Elovich model | 8–12 h | Hydrophobic interaction, π–π interaction, hydrogen bonding, and electrostatic interaction | [184] |
Sulfapyridine | 57.90 mg/g a | 12 h | ||||||||
BM-BCs | P, BM: MBC (1 g), agate balls (Φ = 5 mm, 100 g), MT = 12 h, TA = 20 min, RP = 10 min | S = 296.3 m2/g, V = 0.091 cm3/g, C = 47.98%, H = 0.88%, O = 27.89%, N = 0.53%, Fe = 12.32%, Na = 0.13%, Mg = 0.61%, Si = 0.13%, Ca = 2.13%, P = 0.12%, K = 0.88%, pHzpc = 4.43, MS = 15.39 emu/g Magnetic biochars: S = 198.6 m2/g, V = 0.006 cm3/g, C = 57.82%, H = 2.48%, O = 21.98%, N = 0.87%, Fe = 1.25%, Na = 0.12%, Mg = 0.58%, Si = 0.11%, Ca = 2.10%, P = 0.11%, K = 0.81, MS = 10.76 emu/g | TC | T = 24 ± 2 °C | Langmuir model | 268.3 mg/g a | PSO | 12 h | Electrostatic interactions, hydrogen bonds, and π–π interaction | [170] |
BM-BCs | BM: MBC (1 g), stainless steel balls (Φ = 6 and 10 mm, 100 g, MR = 2: 8), RS = 400 rpm, MT = 24 h, RT = 6 h | S = 124.96 m2/g, C = 28.22%, H = 1.656%, O = 21.69%, N = 0.76%, O/C = 0.58, H/C = 0.70, (N + O)/C = 0.60, MS = 55.15 emu/g Magnetic biochars: S = 211.18 m2/g, C = 31.33%, H = 0.892%, O = 11.06%, N = 0.79%, O/C = 0.26, H/C = 0.34, (N + O)/C = 0.29 | Fuconazole | T = 293–313 K, pH = 5.6 | Langmuir model | 12.19–15.90 mg/g a Magnetic biochars: 2.21–3.30 mg/g a | Elovich model | 6 h | π–π interactions, hydrogen bonding, and surface complexation | [187] |
BC-SBCs | P, BM: MBC, RS = 500 rpm, MT = 60 min | S = 73.4 m2/g, V = 0.186 cm3/g, D = 10.1 nm, C = 11.42%, O = 26.71%, Si = 11.66%, Fe = 50.22%, pHpzc = 3.75, MS = 12.9 emu/mg | SMX | T = 25 °C | Freundlich model | 851 (ug/g)/(ug/L)n b | PSO | 200 min | π–π conjugation, pore filling, H-bonding, Fe–O complexation, and electrostatic interaction | [185] |
BM-PBCs | P, BM: potassium ferrate-activated biochars, agate balls (MR of large, medium, and small balls = 2:18:15), RS = 300 rpm, T = 12 h | S = 284.17–282.47 m2/g, D = 11.62–12.10 nm, pHpzc = 3.2–4.9, MS = 18.94–20.33 emu/g | TC | T = 15, 25, 35 °C, pH = 4.2 | Langmuir model | 56.35–90.31 mg/g a | Avrami fractional-order model | 80–150 min | Hydrogen bonding force, complexation, pore filling, and π–π stacking | [171] |
BM-LDOs-BC | P, BM: Fe-Mg-LDOs biochar, MM = 1:100, RS = 700 rpm, MT = 2 h | S = 155.90 m2/g, V = 0.0513 cm3/g, D = 1.316 nm, C = 56.73%, O = 27.95%, Mg = 6.60%, Fe = 8.72%, pHpzc < 3. Biochars: S = 67.676 m2/g, V = 0.000852 cm3/g, D = 0.050 nm, C = 84.81%, O = 14.55%, Mg = 0.17%, Fe = 0.47% LDOs-BC: S = 464.89 m2/g, V = 0.156 cm3/g, D = 1.342 nm, C = 65.86%, O = 19.81%, Mg = 6.78%, Fe = 7.56% | CIP | T = 298 K | Freundlich model | 56.80 (mg/g mg/L)−1/n b | PSO | 720 min | Pore filling, electrostatic interaction, H-bonding, complexation, and π–π conjugation | [186] |
Ball-milling iron-loaded biochars | BM: iron-loaded biochars (1.8 g), agate balls (180 g), RS = 300 rpm, MT = 12 h, RT = 3 h, air atmosphere | S = Sexternal = 48.3 m2/g, C = 40.4%, O = 32.8%, Fe = 11.3%, Cl = 15.5%, pHpzc = 9.19–9.48. Iron-loaded biochars: S = 24.9 m2/g, Sexternal = 24.1 m2/g, Sinternal = 0.774 m2/g, C = 60.8%, O = 22.0%, Fe = 6.50%, Cl = 10.7%, pHpzc < 2.3 | RR | T = 25 ± 2 °C, pH = 3 and 7.5 | Freundlich model | 39.2–53.8 mg1−n Ln g−1 b Iron-loaded biochars: 18.1–20.2 mg1−n Ln g−1 b | Elovich model | 1000 min | Surface adsorption and electrostatic interaction | [193] |
BP-SBCs | BM: phosphoric acid-modified biochars, stainless steel balls, MM = 1:25, RS = 500 rpm, MT = 60 min | S = 146 m2/g, V = 0.327 cm3/g, D = 8.95 nm, CEC = 41.5 cmol/kg, C = 40.5%, H = 0.089%, O = 48.3%, N = 1.3% Biochars: S = 39.2 m2/g, V = 0.147 cm3/g, D = 15 nm, CEC = 7.6 cmol/kg, C = 45.3%, H = 0.084%, O = 42.5%, N = 1.4% | SMZ | T = 25 °C | Langmuir model | 46.1 mg/g a Biochars: 7.32 mg/g a | PSO | 720 min | Pore filling, π–π conjugation, H-bonding, and P–O complexation | [84] |
Mg/Al-BCs: | P, BM: Fe-Al bimetallic oxides functionalized biochars, MM = 1:100, RS = 700 rpm, MT = 2 h | S = 91.357 m2/g, V = 0.105 cm3/g, D = 4.579 nm, pHzpc = 3.0, MS = 4.36 emu/g Biochars: S = 23.159 m2/g, V = 0.031 cm3/g, D = 5.327 nm Fe-Al bimetallic oxides functionalized biochars: S = 191.85 m2/g, V = 0.206 cm3/g, D = 4.289 nm, pHzpc ≈ 6.5 | TC | T = 298 K | Langmuir model | 116.59 mg/g a | Elovich model | 1440 min | π–π interaction, hydrogen bonding, complexation, and pore filling | [194] |
H2O2-modified ball-milled biochars | P, BM: biochars (1.8 g), modification by H2O2, agate balls (Φ = 6 mm, 180 g) RS = 300 rpm, MT = 12 h, RT = 3 h | S = 9.2 m2/g, C = 77.1%, O = 21.4%, N = 1.4% Biochars: S = 3.8 m2/g | MB | - | Langmuir model | 310.115 mg/g a Biochars: 6.780 mg/g a | PSO | 6 h | Electrostatic interaction and ion exchange | [188] |
N-doped biochars | P, BM: biochars (1.8 g) + NH3·H2O (18 mL), agate balls (Φ = 6 mm, 180 g), RS = 300 rpm, MT = 12 h, RT = 3 h | S = 441–548 m2/g, V = 0.302–0.415 cm3/g, Vmicro = 0.171–0.215 cm3/g, D = 2.55–3.34 nm, C = 89.2–94.6%, O = 4.51–9.10%, N = 0.87–1.68% | RR | T = 25 ± 2 °C | - | 22.0–37.4 mg/g c | - | - | Electrostatic interaction | [90] |
Thiol-modified biochars | BM: biochars (2 g) + 3-trimethoxysilylpropanethiol (1.6 mL with strong nitrogen purging) + water (2.4 mL) + ethanol (76 mL) + NH4O, agate balls (Φ = 3, 5, 15mm, 200 g, MR = 3:5:2), RS = 400 rpm, MT = 30 h, TA = 6 h | S = 56.05–458.94 m2/g, V = 0.271–0.635 cm3/g, D = 5.53–19.34 nm, C = 59.15–71.24%, O = 18.45–27.95%, N = 0–2.25%, S = 2.98–5.63%, Si = 7.03–10.77%, O/C = 0.259–0.473, pHpzc < 2. BM-BCs: S = 3.78–385.80 m2/g, V = 0.0163–0.182 cm3/g; D = 2.59–17.22 nm, C = 73.12–87.49%, O = 12.51–25.88%, Si = 1–1.00%, O/C = 0.143–0.354, pHpzc < 2 | MeHg | T = 25 °C, pH = 7.0 ± 0.2 | Langmuir model | 39.14 ± 1.46–108.16 ± 3.11 mg/g a BM-BCs: 19.53 ± 1.03–25.54 ± 4.12 mg/g a | PSO | 24 h Ball-milled biochar: 9 h | Surface adsorption, electrostatic attraction, surface complexation, and ligand exchange | [55] |
BM-FeS@NBCs | BM: biochars (1 g) + NH3·H2O (15 g), agate balls (Φ = 15, 10, 6 mm, 45 g, MR = 2:20:22), RS = 300 rpm, MT = 12 h, TA = 3 h, N2 purging for 30 min BM: N-biochars (1 g) + FeS (0.5 g), agate balls (Φ = 15, 10, 6 mm, 27 g, MR = 1:10:11), RS = 300 rpm, MT = 12 h, TA = 3 h, N2 purging for 30 min | pHpzc = 3.9 | TC | T = 15–25 °C | Langmuir model | 174.82–371.29 mg/g a | Avrami fractional-order model | 350 min | Pore filling, hydrogen bonding, and π–π stacking interactions | [10] |
MBCs | P, BM: biochars (0.45 g) + Fe3O4 (1.35 g), agate balls (Φ = 6 mm, 180 g), RS = 500 rpm, MT = 12 h | S = 362.4 m2/g, V = 0.09 cm3/g, D = 3.82 nm, APS = 482 nm, C = 49.5%, H = 1.29%, O = 19.7%, N = 0.04%, Fe = 20.3%, pHpzc < 3, MS = 34.9 emu/g Biochars: S = 227.4 m2/g, V = 0.14 cm3/g, D = 2.09 nm, APS = 0.5–1 mm, C = 83.5%, H = 2.73%, O = 4.9%, N = 0.27%, Fe = 0.02%, pHpzc < 3. BM-BCs: S = 319.1 m2/g, V = 0.23 cm3/g, D = 2.82 nm, APS = 335 nm, C = 73.7%, H = 3.38%, O = 14.0%, N = 0.18%, Fe = 0.03%, pHpzc < 3 | MB | T = 25 ± 2 °C | Langmuir model | 500.5 mg/g a | PSO | 8 h | π electronic interaction, electrostatic attraction, and/or ion exchange | [104] |
BM-Fe3O4-BC | P, BM: biochars + Fe3O4 (MS = 1:100), agate balls (Φ = 6, 10, and 15 mm), MM = 1:2, RS = 500 rpm, MT = 12 h, TA = 3 h | S = 10.1178 m2/g, V = 0.0015 cm3/g, pHpzc = 5.3, MS = 5.29 emu/g Biochars: S = 82.10 m2/g | TC | T = 10–50 °C | Langmuir model | 102.91–237.51 mg/g a | Avrami fractional-order model | 100 min | Pore filling, hydrogen bonding, and π–π stacking | [174] |
Fe@MBC | V, BM: biochars + FeCl3, MM = 1: 9, RS = 400 rpm, MT = 130 min, RT = 60 min RP = 10 min, T = 3, air atmosphere | S = 17.19 m2/g, V = 0.13 cm3/g, D = 28.91 nm Biochars: S = 166.95 m2/g, V = 0.07 cm3/g, D = 1.63 nm BM-BCs: S = 219.24 m2/g, V = 0.30 cm3/g, D = 5.26 nm | TC | T = 25 °C | Freundlich Model BM-BCs: Langmuir model | 24.58 mg1–1/n·L1/n·g–1 b BM-BCs: 41.08 mg/g a | PSO | 24 h | Ion exchange, π–π stacking, van der Waals forces, electrostatic interactions, and hydrogen bonding | [189] |
