Fungal F8-Culture Filtrate Induces Tomato Resistance against Tomato Yellow Leaf Curl Thailand Virus
<p>Symptoms on H<sub>2</sub>O or F8-culture filtrate pretreated Yu-Nu tomato plants inoculated with tomato yellow leaf curl Thailand virus (TYLCTHV). The level of disease index was recorded at 28 days post inoculation (dpi) in the H<sub>2</sub>O or F8-culture filtrate pretreated group (<b>A</b>,<b>C</b>,<b>E</b>). The average disease index of plants inoculated with TYLCTHV according to the specified pretreatment groups (<b>B</b>,<b>D</b>,<b>F</b>). Data represent mean ± SEM; <span class="html-italic">n</span> = 6–7 biological replicates. Student’s <span class="html-italic">t</span>-test was used for comparative analysis of the data for the F8-culture filtrate pretreated group and the H<sub>2</sub>O pretreated control group. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 2
<p>Quantification of TYLCTHV genomic DNA in inoculated tomato plants pretreated with F8-culture filtrate or H<sub>2</sub>O. Relative TYLCTHV DNA level was quantified from H<sub>2</sub>O or F8-culture filtrate pretreated plants corresponding to Exp. 1, 2, and 3 in <a href="#viruses-13-01434-f001" class="html-fig">Figure 1</a> by qPCR analysis. TYLCTHV DNA was detected from individual samples of TYLCTHV-inoculated leaves (<b>A</b>,<b>E</b>,<b>I</b>) or systemic leaves (<b>C</b>,<b>G</b>,<b>K</b>). Three technical replicates were performed for all samples. Data represent mean ± SEM. β-actin was used as an input control. The average of TYLCTHV DNA detected from (<b>A</b>,<b>E</b>,<b>J</b>) are shown in (<b>B</b>,<b>F</b>,<b>J</b>), respectively. The average of TYLCTHV DNA detected from (<b>C</b>,<b>G</b>,<b>K</b>) are shown in (<b>D</b>,<b>H</b>,<b>L</b>), respectively. Data represent mean ± SEM; <span class="html-italic">n</span> = 3–6 biological replicates. β-actin was used as an input control. Student’s <span class="html-italic">t</span>-test was used for comparative analysis of the data for the F8-culture filtrate pretreated group and the H<sub>2</sub>O pretreated control group.</p> "> Figure 3
<p>Fresh weight of Yu-Nu tomato with H<sub>2</sub>O or F8-culture filtrate pretreatment. (<b>A</b>) The average fresh weight was recorded for each treatment group (<span class="html-italic">n</span> = 11). (<b>B</b>) The phenotype of H<sub>2</sub>O or F8-culture filtrate at 5 weeks post treatment.</p> "> Figure 4
<p>The expression of phytohormone-mediated immune marker genes in F8-culture filtrate or H<sub>2</sub>O pretreated Yu-Nu tomato before or after TYLCTHV inoculation. Tomato plants were pretreated with H<sub>2</sub>O or F8-culture filtrate and inoculated with TYLCTHV using whitefly vector at 24 hpt. The relative expression of SA-responsive gene <span class="html-italic">PR-1</span> (<b>A</b>) and <span class="html-italic">PR-5</span> (<b>B</b>), jasmonic acid (JA)-biosynthesis gene <span class="html-italic">OPR3</span> (<b>C</b>), JA-responsive gene <span class="html-italic">STH2</span> (<b>D</b>), and ethylene (ET)-responsive gene <span class="html-italic">ETR4</span> (<b>E</b>) and <span class="html-italic">Pti4</span> (<b>F</b>) were detected by qRT-PCR at 0, 12 and 24 hpt or at 4 dpi. β-actin was used as an input control. Data are mean ± SEM of 3 biological replicates. Student’s <span class="html-italic">t</span>-test was used for comparative analysis of the data for the H<sub>2</sub>O and F8-culture filtrate pretreated groups. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.005, **** <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>Staining of callose deposition in F8-culture filtrate or H<sub>2</sub>O pretreated Yu-Nu tomato before or after TYLCTHV inoculation. Tomato plants were pretreated with H<sub>2</sub>O (<b>A</b>,<b>C</b>) or F8-culture filtrate (<b>B</b>,<b>D</b>). The pretreated plants were inoculated with TYLCTHV using whitefly vector at 24 hpt. The callose deposition was stained with 0.02% aniline blue. Callose depositions were analyzed at 24 hpt without TYLCTHV infection (<b>A</b>,<b>B</b>) or with TYLCTHV infection at 4 dpi (<b>C</b>,<b>D</b>) using a Zeiss Imager Z1 fluorescence microscope. Scale bar = 200 μm. White arrow indicates callose depositions. (<b>E</b>) The average numbers of callose deposition per field. Two pictures were taken per leaf (TYLCTHV-inoculated) collected from each plant (<span class="html-italic">n</span> = 7 plants) from H<sub>2</sub>O or F8-culture filtrate treatment for analysis. Data shows mean number of callose deposition per field ± SEM. Student’s <span class="html-italic">t</span>-test was used to analyze the data from the F8-culture filtrate pretreated group and the H<sub>2</sub>O-pretreated control group. ** <span class="html-italic">p</span> < 0.01. (<b>F</b>) The relative expression of callose synthase gene <span class="html-italic">PMR4</span> was detected by qRT-PCR at 0, 12 and 24 hpt without TYLCTHV infection or with TYLCTHV infection at 4 dpi. Data are mean ± SEM from 3 plants. β-actin was used as an input control. Student’s <span class="html-italic">t</span>-test was used for comparative analysis of the data in the H<sub>2</sub>O and F8-culture filtrate pretreated groups. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>Symptoms on H<sub>2</sub>O or F8-culture filtrate treated tomato in the field in Nantou County and Kaohsiung City. Tomato seeds were sown and grown in a growth chamber for 3 weeks. Yu-Nu tomato and Xiao-Nu tomatoes were pretreated with H<sub>2</sub>O or F8 by spraying three times with a 24-h interval between each spray, then transplanted to fields in Yuchi Township, Nantou County, or Alian Dist., Kaohsiung City. The level of disease index was recorded at 2-months post transplantation (<b>A</b>,<b>C</b>). The average of the disease index (<b>B</b>,<b>D</b>). Data represent mean ± SEM. Student’s <span class="html-italic">t</span>-test was used for analysis of the data in the F8-culture filtrate pretreated group and the H<sub>2</sub>O-pretreated control group. ** <span class="html-italic">p</span> < 0.01; **** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Whiteflies, Virus and Plants
2.2. Treatment and Inoculation
2.3. Disease Index for Evaluation of Tomato Yellow Leaf Curl Disease (TYLCD)
2.4. Nucleic Acid Isolation and Gene Expression Analysis
2.5. Measurement of Tomato Plant Fresh Weight
2.6. Staining of Callose Depositions
2.7. Field Trial
3. Results
3.1. F8-Culture Filtrate Induced Virus Resistance in Tomato Cultivar Yu-Nu
3.2. Mock and F8-Culture Filtrate Treated Plants Show Similar Fresh Weight
3.3. F8-Culture Filtrate Mainly Induced the Expression of SA-Responsive Immune Marker Genes on Tomato Cultivar Yu-Nu
3.4. F8-Culture Filtrate Induced Callose Deposition on TYLCTHV-Inoculated Tomato Cultivar Yu-Nu
3.5. F8-Culture Filtrate Induced Virus Resistance on Tomato Cultivar Yu-Nu and Xiao-Nu in the Field
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brasesco, F.; Asgedom, D.; Casari, G. Strategic Analysis and Intervention Plan for Fresh and Industrial Tomato in the Agro-Commodities Procurement Zone of the Pilot Integrated Agro-Industrial Park in Central-Eastern Oromia, Ethiopia; FAO: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Prasad, A.; Sharma, N.; Hari-Gowthem, G.; Muthamilarasan, M.; Prasad, M. Tomato Yellow Leaf Curl Virus: Impact, Challenges, and Management. Trends Plant Sci. 2020, 25, 897–911. [Google Scholar] [CrossRef]
- Makkouk, K.M.; Shehab, S.; Majdalani, S.E. Tomato Yellow Leaf Curl: Incidence, Yield Losses and Transmission in Lebanon. J. Phytopathol. 1979, 96, 263–267. [Google Scholar] [CrossRef]
- Pico, M.B.; Diez, M.J.; Nuez, F. Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus—A review. Sci. Hortic. 1996, 67, 151–196. [Google Scholar] [CrossRef]
- Varma, A.; Malathi, V.G. Emerging geminivirus problems: A serious threat to crop production. Ann. Appl. Biol. 2003, 142, 145–164. [Google Scholar] [CrossRef]
- Yan, Z.; Wolters, A.-M.; Navas-Castillo, J.; Bai, Y. The Global Dimension of Tomato Yellow Leaf Curl Disease: Current Status and Breeding Perspectives. Microorganisms 2021, 9, 740. [Google Scholar] [CrossRef] [PubMed]