CuO-biochars | P, BM: biochars (1.8 g) + CuO (0.018 g), agate balls (90 g), RS = 400 rpm, MT = 9 h, RT = 1.5 h, air atmosphere | S = 296.5 m2/g, V = 0.111 cm3/g, CuO size = 11.4 nm, C = 80.96%, O = 13.25%, Ca = 0.91%, K = 0.29%, Cu = 4.60%, pHzp ≈ 3.0 | RR | T= 25 °C | Freundlich model | 4.01 mg(1–n) Ln g–1 b | PSO | 3 h | Electrostatic attraction | [96] |
Twice-milled magnetic biochars | BM: biomass BM: MBC (1.0 g), RS = 400 rpm, MT = 1 h | S = 139.1 m2/g, AFGs = 0.582 mmol/g, carboxyl = 0.194 mmol/g, lactonic groups = 0.028 mmol/g, phenolic hydroxyl = 0.360 mmol/g, pHpzc≈3.9 | MB | T = 25 ± 1 °C | Freundlich model | 78.96 (mg/g)(L/mg)1/n b | PSO | 24 h | π–π and electrostatic interactions | [190] |
Ball-milled CNTs-based materials | ||||||||||
Ball-milled CNTs | P, BM: CNTs (1–2 g), agate balls (Φ = 18, 12, and 6 mm, MR = 1:10:25), RS = 160 rpm, MT = 12–50 h | S = 213–220 m2/g, mean length = 100–800 nm, open end, none, and few tangled phenomena CNTs: S = 198 m2/g, mean length > μm, closed-end, serious tangled phenomena | Aniline | - | - | 22.2–36.2 mg/g c CNTs: 14.9 mg/g c | - | - | Capillary adsorption | [191] |
Ball-milled CNTs | P, BM: CNTs, milling balls, RS = 140 rpm, T = 6–30 h | Even length = 100–200 nm tens of micron, open tube tips, clearly reduced tangled phenomena, D = 9–15 nm CNTs: even length = tens of microns, closed tube tips, serious tangled phenomena, D = 30 nm | Nitrobenzene | - | - | 24.4–41.5 mg/g c CNTs: 19.8 mg/g c | - | 24 h | Capillary adsorption | [113] |
Ball-milled carbon/CNTs | P, BM: carbon/CNTs, stainless steel balls (Φ = 3 mm), MM = 1:12, MT = 3 h | S = 358 m2/g, APS = ~500 nm CNTs: S = 78 m2/g | Sodium fluoride | T = 323 K, pH = 2 | Langmuir model | 0.36 mg/g a | PSO | 3.5 h | Physical adsorption and ion exchange | [192] |
Ball-milled graphene-based materials | ||||||||||
ECG | P, BM: graphite, stainless steel balls (Φ = 10 mm), MM = 1:7, RS = 600 rpm, MT = 4 and 8 h | S = 316.47–387.69 m2/g, V = 0.46–0.55 cm3/g, APS = 95 ± 5.27–164 ± 8.67 nm, O = 9.37–25.17%, pHpzc < 4.0 Graphite: S = 7.84 m2/g, V = 0.03 cm3/g | MB RB MO CV | T = 27.6 °C, pH = 4–10 | - | 97.7 ± 2–99.7 ± 0.2% c | - | 20 min | Physical absorption and electrostatic interaction | [125] |
Ni-MOF-GO | BM: GO + nickel acetate + 1,3,5-trimesic acid, stainless steel balls (560 g), RS = 235 rpm, MT = 30 min | S = 69.36 m2/g | CR | T = 298–318 K, pH = 4–10 | Freundlich model | 211.55–385.65 mg/g(L/mg)1/n b | PSO | - | Lewis acid–base interaction and ion exchange | [131] |
Al–carbon composites | P, BM: ZVAls (5 g) + NaCl (0.1 g) + ACs (0.05–0.5 g), ZrO2 balls (Φ = 5, 8 and 10 mm, 300 g, MR = 6: 3:1), RS = 300 rpm, MT = 1 h | S = 10.400 m2/g, Al = 44.05%, O = 10.42%, C = 44.49%, Na = 0.49%, Cl = 0.56% ZVAl: S = 3.099 m2/g, Al = 66.03%, O = 4.21%, C = 29.75% | Hexabromocyclododecane | T = 25 ± 1 °C, pH = 6.2 | - | >90% c | - | 1 h | - | [164] |
5. Regeneration
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, Q.; Chen, Z.; Wang, H.; Yang, H.; Wen, T.; Wang, S.; Hu, B.; Wang, X. Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci. Total Environ. 2021, 792, 148546. [Google Scholar] [CrossRef]
- Tang, H.; Wang, J.; Zhang, S.; Pang, H.; Wang, X.; Chen, Z.; Li, M.; Song, G.; Qiu, M.; Yu, S. Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. J. Clean. Prod. 2021, 319, 128641. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Y.; Lin, N.; Wang, R.; Wang, M.; Zhang, X. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. Environ. Pollut. 2022, 299, 118871. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Shi, Y.; Chang, Q.; Zhang, T.; Song, G.; Sun, Y.; Ding, G. A review on selective dye adsorption by different mechanisms. J. Environ. Chem. Eng. 2022, 10, 108639. [Google Scholar] [CrossRef]
- Mathur, P.; Sanyal, D.; Callahan, D.L.; Conlan, X.A.; Pfeffer, F.M. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health. Environ. Pollut. 2021, 291, 118233. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B.; Wang, C.; Liang, Z.; Cui, F.; Zhao, Z.; Yang, C. Cr(VI) removal by micron-scale iron-carbon composite induced by ball milling: The role of activated carbon. Chem. Eng. J. 2020, 389, 122633. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, K.; Zhang, Y.; Peng, C.; Robledo-Cabrera, A.; Lopez-Valdivieso, A. Highly surface activated carbon to remove Cr(VI) from aqueous solution with adsorbent recycling. Environ. Res. 2021, 197, 111151. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, W.; Bi, F.; Yan, S.; Miao, X.; Zhang, B.; Wang, Y.; Ge, C.; Zhang, Y. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(VI) and tetracycline from water. Environ. Pollut. 2022, 306, 119398. [Google Scholar] [CrossRef]
- Kishore, S.; Malik, S.; Shah, M.P.; Bora, J.; Chaudhary, V.; Kumar, L.; Sayyed, R.Z.; Ranjan, A. A comprehensive review on removal of pollutants from wastewater through microbial nanobiotechnology-based solutions. Biotechnol. Genet. 2022, 1–26. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhandari, G.; Bhatt, K.; Simsek, H. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy. Chemosphere 2022, 306, 135576. [Google Scholar] [CrossRef] [PubMed]
- Titchou, F.E.; Zazou, H.; Afanga, H.; El Gaayda, J.; Akbour, R.A.; Nidheesh, P.V.; Hamdani, M. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Process. 2021, 169, 108631. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.-G.; Maqbool, F.; Hu, Y. Removal of antibiotics pollutants in wastewater by uv-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review. J. Water Process. Eng. 2022, 45, 102496. [Google Scholar] [CrossRef]
- Oluwole, A.O.; Omotola, E.O.; Olatunji, O.S. Pharmaceuticals and personal care products in water and wastewater: A review of treatment processes and use of photocatalyst immobilized on functionalized carbon in aop degradation. BMC Chem. 2020, 14, 62. [Google Scholar] [CrossRef]
- Baig, U.; Faizan, M.; Sajid, M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review. Adv. Colloid Interface Sci. 2020, 285, 102276. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liao, Z.; Zhang, M.; Ni, L.; Qi, J.; Wang, C.; Sun, X.; Wang, L.; Wang, S.; Li, J. Sequential ultrafiltration-catalysis membrane for excellent removal of multiple pollutants in water. Environ. Sci. Technol. 2021, 55, 2652–2661. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Salman, M.S.; Hasan, M.N.; Hasan, M.M.; Kubra, K.T.; Sheikh, M.C.; Rehan, A.I.; Waliullah, R.M.; Rasee, A.I.; Awual, M.E.; Hossain, M.S.; et al. Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J. Mol. Struct. 2023, 1282, 135259. [Google Scholar] [CrossRef]
- Qu, J.; Shi, J.; Wang, Y.; Tong, H.; Zhu, Y.; Xu, L.; Wang, Y.; Zhang, B.; Tao, Y.; Dai, X.; et al. Applications of functionalized magnetic biochar in environmental remediation: A review. J. Hazard. Mater. 2022, 434, 128841. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. J. Clean. Prod. 2020, 265, 121762. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Chen, H.; Ni, B.J. Recent advances in waste-derived functional materials for wastewater remediation. Eco-Environ. Health 2022, 1, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, H.; Wu, S.; Pan, S.; Cui, D.; Wu, D.; Xu, F.; Wang, Z. Production of biomass-based carbon materials in hydrothermal media: A review of process parameters, activation treatments and practical applications. J. Energy Inst. 2023, 110, 101357. [Google Scholar] [CrossRef]
- Li, S.; Deng, J.; Xiong, L.; Wang, J.; Chen, Y.; Jiao, Y.; Jiang, L.; Dan, Y. Design and construct CeO2-ZrO2-Al2O3 materials with controlled structures via co-precipitation method by using different precipitants. Ceram. Int. 2018, 44, 20929–20938. [Google Scholar] [CrossRef]
- Zhao, H.; Lang, Y. Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar. J. Taiwan Inst. Chem. Eng. 2018, 88, 152–160. [Google Scholar] [CrossRef]
- Gong, L.; Qiu, X.; Tratnyek, P.G.; Liu, C.; He, F. FeNx(C)-coated microscale zero-valent iron for fast and stable trichloroethylene dechlorination in both acidic and basic pH conditions. Environ. Sci. Technol. 2021, 55, 5393–5402. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, J.; Wang, Y.; Liu, T. Enhanced elimination of V5+ in wastewater using zero-valent iron activated by ball milling: The overlooked crucial roles of energy input and sodium chloride. J. Hazard. Mater. 2022, 435, 129050. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, S.; Liang, T.; Yan, X.; Zhang, Y.; Zhou, Y.; Sarkar, B.; Ok, Y.S. Ball-milled magnetite for efficient arsenic decontamination: Insights into oxidation-adsorption mechanism. J. Hazard. Mater. 2022, 427, 128117. [Google Scholar] [CrossRef] [PubMed]
- Gayathiri, M.; Pulingam, T.; Lee, K.T.; Sudesh, K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere 2022, 294, 133764. [Google Scholar] [CrossRef]
- Jiang, B.; Lin, Y.; Mbog, J.C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics. Bioresour. Technol. 2018, 270, 603–611. [Google Scholar] [CrossRef]
- Soares, O.S.G.P.; Gonçalves, A.G.; Delgado, J.J.; Órfão, J.J.M.; Pereira, M.F.R. Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts. Catal. Today 2015, 249, 199–203. [Google Scholar] [CrossRef]
- Wang, Z.S.; Wang, Y.; Liao, J.L.; Yang, Y.Y.; Liu, N.; Tang, J. Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling. J. Radioanal. Nucl. Chem. 2016, 308, 1095–1102. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, X.; Xue, B.; Huang, P.; Hao, Y.; Tang, J.; Maletić, S.P.; Rončević, S.D.; Sun, H. Preparation of graphite-like biochars derived from straw and newspaper based on ball-milling and tempo-mediated oxidation and their supersorption performances to imidacloprid and sulfadiazine. Chem. Eng. J. 2021, 411, 128502. [Google Scholar] [CrossRef]
- Wang, W.; Gao, P.; Yang, C.; Zhao, Z.; Zhen, S.; Zhou, Y.; Zhang, T. Separable and reactivated magnetic mZVAl/nFe3O4 composite induced by ball milling for efficient adsorption-reduction- sequestration of aqueous Cr(VI). Sep. Purif. Technol. 2022, 288, 120689. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef]
- Amusat, S.O.; Kebede, T.G.; Dube, S.; Nindi, M.M. Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. J. Water Process. Eng. 2021, 41, 101993. [Google Scholar] [CrossRef]
- Hu, Y.; Li, B.; Yu, C.; Fang, H.; Li, Z. Mechanochemical preparation of single atom catalysts for versatile catalytic applications: A perspective review. Mater. Today 2023, 63, 288–312. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Dong, X.L.; Lu, A.H. Mechanochemical synthesis of porous carbons and their applications in catalysis. ChemPlusChem 2020, 85, 866–875. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Q.; Li, S.; Cagnetta, G.; Huang, J.; Deng, S.; Yu, G. Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective. Sci. Total Environ. 2022, 825, 153992. [Google Scholar] [CrossRef]
- Wang, P.; Hu, J.; Liu, T.; Han, G.; Ma, W.-M.; Li, J. New insights into ball-milled zero-valent iron composites for pollution remediation: An overview. J. Clean. Prod. 2023, 385, 135513. [Google Scholar] [CrossRef]
- Wei, M.; Wang, B.; Chen, M.; Lyu, H.; Lee, X.; Wang, S.; Yu, Z.; Zhang, X. Recent advances in the treatment of contaminated soils by ball milling technology: Classification, mechanisms, and applications. J. Clean. Prod. 2022, 340, 130821. [Google Scholar] [CrossRef]
- Balaz, P.; Achimovicova, M.; Balaz, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutkova, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef] [PubMed]
- Ditenberg, I.A.; Osipov, D.A.; Smirnov, I.V.; Grinyaev, K.V.; Esikov, M.A. Effect of preliminary high-energy ball milling on the structural-phase state and microhardness of ni3al samples obtained by spark plasma sintering. Adv. Powder Technol. 2023, 34, 130919. [Google Scholar] [CrossRef]
- Chuev, I.I.; Kovalev, D.Y. Effects of titanium high energy ball milling on the solid-phase reaction Ti+C. Mater. Chem. Phys. 2022, 283, 126025. [Google Scholar] [CrossRef]
- Delogu, F.; Gorrasi, G.; Sorrentino, A. Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Prog. Mater. Sci. 2017, 86, 75–126. [Google Scholar] [CrossRef]
- Arbain, R.; Othman, M.; Palaniandy, S. Preparation of iron oxide nanoparticles by mechanical milling. Miner. Eng. 2011, 24, 1–9. [Google Scholar] [CrossRef]
- Qian, L.; Li, H.; Wei, Z.; Liang, C.; Dong, X.; Lin, D.; Chen, M. Enhanced removal of cis-1,2-dichloroethene and vinyl chloride in groundwater using ball-milled sulfur- and biochar-modified zero-valent iron: From the laboratory to the field. Environ. Pollut. 2023, 336, 122424. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qian, L.; Liang, C.; Zheng, T.; Dong, X.; Chen, M. Enhanced Cr(VI) reduction by zero-valent iron and ferroferric oxide wet ball milling: Synergy of electron storage and electron transfer. Chem. Eng. J. 2023, 457, 141254. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Yu, X.; Hu, C.; Hu, J.; Li, R.; Zhang, Y. Functional metal powders: Design, properties, applications, and prospects. Mater. Sci. Eng. B 2022, 280, 115708. [Google Scholar] [CrossRef]
- Li, H.N.; Zhang, H.M.; Huang, K.K.; Liang, D.; Zhao, D.D.; Jiang, Z.Y. Effect of ball milling speed on the quality of Al2O3 stripped graphene in a wet milling medium. Ceram. Int. 2022, 48, 17171–17177. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, J.; Yang, S.; Fan, D.; Fu, P. Graphite-modified zero-valent aluminum prepared by mechanical ball milling for selective removal of hydrophobic carbon tetrachloride. Chem. Eng. J. 2023, 474, 145591. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, T.; Li, J.; Zhu, X. Enhanced gaseous acetone adsorption on montmorillonite by ball milling generated Si–OH and interlayer under synergistic modification with H2O2 and tetramethylammonium bromide. Chemosphere 2023, 321, 138114. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, L.; Shao, X.; Tong, J.; Zhou, J.; Feng, Y.; Chen, R.; Yang, Q.; Han, Y.; Yang, X.; et al. Characteristics and aqueous dye removal ability of novel biosorbents derived from acidic and alkaline one-step ball milling of hickory wood. Chemosphere 2022, 309, 136610. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, L.; Tong, J.; Shao, X.; Feng, Y.; Zhou, J.; Han, Y.; Yang, X.; Ding, F.; Zhang, J.; et al. Alkaline ball-milled peanut-hull biosorbent effectively removes aqueous organic dyes. Chemosphere 2023, 313, 137410. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, Y.; Wang, L.; Lyu, H.; Xia, S.; Tang, J. Effective removal of Hg(II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: Effect of different pyrolysis temperatures. Chemosphere 2022, 294, 133820. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah, A.; Khan, A.S.; Bhat, A.H.; Din, I.U.; Inayat, A.; Muhammad, N.; Bakhsh, E.M.; Khan, S.B. Effect of short time ball milling on physicochemical and adsorption performance of activated carbon prepared from mangosteen peel waste. Renew. Energy 2021, 168, 723–733. [Google Scholar] [CrossRef]