- Moriones, E.; Navas-Castillo, J. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 2000, 71, 123–134. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Kontsedalov, S.; Khasdan, V.; Ishaaya, I. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 2005, 58, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, M.; Karniel, U.; Gelbart, D.; Fogel, D.; Evenor, D.; Kutsher, Y.; Makhbash, Z.; Nahon, S.; Shlomo, H.; Chen, L.; et al. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota. PLoS Genet. 2015, 11, e1005538. [Google Scholar] [CrossRef] [PubMed]
- Czosnek, H.; Eybishtz, A.; Sade, D.; Gorovits, R.; Sobol, I.; Bejarano, E.; Rosas-Díaz, T.; Lozano-Durán, R. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses 2013, 5, 998–1022. [Google Scholar] [CrossRef] [Green Version]
- Elbaz, M.; Hanson, P.; Fgaier, S.; Laarif, A. Evaluation of tomato entries with different combinations of resistance genes to tomato yellow leaf curl disease in Tunisia. Plant Breed. 2016, 135, 525–530. [Google Scholar] [CrossRef]
- Anbinder, I.; Reuveni, M.; Azari, R.; Paran, I.; Nahon, S.; Shlomo, H.; Chen, L.; Lapidot, M.; Levin, I. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor. Appl. Genet. 2009, 119, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Faal, P.G.; Farsi, M.; Seifi, A.; Kakhki, A.M. Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus. Mol. Biol. Rep. 2020, 47, 3369–3376. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, A.; Carlos, N.; Ruiz, Y.; Callard, D.; Sánchez, Y.; Ochagavía, M.E.; Seguin, J.; Malpica-López, N.; Hohn, T.; Lecca, M.R.; et al. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus. Mol. Plant Microbe Interact. 2016, 29, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzean, Y.; Chang, H.-H.; Tu, T.-C.; Hou, B.H.; Chen, H.-M.; Chiu, Y.-S.; Chou, W.-Y.; Chang, L.; Yeh, H.-H. Engineering Plant Resistance to Tomato Yellow Leaf Curl Thailand Virus Using a Phloem-Specific Promoter Expressing Hairpin RNA. Mol. Plant Microbe Interact. 2020, 33, 87–97. [Google Scholar] [CrossRef]
- Asad, S.; Haris, W.A.A.; Bashir, A.; Zafar, Y.; Malik, K.A.; Malik, N.N.; Lichtenstein, C.P. Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Arch. Virol. 2003, 148, 2341–2352. [Google Scholar] [CrossRef]
- Chellappan, P.; Masona, M.V.; Vanitharani, R.; Taylor, N.J.; Fauquet, C.M. Broad Spectrum Resistance to ssDNA Viruses Associated with Transgene-Induced Gene Silencing in Cassava. Plant Mol. Biol. 2004, 56, 601–611. [Google Scholar] [CrossRef]
- Zhang, P.; Vanderschuren, H.; Futterer, J.; Gruissem, W. Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol. J. 2005, 3, 385–397. [Google Scholar] [CrossRef]
- Bonfim, K.; Faria, J.C.; Nogueira, E.O.P.L.; Mendes, É.A.; Aragão, F.J.L. RNAi-Mediated Resistance to Bean golden mosaic virus in Genetically Engineered Common Bean (Phaseolus vulgaris). Mol. Plant Microbe Interact. 2007, 20, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, S.; Mishra, A.; Praveen, S. Hairpin RNA-Mediated Strategies for Silencing of Tomato Leaf Curl Virus AC1 and AC4 Genes for Effective Resistance in Plants. Oligonucleotides 2007, 17, 251–257. [Google Scholar] [CrossRef]
- Ammara, E.U.; Mansoor, S.; Saeed, M.; Amin, I.; Briddon, R.W.; Al-Sadi, A.M. RNA interference-based resistance in transgenic tomato plants against Tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite. Virol. J. 2015, 12, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-Y.; Tsai, W.-S.; Ku, H.-M.; Jan, F.-J. Evaluation of DNA fragments covering the entire genome of a monopartite begomovirus for induction of viral resistance in transgenic plants via gene silencing. Transgenic Res. 2011, 21, 231–241. [Google Scholar] [CrossRef]