- Lee, S.H.; Annamalai, S.; Shin, W.S. Engineered ball-milled colloidal activated carbon material for advanced oxidation process of ibuprofen: Influencing factors and insights into the mechanism. Environ. Pollut. 2023, 322, 121023. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, N.; Goswami, R.; Kumar, M.; Kataki, R. Biosorption of Co(II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bioresour. Technol. 2017, 244, 1465–1469. [Google Scholar] [CrossRef]
- Abdelhadi, S.O.; Dosoretz, C.G.; Rytwo, G.; Gerchman, Y.; Azaizeh, H. Production of biochar from olive mill solid waste for heavy metal removal. Bioresour. Technol. 2017, 244, 759–767. [Google Scholar] [CrossRef]
- Wei, L.K.; Abd Rahim, S.Z.; Al Bakri Abdullah, M.M.; Yin, A.T.M.; Ghazali, M.F.; Omar, M.F.; Nemes, O.; Sandu, A.V.; Vizureanu, P.; Abdellah, A.E. Producing metal powder from machining chips using ball milling process: A review. Materials 2023, 16, 4635. [Google Scholar] [CrossRef]
- Zhang, F.; Han, F.; Lu, Y.; Wen, G.; Gu, S.; Wang, Z.; Tang, P. Experimental study and numerical simulation of the influence of ball milling parameters on granule sizes of mold powder. Powder Technol. 2023, 413, 118037. [Google Scholar] [CrossRef]
- Burmeister, C.F.; Kwade, A. Process engineering with planetary ball mills. Chem. Soc. Rev. 2013, 42, 7660–7667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Saito, F. A review on mechanochemical syntheses of functional materials. Adv. Powder Technol. 2012, 23, 523–531. [Google Scholar] [CrossRef]
- Tucho, W.M.; Mauroy, H.; Walmsley, J.C.; Deledda, S.; Holmestad, R.; Hauback, B.C. The effects of ball milling intensity on morphology of multiwall carbon nanotubes. Scr. Mater. 2010, 63, 637–640. [Google Scholar] [CrossRef]
- Pierard, N.; Fonseca, A.; Colomer, J.F.; Bossuot, C.; Benoit, J.M.; Van Tendeloo, G.; Pirard, J.P.; Nagy, J.B. Ball milling effect on the structure of single-wall carbon nanotubes. Carbon 2004, 42, 1691–1697. [Google Scholar] [CrossRef]
- Cheng, Z.; Lyu, H.; Shen, B.; Tian, J.; Sun, Y.; Wu, C. Removal of antimonite Sb(III) from aqueous solution using a magnetic iron-modified carbon nanotubes (CNTs) composite: Experimental observations and governing mechanisms. Chemosphere 2022, 288, 132581. [Google Scholar] [CrossRef] [PubMed]
- Huot, J.; Cuevas, F.; Deledda, S.; Edalati, K.; Filinchuk, Y.; Grosdidier, T.; Hauback, B.C.; Heere, M.; Jensen, T.R.; Latroche, M.; et al. Mechanochemistry of metal hydrides: Recent advances. Materials 2019, 12, 2778. [Google Scholar] [CrossRef] [PubMed]
- Toraman, O.Y.; Katırcıoglu, D. A study on the effect of process parameters in stirred ball mill. Adv. Powder Technol. 2011, 22, 26–30. [Google Scholar] [CrossRef]
- Bulgakov, V.; Pascuzzi, S.; Ivanovs, S.; Kaletnik, G.; Yanovich, V. Angular oscillation model to predict the performance of a vibratory ball mill for the fine grinding of grain. Biosyst. Eng. 2018, 171, 155–164. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Wijesekera, R. Ball milling—A green and sustainable technique for the preparation of titanium based materials from ilmenite. Curr. Res. Green Sustain. Chem. 2022, 5, 100236. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B.; Feng, G. Electromagnetic design and thermal analysis of module combined permanent magnet motor with wrapped type for mine ball mill. IET Electr. Power App. 2021, 16, 139–157. [Google Scholar] [CrossRef]
- Fu, H.; Li, X.; Wang, J.; Lin, P.; Chen, C.; Zhang, X.; Suffet, I.H. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. J. Environ. Sci. 2017, 56, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, Y.; Kim, S.; Chung, C.M.; Cho, K. Enhanced sulfate ion adsorption selectivity in capacitive deionization with ball-milled activated carbon. Desalination 2022, 540, 116014. [Google Scholar] [CrossRef]
- Chen, T.; Gu, W.; Li, G.; Wang, Q.; Liang, P.; Zhang, X.; Huang, X. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon. Front. Environ. Sci. Eng. 2017, 12, 6. [Google Scholar] [CrossRef]
- Yuan, R.; Dong, Y.; Hou, R.; Shang, L.; Zhang, J.; Zhang, S.; Chen, X.; Song, H. Structural transformation of porous and disordered carbon during ball-milling. Chem. Eng. J. 2023, 454, 140418. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Lu, Y.; Liu, C.; Yang, W. Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon 2015, 94, 472–478. [Google Scholar] [CrossRef]
- Gohr, M.; Abd-Elhamid, A.I.; El-Shanshory, A.A.; Soliman, H.M.A. Adsorption of cationic dyes onto chemically modified activated carbon: Kinetics and thermodynamic study. J. Mol. Liq. 2022, 346, 118227. [Google Scholar] [CrossRef]
- Shan, D.; Deng, S.; Zhao, T.; Wang, B.; Wang, Y.; Huang, J.; Yu, G.; Winglee, J.; Wiesner, M.R. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater. 2016, 305, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, F.; Beesley, L.; Trakal, L.; Ma, Y.; Sun, Y.; Zhang, Z.; Ding, Y. Removal of cadmium in aqueous solutions using a ball milling-assisted one-pot pyrolyzed iron-biochar composite derived from cotton husk. Environ. Sci. Pollut. Res. 2023, 30, 12571–12583. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Rouissi, T.; Verma, M.; Surampalli, R.Y.; Valero, J.R. A green method for production of nanobiochar by ball milling-optimization and characterization. J. Clean. Prod. 2017, 164, 1394–1405. [Google Scholar] [CrossRef]
- Liu, X.; Shen, F.; Qi, X. Adsorption recovery of phosphate from aqueous solution by cao-biochar composites prepared from eggshell and rice straw. Sci. Total Environ. 2019, 666, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, Z.; Jiang, Y.; Li, F.; Xue, B.; Dong, Z.; Ding, M.; Chen, R.; Yang, Q.; An, T.; et al. Micro-structure, surface properties and adsorption capacity of ball-milled cellulosic biomass derived biochar based mineral composites synthesized via carbon-bed pyrolysis. Appl. Clay Sci. 2020, 199, 105877. [Google Scholar] [CrossRef]
- Xiang, W.; Wan, Y.; Zhang, X.; Tan, Z.; Xia, T.; Zheng, Y.; Gao, B. Adsorption of tetracycline hydrochloride onto ball-milled biochar: Governing factors and mechanisms. Chemosphere 2020, 255, 127057. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yao, Y.; Deng, Z.; Tang, J.; Liu, Y.; Ma, J.; Zhang, Z. Ball milling and phosphoric acid hydrothermally co-functionalized sludge biochar for efficiently adsorptive removal of environmental concentration sulfamethoxazole: Experimental, characterization and dft study. Sep. Purif. Technol. 2024, 328, 125051. [Google Scholar] [CrossRef]
- Zou, H.; Zhao, J.; He, F.; Zhong, Z.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Yu, F.; Bashir, M.A.; et al. Ball milling biochar iron oxide composites for the removal of chromium Cr(VI) from water: Performance and mechanisms. J. Hazard. Mater. 2021, 413, 125252. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, Z.; Huang, J.; Gao, B.; Zhao, L.; Qiu, H.; Cao, X. Sorption of reactive red by biochars ball milled in different atmospheres: Co-effect of surface morphology and functional groups. Chem. Eng. J. 2021, 413, 127468. [Google Scholar] [CrossRef]
- Qi, G.; Pan, Z.; Zhang, X.; Miao, X.; Xiang, W.; Gao, B. Effect of ball milling with hydrogen peroxide or ammonia hydroxide on sorption performance of volatile organic compounds by biochar from different pyrolysis temperatures. Chem. Eng. J. 2022, 450, 138027. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, J.; Hu, R.; Wang, T.; Shao, X.; Chen, G.; Chen, L.; Tian, X. Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium. J. Mol. Liq. 2020, 303, 112659. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, Y.; Gao, B.; Cao, X. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chem. Eng. J. 2019, 368, 564–572. [Google Scholar] [CrossRef]
- Qu, J.; Xu, Y.; Zhang, X.; Sun, M.; Tao, Y.; Zhang, X.; Zhang, G.; Ge, C.; Zhang, Y. Ball milling-assisted preparation of N-doped biochar loaded with ferrous sulfide as persulfate activator for phenol degradation: Multiple active sites-triggered radical/non-radical mechanism. Appl. Catal. B Environ. Energy 2022, 316, 121639. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Liu, Y.; Tang, W.; Geng, S.; Chen, J. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar. Chemosphere 2022, 303, 135264. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Xia, S.; Tang, J.; Zhang, Y.; Gao, B.; Shen, B. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organicCH3Hg. J. Hazard. Mater. 2020, 384, 121357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Bing, X.; Jiao, L.; Xiao, H.; Li, B.; Sun, H. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar. Chem. Eng. J. 2022, 431, 133904. [Google Scholar] [CrossRef]
- Zheng, Y.; Wan, Y.; Chen, J.; Chen, H.; Gao, B. Mgo modified biochar produced through ball milling: A dual-functional adsorbent for removal of different contaminants. Chemosphere 2020, 243, 125344. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, X.; Gao, B.; Zou, W.; Dong, L. Facile ball-milling synthesis of cuo/biochar nanocomposites for efficient removal of reactive red 120. ACS Omega 2020, 5, 5748–5755. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Tian, F.; Zou, H.; Ye, Z.; Peng, C.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wei, X.; et al. Zno/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J. Hazard. Mater. 2021, 415, 125511. [Google Scholar] [CrossRef] [PubMed]
- Quan, G.; Sui, F.; Wang, M.; Cui, L.; Wang, H.; Xiang, W.; Li, G.; Yan, J. Mechanochemical modification of biochar-attapulgite nanocomposites for cadmium removal: Performance and mechanisms. Biochem. Eng. J. 2022, 179, 108332. [Google Scholar] [CrossRef]
- Li, F.; Wan, Y.; Chen, J.; Hu, X.; Tsang, D.C.W.; Wang, H.; Gao, B. Novel ball-milled biochar-vermiculite nanocomposites effectively adsorb aqueous As(Ⅴ). Chemosphere 2020, 260, 127566. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, B.; Lyu, H.; Li, D. Development of a novel pyrite/biochar composite (BM-FeS2@BC) by ball milling for aqueous Cr(VI) removal and its mechanisms. J. Hazard. Mater. 2021, 413, 125415. [Google Scholar] [CrossRef]
- Zhao, B.; Tang, J.; Lyu, H.; Liu, F.; Wang, L. Low molecular weight organic acids strengthen the electron transfer of natural fes2/biochar composite for Cr(VI) reduction: Experimental observations and governing mechanisms. J. Environ. Chem. Eng. 2022, 10, 107181. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Zhao, B.B.; Lyu, H.H. Activation of peroxydisulfate by ball-milled α-feooh/biochar composite for phenol removal: Component contribution and internal mechanisms. Environ. Pollut. 2022, 293, 118596. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Guo, S.; Tang, J.; Lyu, H.; Ri, C.; Sun, H. Enhanced removal of aged and differently functionalized polystyrene nanoplastics using ball-milled magnetic pinewood biochars. Environ. Pollut. 2023, 316, 120696. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zimmerman, A.R.; He, F.; Chen, J.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci. Total Environ. 2020, 722, 137972. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Luo, K.; Pi, Z.; Shen, P.; Zhou, P.; He, L.; Li, X.; Yang, Q. Insight to the mechanism of tetracycline removal by ball-milled nanocomposite CeO2/Fe3O4/biochar: Overlooked degradation behavior. Sep. Purif. Technol. 2023, 307, 122703. [Google Scholar] [CrossRef]
- Ai, D.; Wei, T.; Meng, Y.; Chen, X.; Wang, B. Ball milling sulfur-doped nano zero-valent iron @biochar composite for the efficient removal of phosphorus from water: Performance and mechanisms. Bioresour. Technol. 2022, 357, 127316. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yan, J.; Diao, Y.; Zhou, X.; Luo, T.; Wang, H.; Quan, G.; Sun, X.; Wang, J. Ball milled Mg/Al hydroxides modified nitrogen-rich biochar for arsenic removal: Performance and governing mechanism. Carbon Res. 2023, 2, 30. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, R.; Peng, Y.; Gao, X.; Li, Z.; Fan, B.; Guan, C.Y.; Beiyuan, J.; Zhou, Y.; Liu, J.; et al. New insights into ball milling effects on mgal-ldhs exfoliation on biochar support: A case study for cadmium adsorption. J. Hazard. Mater. 2021, 416, 126258. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, L.; Tong, J.; Shao, X.; Chen, R.; Yang, Q.; Li, F.; Xue, B.; Li, G.; Han, Y.; et al. Synthesis of hickory biochar via one-step acidic ball milling: Characteristics and titan yellow adsorption. J. Clean. Prod. 2022, 338, 130575. [Google Scholar] [CrossRef]
- Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 2019, 14, 220. [Google Scholar] [CrossRef]
- Huang, J.Y.; Yasuda, H.; Mori, H. Highly curved carbon nanostructures produced by ball-milling. Chem. Phys. Lett. 1999, 303, 130–134. [Google Scholar] [CrossRef]
- Oh, Y.; Choi, J.; Kim, Y.; Kim, K.; Baik, S. The effects of ball milling process on the diameter dependent fracture of single walled carbon nanotubes. Scr. Mater. 2007, 56, 741–744. [Google Scholar] [CrossRef]
- Liu, Z.T.; Fei, Z.H.; Wang, J.P.; Li, Z.X.; Chen, J.; Wu, X.H. Adsorption of nitrobenzene using short open-ended carbon nanotubes as adsorbent. Asian J. Chem. 2014, 26, 903–905. [Google Scholar] [CrossRef]
- Ahn, J.H.; Shin, H.S.; Kim, Y.J.; Chung, H. Structural modification of carbon nanotubes by various ball milling. J. Alloys Compd. 2007, 434, 428–432. [Google Scholar] [CrossRef]
- Soares, O.S.G.P.; Rocha, R.P.; Gonçalves, A.G.; Figueiredo, J.L.; Órfão, J.J.M.; Pereira, M.F.R. Easy method to prepare N-doped carbon nanotubes by ball milling. Carbon 2015, 91, 114–121. [Google Scholar] [CrossRef]
- Coa, F.; Strauss, M.; Clemente, Z.; Rodrigues Neto, L.L.; Lopes, J.R.; Alencar, R.S.; Souza Filho, A.G.; Alves, O.L.; Castro, V.; Barbieri, E.; et al. Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method: Application for Cu(II) ions removal from water and aquatic ecotoxicity. Sci. Total Environ. 2017, 607–608, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Bor, A.; Ichinkhorloo, B.; Uyanga, B.; Lee, J.; Choi, H. Cu/CNT nanocomposite fabrication with different raw material properties using a planetary ball milling process. Powder Technol. 2018, 323, 563–573. [Google Scholar] [CrossRef]
- Jargalsaikhan, B.; Bor, A.; Lee, J.; Choi, H. Al/CNT nanocomposite fabrication on the different property of raw material using a planetary ball mill. Adv. Powder Technol. 2020, 31, 1957–1962. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zhang, X.M.; Deng, J.H.; Liu, Y. A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient fenton-like catalyst for degradation of sulfonamides. Chemosphere 2021, 277, 130305. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Cao, T.M.; Nguyen, T.T.; Van Pham, V. Improving photocatalytic oxidation of semiconductor (TiO2, SnO2, ZnO)/CNTs for nox removal. J. Ind. Eng. Chem. 2023, 127, 321–330. [Google Scholar] [CrossRef]
- Olszewski, R.; Nadolska, M.; Lapinski, M.; Przesniak-Welenc, M.; Cieslik, B.M.; Zelechowska, K. Solvent-free synthesis of phosphonic graphene derivative and its application in mercury ions adsorption. Nanomaterials 2019, 9, 485. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Ji, X.; Wang, W.; Chen, X.; Wang, P.; Wang, L.; Bai, J. Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3d printing. Compos. Part B Eng. 2021, 208, 108598. [Google Scholar] [CrossRef]
- Rout, D.R.; Jena, H.M.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. Sci. Total Environ. 2023, 863, 160871. [Google Scholar] [CrossRef]