- Fuentes, A.; Ramos, P.L.; Fiallo, E.; Callard, D.; Sánchez, Y.; Peral, R.; Rodríguez, R.; Pujol, M.; Fiallo-Olivé, E. Intron–hairpin RNA Derived from Replication Associated Protein C1 Gene Confers Immunity to Tomato Yellow Leaf Curl Virus Infection in Transgenic Tomato Plants. Transgenic Res. 2006, 15, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sherwood, T.A.; Patte, C.P.; Hiebert, E.; Polston, J.E. Use of Tomato yellow leaf curl virus (TYLCV) Rep Gene Sequences to Engineer TYLCV Resistance in Tomato. Phytopathology 2004, 94, 490–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Feng, B.; He, P.; Shan, L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annu. Rev. Phytopathol. 2017, 55, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.W.; Klessig, D.F. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol. 2016, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schwessinger, B.; Ronald, P.C. Plant Innate Immunity: Perception of Conserved Microbial Signatures. Annu. Rev. Plant Biol. 2012, 63, 451–482. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.L. Distillation Control: An Engineering Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 70–135. [Google Scholar]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Couto, D.; Zipfel, C. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 2016, 16, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Spoel, S.; Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 2012, 12, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Parker, L.L. A time-resolved luminescence biosensor assay for anaplastic lymphoma kinase (ALK) activity. Chem. Commun. 2014, 51, 362–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alazem, M.; Lin, N. Roles of plant hormones in the regulation of host–virus interactions. Mol. Plant Pathol. 2015, 16, 529–540. [Google Scholar] [CrossRef]
- Asai, T.; Tena, G.; Plotnikova, J.; Willmann, M.R.; Chiu, W.-L.; Gomez-Gomez, L.; Boller, T.; Ausubel, F.M.; Sheen, J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nat. Cell Biol. 2002, 415, 977–983. [Google Scholar] [CrossRef]
- Ausubel, F.M. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 2005, 6, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Boller, T.; Felix, G. A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annu. Rev. Plant Biol. 2009, 60, 379–406. [Google Scholar] [CrossRef] [PubMed]
- Pitzschke, A.; Djamei, A.; Teige, M.; Hirt, H. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc. Natl. Acad. Sci. USA 2009, 106, 18414–18419. [Google Scholar] [CrossRef] [Green Version]
- Nicaise, V. Crop immunity against viruses: Outcomes and future challenges. Front. Plant Sci. 2014, 5, 660. [Google Scholar] [CrossRef]
- Zhou, J.-M.; Chai, J. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 2008, 11, 179–185. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.-M. Plant Immunity Triggered by Microbial Molecular Signatures. Mol. Plant 2010, 3, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Toruño, T.Y.; Stergiopoulos, I.; Coaker, G. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annu. Rev. Phytopathol. 2016, 54, 419–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, S.R.; Fisher, E.J.; Chang, J.H.; Mole, B.M.; Dangl, J.L. Subterfuge and Manipulation: Type III Effector Proteins of Phytopathogenic Bacteria. Annu. Rev. Microbiol. 2006, 60, 425–449. [Google Scholar] [CrossRef] [Green Version]
- Abramovitch, R.; Janjusevic, R.; Stebbins, E.; Martin, G.B. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc. Natl. Acad. Sci. USA 2006, 103, 2851–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, F.; Vernaldi, S.; Maekawa, T. Evolution and Conservation of Plant NLR Functions. Front. Immunol. 2013, 4, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, K.; Katagiri, F. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 2010, 13, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Dangl, J.L. Arabidopsis and the plant immune system. Plant J. 2010, 61, 1053–1066. [Google Scholar] [CrossRef] [Green Version]
- Dangl, J.L.; Horvath, D.M.; Staskawicz, B.J. Pivoting the Plant Immune System from Dissection to Deployment. Science 2013, 341, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zeng, H.; Qiu, D.; Guo, L.; Yang, X.; Shi, H.; Zhou, T.; Zhao, J. Purification and Characterization of a Novel Hypersensitive Response-Inducing Elicitor from Magnaporthe oryzae that Triggers Defense Response in Rice. PLoS ONE 2012, 7, e37654. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhang, C.; Zi, Q.; Qiu, D.; Liu, W.; Zeng, H. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. Plant Cell Rep. 2014, 33, 1865–1879. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Zeng, H.; Qiu, D.; Guo, L.; Liu, Z. Extracellular expression of protein elicitor PeaT1 in Bacillus subtilis to enhance drought tolerance and growth in wheat. Sheng Wu Gong Cheng Xue Bao 2011, 27, 1355–1362. [Google Scholar] [PubMed]