- Yu, W.G.; Gao, X.F.; Yuan, Z.C.; Liu, H.H.; Wang, X.C.; Zhang, X.X. Facial fabrication of few-layer functionalized graphene with sole functional group through diels-alder reaction by ball milling. RSC Adv. 2022, 12, 17990–18003. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, M.; Yadav, S.; Hung, W.S.; Lai, J.Y. One-pot eco-friendly synthesis of edge-carboxylate graphene via dry ball milling for enhanced removal of acid and basic dyes from single or mixed aqueous solution. J. Clean. Prod. 2020, 263, 121498. [Google Scholar] [CrossRef]
- Chandran, S.V.; Narayanan, B.N. Copper oxide incorporated ball-mill produced less-defective graphene for hybrid supercapacitors. Diam. Relat. Mater. 2024, 143, 110842. [Google Scholar] [CrossRef]
- Suvarna, K.S.; Binitha, N.N. Graphene preparation by jaggery assisted ball-milling of graphite for the adsorption of Cr(VI). Mater. Today Proc. 2020, 25, 236–240. [Google Scholar] [CrossRef]
- Pan, P.F.; Wang, X.; Ji, Y.Q.; Dong, W.M.; Zhang, L.; Wang, L.; Zhang, M. One-step synthesis of ZrO2 nanopowders dispersed with graphene by ball milling. Ceram. Int. 2020, 46, 24799–24804. [Google Scholar] [CrossRef]
- Caicedo, F.M.C.; López, E.V.; Agarwal, A.; Drozd, V.; Durygin, A.; Hernandez, A.F.; Wang, C.L. Synthesis of graphene oxide from graphite by ball milling. Diam. Relat. Mater. 2020, 109, 108064. [Google Scholar] [CrossRef]
- Zhuang, S.; Lee, E.S.; Lei, L.; Nunna, B.B.; Kuang, L.; Zhang, W. Synthesis of nitrogen-doped graphene catalyst by high-energy wet ball milling for electrochemical systems. Int. J. Energy Res. 2016, 40, 2136–2149. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Chen, D.; Wei, F.H.; Chen, N.N.; Liang, Z.; Luo, Y. Removal of congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. Ultrason. Sonochem. 2017, 39, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Chi, Q.Q.; Zhou, H.; Gao, P. Ball-milling preparation of titanium/graphene composites and its enhanced hydrogen storage ability. Int. J. Hydrogen Energy 2018, 43, 19164–19173. [Google Scholar] [CrossRef]
- Wang, W.G.; Babu, D.D.; Huang, Y.Y.; Lv, J.Q.; Wang, Y.B.; Wu, M.X. Atomic dispersion of Fe/Co/N on graphene by ball-milling for efficient oxygen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 10351–10358. [Google Scholar] [CrossRef]
- Song, M.Y.; Choi, E.; Kwak, Y.J. Increase in the dehydrogenation rates and hydrogen-storage capacity of mg-graphene composites by adding nickel via reactive ball milling. Mater. Res. Bull. 2020, 130, 110938. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Y.Q.; Song, J.H.; Zhang, Y.J.; Shi, Q.; Wang, J.X.; Tian, F.H.; Yuan, S.; Su, Z.; Zhou, C.; et al. Functionalization-assistant ball milling towards si/graphene anodes in high performance li-ion batteries. Carbon 2021, 181, 300–309. [Google Scholar] [CrossRef]
- Kahimbi, H.; Hong, S.B.; Yang, M.H.; Choi, B.G. Simultaneous synthesis of nio/reduced graphene oxide composites by ball milling using bulk ni and graphite oxide for supercapacitor applications. J. Electroanal. Chem. 2017, 786, 14–19. [Google Scholar] [CrossRef]
- Tan, M.A.; Qin, Y.; Luo, J.X.; Wang, Y.P.; Zhang, F.Z.; Zhao, X.H.; Lei, X.D. Cus loaded on reduced graphene oxide prepared by ball milling method as cathode material for high- power aqueous Cu-Al hybrid-ion batteries. Electrochim. Acta 2024, 476, 143734. [Google Scholar] [CrossRef]
- Ahmad, J.; Sofi, F.A.; Mehraj, O.; Majid, K. Fabrication of highly photocatalytic active anatase TiO2-graphene oxide heterostructures via solid phase ball milling for environmental remediation. Surf. Interfaces 2018, 13, 186–195. [Google Scholar] [CrossRef]
- Cheng, J.P.; Xiong, D.P.; Jiang, W.Q.; Ye, W.B.; Song, P.; Feng, Z.Y.; He, M. SnO2-MoO2 nanoparticles coated on graphene oxide as a high-capacity, high-speed, long-life lithium-ion battery anode. Chem. Phys. Lett. 2024, 835, 140994. [Google Scholar] [CrossRef]
- Ravichandran, S.; Sahadevan, J.; Sivaprakash, P.; Sagadevan, S.; Kim, I.; Tighezza, A.M.; Ali, A.; Muthu, S.E. Synthesis and physicochemical properties of graphene incorporated indium tin oxide nanocomposites for optoelectronic device applications. Mat. Sci. Eng. B-Adv. 2024, 301, 117199. [Google Scholar] [CrossRef]
- Mondal, O.; Mitra, S.; Pal, M.; Datta, A.; Dhara, S.; Chakravorty, D. Reduced graphene oxide synthesis by high energy ball milling. Mater. Chem. Phys. 2015, 161, 123–129. [Google Scholar] [CrossRef]
- Li, T.L.; Teng, Y.X.; Li, X.; Luo, S.J.; Xiu, Z.M.; Wang, H.T.; Sun, H.W. Sulfidated microscale zero-valent iron/reduced graphene oxide composite (S-mZVI/rGO) for enhanced degradation of trichloroethylene: The role of hydrogen spillover. J. Hazard. Mater. 2023, 446, 130657. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Ambika, S.; Devasena, M.; Nambi, I.M. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in fenton reaction. J. Environ. Manag. 2016, 181, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, D.; She, L.; Guo, F.; Jia, F.; Zhang, L.; Ai, Z.; Liu, X. Ball-milled zero-valent iron with formic acid for effectively removing Cu(II)-edta accomplished by edta ligands oxidative degradation and Cu(II) removal. J. Hazard. Mater. 2024, 465, 133009. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zheng, Z.; Zhao, L.; Qiu, Z.; Zeng, D. Oxalic acid modification enables high efficiency and proton conductive of Fe-base amorphous toward acid orange II in wastewater removal. Sep. Purif. Technol. 2024, 332, 125768. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, Z.; Gao, Y.; Yan, S.; Peng, X.; Shen, W. Efficient Cu(II) removal with boronated zero-valent iron via inhibition of oxygen adsorption and enhanced electron transfer. Appl. Surf. Sci. 2024, 654, 159466. [Google Scholar] [CrossRef]
- Hou, M.; Zhang, Y.; Jiao, X.; Ding, N.; Jiao, Y.; Pan, Y.; Xue, J.; Zhang, Y. Polyphenol-modified zero-valent iron prepared using ball milling technology for hexavalent chromium removal: Kinetics and mechanisms. Sep. Purif. Technol. 2023, 326, 124874. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, J.; Xiao, M.; Zhang, X.; Li, J.; Jiang, W.; Yan, J.; Qin, Z.; Zhang, S.; He, W.; et al. Ethylenediaminetetraacetic acid induces surface erosion of zero-valent iron for enhanced hexavalent chromium removal. Appl. Surf. Sci. 2020, 525, 146593. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, L.; Zhang, Y.; Zhou, S.; Yu, Z.; Liu, X.; Chen, C. Enhanced removal of organic pollutants by ball-milled Fes/ZVl activated persulfate process: Characterization, performance, and mechanisms. Surf. Interfaces 2022, 29, 101697. [Google Scholar] [CrossRef]
- Du, M.; Kuang, H.; Zhang, Y.; Zeng, X.; Yi, C.; Hussain, I.; Huang, S.; Zhao, S. Enhancement of ball-milling on pyrite/zero-valent iron for persulfate activation on imidacloprid removal in aqueous solution: A mechanistic study. J. Environ. Chem. Eng. 2021, 9, 105647. [Google Scholar] [CrossRef]
- Song, X.; Tian, J.; Ma, J.; Ni, J.; Liu, D.; Wang, W.; Shi, W.; Yuan, Y.; Cui, F.; Chen, Z. Peroxydisulfate activation by a versatile ball-milled nZVl@MoS2 composite: Performance and potential activation mechanism. Chem. Eng. J. 2023, 453, 139830. [Google Scholar] [CrossRef]
- Wu, S.; Deng, S.; Ma, Z.; Liu, Y.; Yang, Y.; Jiang, Y. Ferrous oxalate covered zvi through ball-milling for enhanced catalytic oxidation of organic contaminants with persulfate. Chemosphere 2022, 287, 132421. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ding, G.; Yan, L.; Wang, R.; Zhang, W.; Wang, X.; Rao, P. Ball-milled sulfide iron-copper bimetals based composite permeable materials for Cr(VI) removal: Effects of preparation parameters and kinetics study. Chemosphere 2023, 338, 139388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, Y.; Kang, S.; Bai, H.; Gu, W.; Fang, D.; Komarneni, S.; Zhang, Q. Mechanical activation of zero-valent iron (ZVl) in the presence of CaCo3: Improved reactivity of zvi for enhancing As(III) removal from water. J. Clean. Prod. 2021, 286, 124926. [Google Scholar] [CrossRef]