- Wang, N.; Liu, M.; Guo, L.; Yang, X.; Qiu, D. A Novel Protein Elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 Induces Systemic Resistance in Tobacco. Int. J. Biol. Sci. 2016, 12, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, X.; Zeng, H.; Guo, L.; Yuan, J.; Qiu, D. Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana. Biotechnol. Lett. 2014, 36, 1069–1078. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Qiu, D.; Zeng, H.; Guo, L.; Yang, X. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants. Biochem. Biophys. Res. Commun. 2015, 457, 627–634. [Google Scholar] [CrossRef]
- Pichyangkura, R.; Chadchawan, S. Biostimulant activity of chitosan in horticulture. Sci. Hortic. 2015, 196, 49–65. [Google Scholar] [CrossRef]
- Van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of Inducible Defense-related Proteins in Infected Plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djonović, S.; Pozo, M.J.; Dangott, L.J.; Howell, C.R.; Kenerley, C.M. Sm1, a Proteinaceous Elicitor Secreted by the Biocontrol Fungus Trichoderma virens Induces Plant Defense Responses and Systemic Resistance. Mol. Plant Microbe Interact. 2006, 19, 838–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perazzolli, M.; Roatti, B.; Bozza, E.; Pertot, I. Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biol. Control 2011, 58, 74–82. [Google Scholar] [CrossRef]
- Seidl, V.; Marchetti, M.; Schandl, R.; Allmaier, G.; Kubicek, C.P.; Marchetti-Deschmann, M. Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J. 2006, 273, 4346–4359. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-A.; Weng, S.-H.; Chen, M.-C.; Lin, J.-S.; Tsai, W.-S. Priming of Plant Resistance to Heat Stress and Tomato Yellow Leaf Curl Thailand Virus With Plant-Derived Materials. Front. Plant Sci. 2019, 10, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijari, J.; Nerg, A.; Kainulainen, P.; Viiri, H.; Vuorinen, M.; Holopainen, J. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomol. Exp. Appl. 2005, 115, 117–124. [Google Scholar] [CrossRef]
- Boughton, A.J.; Hoover, K.; Felton, G.W. Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomol. Exp. Appl. 2006, 120, 175–188. [Google Scholar] [CrossRef]
- Chiu, Y.-S.; Chen, P.-Y.; Kuan, T.; Wang, P.-C.; Chen, Y.-J.; Yang, Y.-L.; Yeh, H.-H. A Polysaccharide Derived from a Trichosporon sp. Culture Strongly Primes Plant Resistance to Viruses. Mol. Plant Microbe Interact. 2018, 31, 1257–1270. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Huang, Y.; Xu, Z.-S.; Wang, F.; Xiong, A.-S. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol. 2019, 19, 173. [Google Scholar] [CrossRef]
- Shih, S.L.; Tsai, W.S.; Lee, L.M.; Wang, J.T.; Green, S.K.; Kenyon, L. First Report of Tomato yellow leaf curl Thailand virus Associated with Pepper Leaf Curl Disease in Taiwan. Plant Dis. 2010, 94, 637. [Google Scholar] [CrossRef]
- Jan, F.-J.; Green, S.K.; Shih, S.L.; Lee, L.M.; Ito, H.; Kimbara, J.; Hosoi, K.; Tsai, W.S. First Report of Tomato yellow leaf curl Thailand virus in Taiwan. Plant Dis. 2007, 91, 1363. [Google Scholar] [CrossRef]
- Tsai, W.S.; Shih, S.L.; Kenyon, L.; Green, S.K.; Jan, F.-J. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathol. 2011, 60, 787–799. [Google Scholar] [CrossRef]
- Weng, S.; Tsai, W.; Kenyon, L.; Tsai, C.-W. Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan. Ann. Appl. Biol. 2015, 166, 321–330. [Google Scholar] [CrossRef]
- Hu, F.-Y.; Mou, D.-F.; Tsai, C.-W. Evaluation of barrier plants for the cultural control of tomato yellow leaf curl disease. J. Asia-Pac. Entomol. 2020, 23, 132–137. [Google Scholar] [CrossRef]