- Zhao, J.; Su, A.; Tian, P.; Tang, X.; Collins, R.N.; He, F. Arsenic (III) removal by mechanochemically sulfidated microscale zero valent iron under anoxic and oxic conditions. Water Res. 2021, 198, 117132. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Wang, S.; Liu, Y.; Cao, Z.; Yang, L.; He, F. Enhanced removal of hexavalent chromium by lignosulfonate modified zero valent iron: Reaction kinetic, performance and mechanism. Sci. Total Environ. 2023, 857, 159397. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Liu, Q.; Qin, Y.; Liu, W.; Zhang, L. Efficient Fe(III)/Fe(II) cycling mediated by l-cysteine functionalized zero-valent iron for enhancing Cr(VI) removal. J. Hazard. Mater. 2023, 456, 131717. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, D.; Gao, F.; Liu, L.; Liu, Q.; Wang, L.; Tang, J. Mechanochemical nitridation of micron zero-valent iron for enhanced dechlorination of trichloroethylene: Mechanistic insights into nitrogen sources and ball milling conditions. Sep. Purif. Technol. 2024, 337, 126381. [Google Scholar] [CrossRef]
- Hu, Y.; Ke, K.; Sun, H.; Wang, Z.; Zhang, X.; Shen, W.; Huang, S.; Lu, W.; Wang, X. Coffee grounds modified zero-valent iron for efficient heavy metal removal. J. Water Process. Eng. 2023, 56, 104397. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Z.; Fan, J.; Wang, W.; Li, L.; Liu, J. Spinel ferrite-enhanced Cr(VI) removal performance of micro-scale zero-valent aluminum: Synergistic effects of oxide film destruction and lattice spacing expansion. Sep. Purif. Technol. 2022, 294, 121110. [Google Scholar] [CrossRef]
- Ren, T.; Zhang, Y.; Liu, J.; Zhang, Y.; Yang, S. Ethanol-assisted mechanical activation of zero-valent aluminum for fast and highly efficient removal of Cr(VI). Appl. Surf. Sci. 2020, 533, 147543. [Google Scholar] [CrossRef]
- Wu, S.; Yang, S.Y.; Liu, S.J.; Zhang, Y.X.; Ren, T.F.; Zhang, Y.Q. Enhanced reactivity of zero-valent aluminum with ball milling for phenol oxidative degradation. J. Colloid Interface Sci. 2020, 560, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.T.; Yang, S.Y.; Wang, M.Q.; Xue, Y.C.; Liu, J.Q.; Li, Y.; Zhao, D.Y. A novel ball-milled aluminum-carbon composite for enhanced adsorption and degradation of hexabromocyclododecane. Chemosphere 2021, 279, 130520. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Wang, Q.; Feng, C.; Zhang, Z.; Lei, Z.; Shimizu, K. Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters. J. Mol. Liq. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.; Li, N.; Wang, W.; Nan, J.; Zhao, Z.; Cui, F. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study. Chem. Eng. J. 2016, 304, 737–746. [Google Scholar] [CrossRef]
- Ye, H.Y.; Yu, K.; Li, B.; Guo, J.Z. Study on adsorption properties and mechanism of sodium hydroxide-modified ball-milled biochar to dislodge lead(II) and mb from water. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Zhang, P.; Wang, X.; Cao, Y.; Han, L. Qualitative and quantitative correlation of physicochemical characteristics and lead sorption behaviors of crop residue-derived chars. Bioresour. Technol. 2018, 270, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Hu, R.; Chen, G. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). J. Hazard. Mater. 2020, 387, 121980. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Deng, H.; Zhang, Z.; Wang, J.J.; Shaheen, S.M.; Xiao, R.; Rinklebe, J.; Xi, B.; He, X.; et al. Removing tetracycline and Hg(II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. J. Hazard. Mater. 2020, 384, 121095. [Google Scholar] [CrossRef]
- Qu, J.; Wu, Z.; Liu, Y.; Li, R.; Wang, D.; Wang, S.; Wei, S.; Zhang, J.; Tao, Y.; Jiang, Z.; et al. Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. Bioresour. Technol. 2022, 360, 127407. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Cheng, J.; Xiao, X.; Liao, X.; Zhang, S.; Shi, B. Pyrolysis combined ball-milling for the preparation of biochar from chinese baijiu distillers’ grains for the adsorption of heavy metal ions. Ind. Crops Prod. 2023, 203, 117234. [Google Scholar] [CrossRef]
- Zawrah, M.F.; Alhogbi, B.G. Preparation and characterization of SiO2@C nanocomposites from rice husk for removal of heavy metals from aqueous solution. Ceram. Int. 2021, 47, 23240–23248. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, B.; Tong, H.; Liu, Y.; Wang, S.; Wei, S.; Wang, L.; Wang, Y.; Zhang, Y. High-efficiency decontamination of Pb(II) and tetracycline in contaminated water using ball-milled magnetic bone derived biochar. J. Clean. Prod. 2023, 385, 135683. [Google Scholar] [CrossRef]
- Qu, J.; Che, N.J.; Niu, G.L.; Liu, L.F.; Li, C.L.; Liu, Y.L. Iron/manganese binary metal oxide-biochar nano-composites with high adsorption capacities of Cd2+: Preparation and adsorption mechanisms. J. Water Process. Eng. 2023, 51, 103332. [Google Scholar] [CrossRef]
- Di, Z.C.; Ding, J.; Peng, X.J.; Li, Y.H.; Luan, Z.K.; Liang, J. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 2006, 62, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Hu, E.; Yang, S.; Gong, L.; He, F. Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant. Sci. Total Environ. 2019, 650, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xiao, W.; Shen, G.; Ji, G.; Zhang, Y.; Gao, C.; Han, L. Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: Competitive effects of ion exchange and precipitation. Bioresour. Technol. 2019, 273, 70–76. [Google Scholar] [CrossRef]
- Du, H.; Xi, C.; Tang, B.; Chen, W.; Deng, W.; Cao, S.; Jiang, G. Performance and mechanisms of naoh and ball-milling co-modified biochar for enhanced the removal of Cd2+ in synthetic water: A combined experimental and dft study. Arab. J. Chem. 2022, 15, 103817. [Google Scholar] [CrossRef]
- Meng, P.; Fang, X.; Maimaiti, A.; Yu, G.; Deng, S. Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon. Chemosphere 2019, 224, 187–194. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Tang, J.; Crittenden, J.C. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem. Eng. J. 2018, 335, 110–119. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Pulicharla, R.; Rouissi, T.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: Adsorption behavior and influential parameters. Arab. J. Chem. 2019, 12, 5292–5301. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Lyu, H.; Zhao, Q.; Jiang, L.; Liu, L. Ball-milled biochar for galaxolide removal: Sorption performance and governing mechanisms. Sci. Total Environ. 2019, 659, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zimmerman, A.R.; Chen, H.; Gao, B. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater. Environ. Pollut. 2020, 258, 113809. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zeng, C.; Ding, Y.; Tang, J.; Mašek, O.; Deng, Z.; Mu, R.; Zhang, Z. Facile synthesis of ball milling and magnetization co-modified sludge-derived biochar for efficient adsorbing environmental concentration sulfamethoxazole from various waters: Performance and mechanism. Sep. Purif. Technol. 2024, 331, 125584. [Google Scholar] [CrossRef]
- Tang, J.; Ma, Y.; Cui, S.; Ding, Y.; Zhu, J.; Chen, X.; Zhang, Z. Insights on ball milling enhanced iron magnesium layered double oxides bagasse biochar composite for ciprofloxacin adsorptive removal from water. Bioresour. Technol. 2022, 359, 127468. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yi, Y.; Zhang, N.; Tsang, P.E.; Fang, Z. Removal of fluconazole from aqueous solution by magnetic biochar treated by ball milling: Adsorption performance and mechanism. Environ. Sci. Pollut. R 2022, 29, 33335–33344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Y.; Yang, Y.; Huang, J.; Zimmerman, A.R.; Chen, H.; Hu, X.; Gao, B. Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour. Technol. 2021, 337, 125432. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Wei, C.; Yu, Z.; Ji, L.; Liu, M.; Cao, Q.; Wu, L.; Li, F. Fabrication of iron-containing biochar by one-step ball milling for Cr(VI) and tetracycline removal from wastewater. Langmuir 2023, 39, 18958–18970. [Google Scholar] [CrossRef]
- Yan, N.; Hu, B.; Zheng, Z.; Lu, H.; Chen, J.; Zhang, X.; Jiang, X.; Wu, Y.; Dolfing, J.; Xu, L. Twice-milled magnetic biochar: A recyclable material for efficient removal of methylene blue from wastewater. Bioresour. Technol. 2023, 372, 128663. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhang, A.M.; Yin, Y.; Dong, Y.M.; Cui, Y.C.; Zhang, X.; Hong, J.M. The investigation of adsorptive performance on modified multi-walled carbon nanotubes by mechanical ball milling. Mater. Chem. Phys. 2007, 101, 30–34. [Google Scholar] [CrossRef]
- Araga, R.; Kali, S.; Sharma, C.S. Coconut-shell-derived carbon/carbon nanotube composite for fluoride adsorption from aqueous solution. CLEAN–Soil Air Water 2019, 47, 1800286. [Google Scholar] [CrossRef]
- Feng, K.; Xu, Z.; Gao, B.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Mesoporous ball-milling iron-loaded biochar for enhanced sorption of reactive red: Performance and mechanisms. Environ. Pollut. 2021, 290, 117992. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ma, Y.; Zeng, C.; Yang, L.; Cui, S.; Zhi, S.; Yang, F.; Ding, Y.; Zhang, K.; Zhang, Z. Fe-al bimetallic oxides functionalized-biochar via ball milling for enhanced adsorption of tetracycline in water. Bioresour. Technol. 2023, 369, 128385. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C.M.; Anitha, K.L. Latest trends in heavy metal removal from wastewater by biochar based sorbents. J. Water Process. Eng. 2020, 38, 101561. [Google Scholar] [CrossRef]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A.; et al. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef]
Materials | Pollutants | Regeneration Method | Reusability | Ref. | |
---|---|---|---|---|---|
BM-SnZVI@BC | Phosphorus | Ball milling regeneration | Ball milling adsorbents again | The removal rate of phosphate was 91.6% by ball milling adsorbents again, and the removal rate still reached 80.4% after five cycles. | [106] |
Mechanically activated ZVAl particles | Cr(VI) | Ball milling adsorbents again | The Cr(VI) removal was restored to 100% by ball milling ZVAls again. | [162] | |
ZVAls/NiFe2O4 | Cr(VI) | Ball milling adsorbents again with additional amount of NiFe2O4 | The Cr(VI) removal was restored to 100% after the second ball milling of materials. | [161] | |
ZVAls/Fe3O4 | Cr(VI) | Ball milling adsorbents again with additional amount of magnetic powders. | The removal efficiency of Cr(VI) was restored by ball milling ZVAl/Fe3O4 with magnetic powders again. | [34] | |
ZVIs/AC | Cr(VI) | Ball milling adsorbents again with additional amount of ACs. | The efficiency of Cr(VI) removal could almost be recovered completely by ball milling ZVI/AC with a small amount of ACs. | [8] | |
Graphite-like biochars | IMI SUL | Thermal regeneration | Pyrolysis at 500 °C for 2 h under N2 atmosphere | The adsorption capacities of IMI and SUL decreased to 85.6–88.3% and 86.7–89.7% of the initial adsorption capacities, respectively, after the fifth cycle. | [33] |
HGO | Cr(VI) | Thermal regeneration combined with solvents | 1.0 M NaOH and calcination at 400 °C for 1 h | There was 100% retention of its initial performance in further adsorption studies. | [127] |
HACs | Cr(VI) | Solvent regeneration | 0.1 M H2SO4 | The removal efficiency of Cr(VI) increased from 92.2% to 96.3% after acid regeneration. | [9] |
PFBCs | U(VI) | 0.6 M HCl | The adsorption capacity of U(VI) decreased by about 33.25% within six cycles. | [89] | |
0.1 M Na2CO3 | The adsorption capacity of U(VI) decreased by about 21.6%, respectively, within six cycles. | ||||
Fe/Mn-BCs | Cd(II) | 0.1 M HCl | The adsorption capacity maintained 41–70% of the first adsorption capacity after five cycles. | [175] | |
BM-Fe3O4-BC | Pb(II) | 0.5 M NaOH | The adsorption capacity decreased by only 21.14% after three cycles. | [174] | |
TC | Anhydrous ethanol | The desorption rate was still above 45.41% after three cycles. | |||
MgO-biochars | Ni(II) | 0.01 M EDTA-2Na | The adsorption capacity remained at ∼80% in the 4th cycle and remained stable after that. | [172] | |
Fe@MBC | TC | 0.1 M NaOH | The adsorption rate decreased from 84.56% to 78.43% after the third cycle. | [189] | |
Mg/Al-BCs | TC | 0.1 M NaOH | The adsorption amount was 54.5 mg/g after the fifth cycle, which was 91.4% of the original adsorption capacity. | [194] | |
BM-LDOs-BC | CIP | NaOH | The adsorption capacity was still about 50 mg/g after five cycles, which accounted for 83% of the original adsorption capacity. | [186] | |
Ball-milling iron-loaded biochars | RR | 1.0 M NaOH | The adsorption capacities were 47.9 and 54.6 mg/g at pH of 3 and 7.5, respectively, after the third cycle. | [193] | |
BM-PASBCs | SMX | 0.1 M NaOH | The adsorption capacities were 95.3% of the initial adsorption capacities after five cycles. | [84] | |
BC-SBCs | SMX | 0.1M NaOH | The adsorption ability could reach 98.5% of the original amount after five cycles. | [185] | |
BM-PBCs | Cr(VI) TC | 1.0 M NaOH | The desorption efficiencies for Cr (VI) and TC were above 72.6–73.5% and 58.8–65.0% after four cycles. | [171] | |
BM-BCs | TC Hg(II) | 0.2 M NaOH 0.5 M Na2S | The adsorption amounts of TC and Hg(II) were approximately 90.55 and 87.36 mg/g, respectively, after five cycles. | [170] | |
BM-BCs | Pb(II) | 0.1 M HNO3 | The adsorption efficiency of Pb(II) and MB remained about 85% after five cycles. | [167] | |
MB | 0.1 M HCl | ||||
AC-COOH | MB CV | 1.0 M HCl, 1.0 M NaOH, and water (1/1/1, v/v/v) | The adsorption capabilities of MB and CV decreased after each cycle. | [77] | |
Magnetic ACs | PFCs | Methanol | In the first three adsorption cycles, the adsorption amount decreased slightly (from 0.66 mmol/g to 0.53 mmol/g) and then remained stable. | [180] | |
MBCs | MB | Anhydrous ethanol | The adsorption rates were 90.1%, 86.7%, 84.8%, 82.3%, and 81.9%, respectively, in the five cycles. | [104] | |
Twice-milled magnetic biochars | MB | Ethanol | There was only a slight drop in the adsorption capacity after four cycles. | [190] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Fan, X.; Sun, D.; Zeng, G.; Wang, Q.; Wang, Q. Recent Advances in Ball-Milled Materials and Their Applications for Adsorptive Removal of Aqueous Pollutants. Water 2024, 16, 1639. https://doi.org/10.3390/w16121639
Gao P, Fan X, Sun D, Zeng G, Wang Q, Wang Q. Recent Advances in Ball-Milled Materials and Their Applications for Adsorptive Removal of Aqueous Pollutants. Water. 2024; 16(12):1639. https://doi.org/10.3390/w16121639
Chicago/Turabian StyleGao, Pei, Xuanhao Fan, Da Sun, Guoming Zeng, Quanfeng Wang, and Qihui Wang. 2024. "Recent Advances in Ball-Milled Materials and Their Applications for Adsorptive Removal of Aqueous Pollutants" Water 16, no. 12: 1639. https://doi.org/10.3390/w16121639
APA StyleGao, P., Fan, X., Sun, D., Zeng, G., Wang, Q., & Wang, Q. (2024). Recent Advances in Ball-Milled Materials and Their Applications for Adsorptive Removal of Aqueous Pollutants. Water, 16(12), 1639. https://doi.org/10.3390/w16121639