- Li, W.-H.; Mou, D.-F.; Hsieh, C.-K.; Weng, S.-H.; Tsai, W.-S.; Tsai, C.-W. Vector Transmission of Tomato Yellow Leaf Curl Thailand Virus by the Whitefly Bemisia tabaci: Circulative or Propagative? Insects 2021, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Anfoka, G.; Moshe, A.; Fridman, L.; Amrani, L.; Rotem, O.; Kolot, M.; Zeidan, M.; Czosnek, H.; Gorovits, R. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci. Rep. 2016, 6, 19715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshe, A.; Gorovits, R.; Liu, Y.; Czosnek, H. Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. Mol. Plant Pathol. 2016, 17, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Shi, X.; Liu, B.; Pan, H.; Wei, W.; Zeng, Y.; Sun, X.; Xie, W.; Wang, S.; Wu, Q.; et al. Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex and Biotype. Sci. Rep. 2015, 5, srep10744. [Google Scholar] [CrossRef]
- Sun, Y.-C.; Pan, L.-L.; Ying, F.-Z.; Li, P.; Wang, X.-W.; Liu, S.-S. Jasmonic acid-related resistance in tomato mediates interactions between whitefly and whitefly-transmitted virus. Sci. Rep. 2017, 7, 566. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Du, M.; Deng, L.; Shen, J.; Fang, M.; Chen, Q.; Lu, Y.; Wang, Q.; Li, C.; Zhai, Q. MYC2 Regulates the Termination of Jasmonate Signaling via an Autoregulatory Negative Feedback Loop. Plant Cell 2019, 31, 106–127. [Google Scholar] [CrossRef] [Green Version]
- Martín-Rodríguez, J.Á.; León-Morcillo, R.; Vierheilig, H.; Ocampo, J.A.; Ludwig-Müller, J.; García-Garrido, J.M. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol. 2011, 190, 193–205. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Li, Y.; Zhao, R.; Zhang, Y.; Sheng, J.; Ma, P.; Shen, L. Knockout of SlNPR1 enhances tomato plants resistance against Botrytis cinerea by modulating ROS homeostasis and JA/ET signaling pathways. Physiol. Plant. 2020, 170, 569–579. [Google Scholar] [CrossRef]
- Jacobs, A.K.; Lipka, V.; Burton, R.; Panstruga, R.; Strizhov, N.; Schulze-Lefert, P.; Fincher, G.B. An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation. Plant Cell 2003, 15, 2503–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alazem, M.; Lin, N.-S. Antiviral Roles of Abscisic Acid in Plants. Front. Plant Sci. 2017, 8, 1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.-Y.; Kim, J.-Y. Callose synthesis in higher plants. Plant Signal. Behav. 2009, 4, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epel, B.L. Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases. Semin. Cell Dev. Biol. 2009, 20, 1074–1081. [Google Scholar]
- Hofmann, J.; Banora, M.; De Almeida-Engler, J.; Grundler, F.M.W. The Role of Callose Deposition Along Plasmodesmata in Nematode Feeding Sites. Mol. Plant Microbe Interact. 2010, 23, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, Y.; Liu, C.; Yao, G.; Wu, S.; Hou, C.; Zhang, M.; Wang, D. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of Soybean mosaic virus. Plant Cell Rep. 2012, 31, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sager, R.; Cui, W.; Zhang, C.; Lu, H.; Lee, J.Y. Salicylic Acid Regulates Plasmodesmata Closure during Innate Immune Responses in Arabidopsis. Plant Cell 2013, 25, 2315–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kevany, B.M.; Tieman, D.M.; Taylor, M.G.; Cin, V.D.; Klee, H.J. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J. 2007, 51, 458–467. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, Y.-S.; Tzean, Y.; Chen, Y.-H.; Tsai, C.-W.; Yeh, H.-H. Fungal F8-Culture Filtrate Induces Tomato Resistance against Tomato Yellow Leaf Curl Thailand Virus. Viruses 2021, 13, 1434. https://doi.org/10.3390/v13081434
Chiu Y-S, Tzean Y, Chen Y-H, Tsai C-W, Yeh H-H. Fungal F8-Culture Filtrate Induces Tomato Resistance against Tomato Yellow Leaf Curl Thailand Virus. Viruses. 2021; 13(8):1434. https://doi.org/10.3390/v13081434
Chicago/Turabian StyleChiu, Yi-Shu, Yuh Tzean, Yi-Hui Chen, Chi-Wei Tsai, and Hsin-Hung Yeh. 2021. "Fungal F8-Culture Filtrate Induces Tomato Resistance against Tomato Yellow Leaf Curl Thailand Virus" Viruses 13, no. 8: 1434. https://doi.org/10.3390/v13081434